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Overview

1. Using big data techniques has changed the way we study
personality. The increase in power due to very large samples
allows the detection of small but meaningful effects –
structural measures can have finer resolution than previously
available and cross-validated predictive accuracy can be
substantially enhanced.

2. But these techniques are not limited to big data. We discuss
one such approach that can be used for very large or even
moderate size samples.

3. We show how SAPA procedures improve scale reliability and
validity over using short scales when giving random subsets of
items selected from larger scales.
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SAPA overview

1. Synthetic Aperture Personality Assessment (SAPA) uses the
technique of Massively Missing Completely at Random
(MMCAR) data presentation to assess 20K participants per
month. Each participant is given a random subset of items
chosen from an item pool of more than 6600 items. These
items, extended from the International Personality Item Pool
(Goldberg, 1999) and the International Cognitive Ability Resource
(Condon & Revelle, 2014), assess temperament, cognitive ability,
interests and attitudes as well as self reported behaviors.

2. Conventional psychometric techniques are used to identify
homogeneous scales; empirical item selection procedures are
use to develop optimal item composites to predict a wide
range of criteria. Data analysis code is done using the psych
package (Revelle, 2018) in R (R Core Team, 2018).
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The basic problem: Fidelity versus bandwidth

1. Many personality traits, interests and cognitive abilities are
multidimensional and have complex structure.

• To measure these, we need to have the precision that comes
with many participants.

• But we also need the bandwidth that comes with many items.
• But participants are reluctant to answer very many items.

2. This has led to the quandary of should you give many people
a few items or a few people, many items?

3. Our answer is to do both, but with a Massively Missing
Completely At Random (MMCAR) data structure.

4. We refer to this technique as Synthetic Aperture Personality
Assessment (SAPA) to recognize the analogy to synthetic
aperture radio astronomy (Revelle, Wilt & Rosenthal, 2010; Revelle, Condon, Wilt,

French, Brown & Elleman, 2016)

5. This is functionally what Frederic Lord (1955, 1977)
suggested 63 years ago. It is time to take him seriously.

5 / 44



Introduction SAPA theory Structure Predictive validity Conclusions Appendices: R code References

Breadth vs. depth of measurement

1. Factor structure of domains needs multiple constructs to
define structure.

2. Each construct needs multiple items to be measured reliably.

3. This leads to an explosion of potential items.

4. But, people are willing to only answer a limited number of
items.

5. This leads to the use of short and shorter forms (the
NEO-PI-R (Costa & McCrae, 1992) with 300, the IPIP (Goldberg, 1999) Big 5
with 100, the BFI (John, Donahue & Kentle, 1991) with 44 items, the BFI2
(Soto & John, 2017) with 60, the 30 item ‘Short Five’ (Konstabel, Lönnqvist,

Leikas, Velàzquez, H, Verkasalo, & et al., 2017), the TIPI (Gosling, Rentfrow & Swann, 2003)

with 10 and the 10 item BFI (Rammstedt & John, 2007) ) to include as
part of other surveys.

6. Unfortunately, with this reduction of items, breadth of
substantive content is lost. We offer an alternative procedure.
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Example studies with subject/item tradeoffs

1. The Potter-Gosling internet project (outofservice.com) has
given over 10,000,000 tests since 1997. Originally the 44
items of the Big Five Inventory (BFI) (John et al., 1991) although
they are now giving the BFI2 (Soto & John, 2017).

2. The Stillwell-Kosinski (mypersonality.org) Facebook
application (no longer in service) gave 7,765 people the IPIP
version of the NEO-PI-R with facets (300 items), 1,108,472
the IPIP NEO-PI R domains (100 items), and 3,646,237 brief
(20 item) surveys. Cross linked to likes and Facebook pages
(Kosinski, Matz, Gosling, Popov & Stillwell, 2015; Youyou, Kosinski & Stillwell, 2015).

3. Johnson reports two data sets: 300 IPIP-NEO items for
145,388 participants and 120 IPIP-NEO items for 410,376
participants (Johnson, 2014).

4. Smaller scale studies include the BBC data set of the 44 items
of the BFI on 386,375 and the initial report on the BFI-2 (Soto &

John, 2017) with several thousand subjects with 60 items.
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Exceptions to the shorter and shorter inventory trend

1. Lew Goldberg and his colleagues at the University of Oregon
developed the Eugene-Springfield sample (Goldberg & Saucier, 2016)

which has given several thousand items to ≈ 1, 000
predominantly white middle class participants over 10 years.
This sample has been the basis of the development and
validation of the International Personality Item Pool (see
ipip.ori.org).

2. In fact, many of the subsequent attempts at personality scale
development have used the Eugene-Springfield sample, e.g.,
the BFI (John et al., 1991), and the Big Five Aspect Scales (BFAS)
of DeYoung, Quilty & Peterson (2007).
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The Eugene Springfield sample and the International Personality
Item Pool

1. Unfortunately, many of the items that have come out of the
E-S sample were prematurely selected to represent the Big 5.
That is, even though meant to capture the many dimensions
of the lexicon, the adjectival descriptors used had been
trimmed to those matching the 5 factors that have been
known since the 1950’s (Kelly & Fiske, 1950, 1951; Tupes & Christal, 1961; Norman,

1963).

2. Because of the ease of use and the openness of the IPIP, most
of the short forms followed the Big Five structure that came
out of the E-S sample.
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SAPA techniques can work for you

1. At the Personality Project (Revelle et al., 2010, 2016) (now at
sapa-project.org) we have taken the opposite direction and
have given more and more items including measures of
temperament, ability, and interests and we are now developing
item statistics on more than 6,600 items (Condon & Revelle, 2017) for
almost 500,000 participants (by using SAPA procedures).

2. We have reported computer simulations of our procedures but
now we want to demonstrate with real data the amazing
power of massively missing data.

3. In particular, we want to show that the techniques can work
on relatively small samples (≈ 1000− 2000) as well as the
larger ones we have been working with.
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Trading items for people: Studies, Items, People, Items x People

Table: Data sets vary in their sampling strategy and the Potter-Gosling
and Stillwell/Kosinski data sets seem to have more data than the others

Study N Items Items/ Items*
(n) Person People

Potter-Gosling 107 44 44 4.4 ∗ 108

Stillwell-Kosinski 4.5 ∗ 106 20-300 20-300 1.7 ∗ 108

Johnson 4.1 ∗ 105 120 120 4.9 ∗ 107

Johnson 1.4 ∗ 105 300 300 4.3 ∗ 107

SAPA* (2010-2017) 2.5 ∗ 105 2000 100-150 2.5 ∗ 107

SAPA+ (2017-2018) 2 ∗ 105 6,600 100-150 2 ∗ 107

SAPA- (pre 2010) 6.3 ∗ 104 500 100-150 9.4 ∗ 106

Eugene-Springfield 103 3,000 3,000 3 ∗ 106

But given basic statistical theory, is it worth while to increase the
sample size so much? What is the effect of giving more items at
the cost of reducing the sample size?
Consider the amount of information which varies by number of
correlations n∗(n−1)

2 and 1/(standard error of the r) ≈
√
N.
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Trading items for people: Studies: Items, People, Items x People
and Information

Information varies by the number of correlations (n ∗ (n − 1)/2)
weighted by their standard errors which vary by

√
N

Table: Data sets vary in their sampling strategy and the seemingly smaller
sets, by giving many more items actually have more total information

Study N Items Items/ Items* Information
Person People

SAPA+ 2 ∗ 105 6,600 100-150 2 ∗ 107 2.2 ∗ 108

E-S 103 3,000? 3,000 3 ∗ 106 1.4 ∗ 108

S-Ki 4.5 ∗ 106 20-300 20-300 1.7 ∗ 108 9.5 ∗ 107

SAPA* 2.5 ∗ 105 1-2,000 100-150 2.5 ∗ 107 7.5 ∗ 107

Johnson 1.4 ∗ 105 300 300 4.3 ∗ 107 1.7 ∗ 107

SAPA (pre 2010) 4.3 ∗ 103 500 100-150 2.5 ∗ 107 9.3 ∗ 106

Johnson 4.1 ∗ 105 120 120 4.9 ∗ 107 4.6 ∗ 106

P-G 107 44 44 4.4 ∗ 108 3.0 ∗ 106

SAPA pairwise:

+SAPA 2017-2018 (100) * SAPA 2013-2017 (1,400) -SAPA 2010-2013 (1100)
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Many items versus many people

1. Not only do want many people, we also want many items.

2. Resolution (fidelity) goes up with sample size, N, (standard
errors are a function of

√
N)

σx̄ =
σx√
N − 1

σr =

√
1− r2

N − 2

3. Also increases as number of items, k, measuring each
construct (reliability as well as signal/noise ratio varies as
number of items and average correlation of the items)

λ3 = α =
nr̄

1 + (n − 1)r̄
s/n =

nr̄

(1− nr̄)

4. Breadth of constructs (band width) measured goes up by
number of items (n).

5. Thus, we need to increase N as well as n. But how?
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A short diversion: the history of optical telescopes

Resolution varies by aperture diameter (bigger is better)

tableofcontents
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A short diversion: history of radio telescopes

Resolution varies by aperture diameter (bigger is still better)

Aperture can be synthetically increased across multiple telescopes
or even multiple observatories
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Can we increase N (subjects) and n (items) at the same time?

1. Frederic Lord (1955) introduced the concept of sampling
people as well as items.

2. Apply basic sampling theory to include not just people (well
known) but also to sample items within a domain (less well
known).

3. Basic principle of Item Response Theory and tailored tests.

4. Used by Educational Testing Service (ETS) to pilot items.

5. Used by Programme for International Student Assessment
(PISA) in incomplete block design (Anderson, Lin, Treagust, Ross & Yore, 2007).

6. Discussed at IMPS (2017) meeting by Rutkowski and Matta
in the missing data symposium.

7. Can we use this procedure for the study of individual
differences without being a large company?

8. Yes, apply the techniques of radio astronomy to combine
measures synthetically and take advantage of the web.
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Subjects are expensive, so are items

1. In a survey such as Amazon’s Mechanical Turk (MTURK), we
would need to pay by the person and by the item.

2. Volunteer subjects are not very willing to answer many items.

3. Why give each person the same items? Sample items, as we
sample people.

4. Synthetically combine data across subjects and across items.
This will imply a missing data structure which is

• Missing Completely At Random (MCAR), or even more
descriptively:

• Massively Missing Completely at Random (MMCAR) (we
sometimes have 99% missing data although our median is only
93% missing!)

5. This is the essence of Synthetic Aperture Personality
Assessment (SAPA) (Condon & Revelle, 2014; Condon, 2014; Revelle et al., 2016, 2010).

6. This is a much higher rate of missingness than discussed in
the balanced incomplete block design of NAEPS or PISA.
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3 Methods of collecting 256 subject * items data
a) 8 x 32 complete
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b) 32 x 8 complete
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Synthetic Aperture Personality Assessment

1. Give each participant a random sample of pn items taken from
a larger pool of n items. pi might be anywhere from .01 to 1.

2. Find covariances based upon “pairwise complete data”. Each
pair appears with probability pipj with a median of .01.

3. Find scales based upon basic covariance algebra.
• Let the raw data be the matrix NXn with N observations

converted to deviation scores.
• Then the item variance covariance matrix is nCn = X ′XN−1

• and scale scores, NSs are found by S = NXppKs .
• nKs is a keying matrix, with kij = 1 if itemi is to be scored in

the positive direction for scale j, 0 if it is not to be scored, and
-1 if it is to be scored in the negative direction.

• In this case, the covariance between scales,

sCs = sSN
′
NSsN

−1 =

sCs = (XK )′(XK )N−1 = K ′X ′XKN−1 = K ′nCnK . (1)

4. That is, we can find the correlations/covariances between
scales from the item covariances, not the raw items.
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Total information

1. The information in a correlation varies by its standard error

σr =
√

1−r2

N−2

2. In SAPA, k items/person are randomly selected with
probability p from a larger number, n (k = pn).

3. Thus, the number of subjects per item is pN.
4. The total number of correlations is just n∗(n−1)

2 and the
number of subjects per correlation is p2N.

5. Total information is number of correlations *
√

p2N =
n∗(n−1)

2

√
p2N = (k/p)((k/p)−1)

2 ∗
√

p2N = k∗(k−1)
√
N

2∗p .
6. For the “normal case” where p = 1, the information is just

what we expect–a quadratic function of k: IkN = k∗(k−1)
√
N

2 .
7. But the more interesting case (the SAPA case) is for p < 1

the information is a hyperbolic function of p:

IpkN = k∗(k−1)
√
N

2∗p but a linear function of the total number of

items given (n= k/p) IpkN = n∗(k−1)
2 ∗

√
N
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Total information varies by the number of items (n) and the
probability of sampling (p) and total sample size (N)

For k items/subject and N subjects, if every item is given with
probability p, the information in the test is

IpkN = k∗(k−1)
√
N

2∗p = n∗(k−1)
2 ∗

√
N
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Simulations with real data

1. In the past we have shown the power of SAPA using computer
simulations of artificial data (Revelle & Condon, 2017, 2016).

2. Now we will show the validity of sampling models based upon
samples from a complete data set of 70 Big 5 items.

3. The most recent version of SAPA includes 221K subjects on
6624 items.

4. Of these, there are 38,809 participants with complete data on
the SAPA Personality Inventory (SPI) (Condon, 2017), a 135 item
inventory with 70 items devoted to the “Big 5” supplemented
with 65 additional items to complete an assessment of 27
lower level “facets”.

5. We will examine the 44,341 who have complete data on the
70 Big 5 items in the SPI.
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Sampling from complete data

1. We compare three approaches:
1.1 Complete data for 15 items/subject for 20 sets of 2,000

subjects (3 items/factor) (Modeling the naive but common
approach of short scales).

1.2 Incomplete data for 15 items/subject, but sampled from 70
items (79% missing or p = .21) for 20 sets of 2,000 subjects
on 5 factors. This is the approach done in SAPA.

1.3 We also compare 70 items with complete data in sets of 2,000
subjects.

2. For each set, we find 5 factors based upon the covariances.

3. We examine the values and standard errors of the 10
correlations between dimensions.

4. We examine the factor loadings and their standard errors.

5. We compare these to the “population value” based upon the
remaining 4,341 subjects with complete data as well as 20
replication samples of 2,000 observations on all 70 items.
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The design of the demonstration

1.
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The top 5 items for each SPI factor - total complete data sample

Table: SPI factors (cut = .3)

SPI 5 factors from N=44,341
Variable MR2 MR5 MR3 MR1 MR4
Am concerned about others. 0.65
Sympathize with others feelings. 0.65
Believe that others have good intentions. 0.63
Am sensitive to the needs of others. 0.59
Think of others first. 0.59
Keep things tidy. 0.66
Neglect my duties. -0.61
Leave a mess in my room. -0.60
Start tasks right away. 0.60
Find it difficult to get down to work. -0.58
Dislike being the center of attention. -0.74
Like to attract attention. 0.74
Hate being the center of attention. -0.73
Make myself the center of attention. 0.73
Usually like to spend my free time with people. 0.30 0.58
Worry about things. 0.74
Panic easily. 0.72
Get overwhelmed by emotions. 0.71
Am a worrier. 0.68
Would call myself a nervous person. 0.67
Am full of ideas. 0.70
Am able to come up with new and different ideas. 0.69
Am an original thinker. 0.64
Love to think up new ways of doing things. 0.58
Have a vivid imagination. 0.52
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Factor intercorrelations for hold out sample of complete data
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1-2

-0.2 -0.1 0.0 0.1 0.2 0.3

Factor correlations

1. Factor
intercorrelations
based upon 5 factors
with complete data
on 70 items.

2. Values based upon
hold out sample of
4,341
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Factor intercorrelations for 20 replications of complete data
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1. Factor

intercorrelations
based upon 5 factors
with complete data
on 70 items.

2. Mean values for 20
replications of 2,000
subjects each.

3. “Cats Eye” plots
show +/-1 standard
deviation.

4. Dot shows the hold
out values

27 / 44



Introduction SAPA theory Structure Predictive validity Conclusions Appendices: R code References

Comparing full information with SAPA based factor correlations
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subjects each.

3. Confidence intervals
show +/-1 standard
deviation.
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Personality is about prediction

1. The fact that we can find the personality structure of our 70
items by using SAPA techniques is nice, but so what?

2. Can we use the factors to predict anything?

3. As part of the SAPA data collection, we ask about a number
of demographic variables as well as various behaviors.

4. Can we predict those criteria using our factor scores?

5. Once again, we compare the hold out sample of 4,300 people
to 20 random samples of 2,000 people with full information on
all 70 items, to SAPA procedures with 15 items/person to
“short form” procedures with 15 items given to everyone.

6. We note that these are demonstrations of short form versus
SAPA procedures on sample sizes that are attainable by many
of us.
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Predictive validity

exerMR4
exerMR1
exerMR3
exerMR5
exerMR2
healthMR4
healthMR1
healthMR3
healthMR5
healthMR2
educationMR4
educationMR1
educationMR5
educationMR2
sexMR4
sexMR1
sexMR3
sexMR5
sexMR2
ageMR4
ageMR1
ageMR3
ageMR5
ageMR2

-0.4 -0.2 0.0 0.2 0.4

Predictive validity of factor scales

1. Factor validities based
upon 5 factors with
complete data on 70
items.

2. Hold out sample

3. Criteria predicted are
age, sex, education,
health, and exercise.
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Comparing full information factor criterion validity with SAPA
validity
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sexMR2
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Factor validities based
upon 5 factors with
complete data on 70
items.
Criteria predicted are age,
sex, education, health, and
exercise.
“Cats Eye” plots show
+/-1 standard deviation.
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Comparing full information factor criterion validity with SAPA validity
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Some comments

1. These simulations were done with 2,000 simulated (but real)
subjects

2. With p=.21, the number of pairwise correlations was
p2N = .04 ∗ 2000 ≈ 80/pair and yet the results are very
stable!

3. We did it again with just 1,000 simulated subjects and results
are similar.

4. With such missingness, the correlation matrices are improper,
but the fa function will give a minres solution anyway.
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SAPA or MMCAR procedures are very powerful

1. At the SAPA-project we estimate difficulty parameters and
covariance structures for 1,000s of items even though only
100-150 items are answered per subject.

2. More importantly, the same procedures can be used for people
with smaller sample sizes with fewer items (e.g. MTurk
research).

3. Structure of ability measures using the open source ability test
from the International Cognitive Ability Resource (ICAR)
http://icar-project.com

4. Data sharing: https://dataverse.harvard.edu/

dataverse/SAPA-ProjectCode/manuscript/

5. SPI development (Condon, 2017): https://sapa-project.org/

research/SPI/SPIdevelopment.pdf

6. SPI scales, norms, IRT parameters:
https://sapa-project.org/research/SPI

7. Today’s slides at http://personality-project.org/sapa
8. Join the ICAR and SAPA projects. 35 / 44
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R code

The next few slides show the R code used for these analyses First
we show the function that forms the various scales We then show
the commands to the graphics.

R code

###
###The function to do the simulations

sim.complete <- function(x,nvar=NULL,n.trials=20,keys = NULL, n.items=15,n.obs=2000,
nf=5,criteria=NULL, short=NULL,seed=NULL,sapa=TRUE) {
set.seed(seed) #allows us to either randomly choose seed or not

total.n.obs <-nrow(x)
if(is.null(nvar)) nvar <- ncol(x) - length(criteria)
if(is.null(short)) short <- n.items/nf
ids <- 1:total.n.obs
Phi <- list()
Phi.f <- list()
orig.Phi <- list()
fa.list <- list()
s.keys <- list()
facong <- list()
long.loadings <- sapa.loadings <- list()
short.scales <- list()
overlap <- sapa.long <- short.long <- list()
long.cors <- list()
sapa.validity <- short.validity <- long.validity <- list()
validity <- NA

#continues 36 / 44
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R code
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R code
R code

# we can either figure out the keys, or use them from input
if(is.null(keys)) {
#First, define the target based upon all the cases
#do it from the hold out sample

if(is.null(n.obs)) {n.obs <- trunc(total.n.obs/n.trials)}
ss <- sample(ids,replace=FALSE) #a random permutation of the entire data set
x <- x[ss,] #this is a random organization of the data
validity <- x[c((n.trials*n.obs +1):total.n.obs),1:nvar] #this is the hold out sample

if(is.na(validity)) {validity <- x} #this is the complete data set
f.all <- fa(validity[1:nvar],nfactors=nf)
f.all <- fa.organize(f.all) #organize the factors in quasi-echelon form
f.all.sorted <- fa.sort(f.all)
keys <- factor2cluster(f.all.sorted)
#keys <- fa.organize(keys) #organize the keys into quasi-echolon form
key.list <- keys2list(keys)
select <- NULL
for (k in 1:nf) {select <- c(select,selectFromKeys(key.list[[k]][1:short]))
s.keys[[k]] <- key.list[[k]][1:short]}
names(s.keys) <- names(key.list)

}
}
#short keys and select are the keys for the top 3 items per scale
combined.keys <- c(key.list,s.keys)
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R code
R code

validity.scores <- scoreItems(keys,validity) #this is normally the hold out sample
if(!is.null(criteria)) { predictive.validity = cor(validity.scores$scores,x[c((n.trials*n.obs +1):total.n.obs),criteria],use="pairwise")} else {predictive.validity <- NULL}
validity.cors <- validity.scores$cor[lower.tri(validity.scores$cor)]
validity.f <- fa(validity,nf=nf)
validity.f.cors <- validity.f$Phi[lower.tri(validity.f$Phi)]

#now, do the replications of various scoring algorithms
k <- 1
for(trials in 1:n.trials) {
data <- x[ss[k:(n.obs*trials)],] #this is a derivation sample
#find the scores with all the data using all the items in the sample
long.scores <- scoreFast(key.list,data)
l.cor <-cor(long.scores,use="pairwise")
long.cors[[trials]] <- l.cor[lower.tri(l.cor)]
#Now, find the short scales
short.scores <- scoreFast(s.keys,data[select])
short.cor <- cor(short.scores,use="pairwise")
if(!is.null(criteria)) {short.val <- cor(short.scores,data[criteria],use="pairwise")} else {short.val <- NA}
#short.cor <- scoreItems(s.keys,data[select])$cor
short.scales[[trials]] <- short.cor[lower.tri(short.cor)]
sl <- cor(short.scores,long.scores,use="pairwise") #but these have an overlap problem

short.long[[trials]] <- diag(sl)
short.validity[[trials]] <- short.val

R <- cor(data[1:nvar],use="pairwise")
overlap[[trials]] <- diag( scoreOverlap(combined.keys,R)$cor[1:nf,(nf+1):(2*nf)]) #these are the corrected correlations
f.long <- fa(R,nf)
long.l <- apply(f.long$loadings,1,function(x) which(abs(x) ==max(abs(x))))
long.loadings[[trials]] <- apply(f.long$loadings,1,function(x) x[which(abs(x)==max(abs(x)))])
#names(long.loadings[[trials]] <- paste0("F",long.l,"-",1:nvar))
if(sapa) {#randomly drop items for each partipant
for (xxx in 1:n.obs) {data[xxx,sample.int(nvar,(nvar-n.items))] <- NA } #mask out all but n.items items
}
k <- k + n.obs
R <- cor(data[1:nvar],use="pairwise")
f <- fa(R,nfactors = nf)
fmatch <- factor.match(f.all,f) #organize f to match order of f.all
sapa.l <- apply(f$loadings,1,function(x) which(abs(x) ==max(abs(x))))
sapa.loadings[[trials]] <- apply(f$loadings,1,function(x) x[which(abs(x)==max(abs(x)))])
names(sapa.loadings[[trials]]) <- paste0("F",sapa.l,"-",1:nvar)
phi.f <- fmatch$phi #these are matching the corresponding factors
facong[[trials]] <- diag(factor.congruence(f.all,fmatch$f))
scores <- scoreItems(keys,R)
phi <- scores$cor
Phi[[trials]] <- phi[lower.tri(phi)]
Phi.f[[trials]] <-phi.f[lower.tri(phi.f)]
sapa.scores <- scoreFast(key.list,data)
if(!is.null(criteria)) {s.validity <- cor(sapa.scores,data[criteria],use="pairwise")} else {s.validity <- NA}
sapa.validity[[trials]] <- s.validity
s.long <- cor(sapa.scores,long.scores,use="pairwise")
if(!is.null(criteria)) {l.validity <- cor(long.scores,data[criteria],use="pairwise")} else {l.validity <- NA}
sapa.long[[trials]] <- diag(s.long )
long.validity[[trials]] <- l.validity
}
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R code
fa.cong <- matrix(unlist(facong),ncol=nf,byrow=TRUE)
Phi.f.vec <- matrix(unlist(Phi.f),ncol = nf*(nf-1)/2,byrow=TRUE)
Phi.vec <- matrix(unlist(Phi),ncol = nf*(nf-1)/2,byrow=TRUE)
short.scales <- matrix(unlist(short.scales),ncol = nf*(nf-1)/2,byrow=TRUE)
short.long <- matrix(unlist(short.long),ncol=nf,byrow=TRUE)
sapa.long <- matrix(unlist(sapa.long),ncol=nf,byrow=TRUE)
long.cors <- matrix(unlist(long.cors),ncol = nf*(nf-1)/2,byrow=TRUE)
sapa.loadings <- matrix(unlist(sapa.loadings),ncol=nvar,byrow=TRUE)
long.loadings <- matrix(unlist(long.loadings),ncol=nvar,byrow=TRUE)
overlap <- matrix(unlist(overlap),ncol=nf,byrow=TRUE)
if(!is.null(criteria)) {sapa.validity <- matrix(unlist(sapa.validity),ncol=nf*length(criteria),byrow=TRUE)

long.validity <- matrix(unlist(long.validity),ncol=nf*length(criteria),byrow=TRUE)
short.validity <- matrix(unlist(short.validity),ncol=nf*length(criteria),byrow=TRUE)
}

k <- 1
cnN <- 1:nf
vecnames <- 1:(nf*(nf-1)/2)

for(i in 1:(nf-1)) {for (j in (i+1):nf) {
vecnames[k] <- paste(cnN[i],cnN[j],sep="-")

k<- k +1 }}

colnames(Phi.f.vec) <- vecnames
colnames(Phi.f.vec) <- vecnames
colnames(short.scales ) <- vecnames
colnames(long.cors) <- vecnames
colnames(Phi.vec) <- vecnames
colnames(short.long) <- colnames(sapa.long) <- colnames(overlap)<- paste0("S",1:nf)

colnames(sapa.validity) <- colnames(long.validity) <- colnames(short.validity) <- paste0(rep(colnames(sim5$predictive.validity),each=nf),rownames(sim5$predictive.validity))

result <- list(validity.f.cors =validity.f.cors,validity.scaled.cors=validity.cors ,long.cor=long.cors, sapa.cor=Phi.vec, factor.cor=Phi.f.vec, short.cors=short.scales, fa.cong = fa.cong, short.long=short.long, overlap=overlap,
sapa.long=sapa.long, predictive.validity=predictive.validity,sapa.validity=sapa.validity,long.validity=long.validity,short.validity = short.validity,sapa.loadings=sapa.loadings,long.loadings=long.loadings)
return(result)
}
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R code

R code
#match factors based upon congruences

factor.match <- function(f1,f2) {
cong <- fa.congruence(f1,f2)
match <- apply(cong,1,function(x) which.max(abs(x)))
f2 <- fa.organize(f2,o=match)
cong <- fa.congruence(f1,f2)
flip <- diag(sign(diag(cong)))
f2$loadings <- f2$loadings %*% flip
phi <- flip %*% f2$Phi %*% flip
return(list(f=f2,phi=phi))
}
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More R
R code

#Code for ECP.18
#first get the data ready

read.file() #get the latest data set
sapa <- SAPAdata07feb2017thru05jul2018
spi.5.items <- selectFromKeys(keys.list[391:395])
spi.demo.items <- c(spi.5.items, cs(age,sex,health,education,height,weight,BMI,exer,smoke))
spi.demo <-sapa[spi.demo.items]

cc <- apply(spi.demo[1:70],1,function(x) sum(!is.na(x)))
spi5.com <- spi.demo[cc==70,]

spi5.com <- char2numeric(spi5.com) #the criterion variables are categorical
spi.com <-scrub(spi5.com,"sex",max=2) #make sex binary

criteria <- cs(age,sex, education, health, exer )
sim5 <- sim.complete(spi5.com,nvar=70,criteria=criteria)

error.dots(sim5$validity.scaled.cors,add=FALSE,pch=20,sort=FALSE,main="Factor correlations",xlim=c(-.3,.3))
error.dots(sim5$long.cor,sort=FALSE,pch=15,main="Scale correlations +/- 1 sd",eyes=TRUE,sd=TRUE,xlim=c(-.3,.3))

names(sim5$validity.scaled.cors) <- colnames(sim5$sapa.cor)
error.dots(sim5$validity.scaled.cors,add=TRUE,pch=20,sort=FALSE,main="",xlim=c(-.3,.3))
error.dots(sim5$sapa.cor,sort=FALSE,add=TRUE,main="",sd=TRUE,xlim=c(-.3,.3))

error.dots(abs(sim5$long.cor),sort=FALSE,pch=15,main="Scale correlations +/- 1 sd",eyes=TRUE)
error.dots(abs(sim5$sapa.cor),sort=FALSE,add=TRUE,main="")
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More R

R code
#now for the validities

error.dots(sim5$long.validity,sort=FALSE,eyes=TRUE,pch=20,sd=TRUE ,main="SAPA and Full scale Validity coefficients ",xlim=c(-.4,.4))
error.dots(sim5$sapa.validity,sort=FALSE,add=TRUE,pch=18,sd=TRUE,main="",xlim=c(-.4,.4))
error.dots(sim5$short.validity,sort=FALSE,add=TRUE,pch=5,sd=TRUE,main="",xlim=c(-.4,.4))
predictive <- as.vector(sim5$predictive.validity)
names(predictive) <- colnames(sim5$short.validity) #need these to keep the scaling correct
error.dots(predictive,add=FALSE,sort=FALSE,sd=TRUE,pch=15,xlim=c(-.4,.4),main="Predictive validity of factor scales")

error.dots(sim5$long.validity,sort=FALSE,eyes=TRUE,pch=20,sd=TRUE ,main="Hold out sample and Full scale Validity coefficients ",xlim=c(-.4,.4))
error.dots(predictive,add=TRUE,sort=FALSE,sd=TRUE,pch=15,xlim=c(-.4,.4),main="")
error.dots(sim5$sapa.validity,sort=FALSE,add=TRUE,pch=18,sd=TRUE,main="",xlim=c(-.4,.4))

error.dots(sim5$long.validity,sort=FALSE,eyes=TRUE,pch=20,sd=TRUE ,main="Hold out sample, Full scale and SAPA validity coefficients ",xlim=c(-.4,.4))
error.dots(predictive,add=TRUE,sort=FALSE,sd=TRUE,pch=15,xlim=c(-.4,.4),main="")
error.dots(sim5$sapa.validity,sort=FALSE,add=TRUE,pch=18,sd=TRUE,main="",xlim=c(-.4,.4))

error.dots(sim5$long.validity,sort=FALSE,eyes=TRUE,pch=20,sd=TRUE ,main="Hold out, Full scale, SAPA, short scale validity coefficients ",xlim=c(-.4,.4))
error.dots(predictive,add=TRUE,sort=FALSE,sd=TRUE,pch=15,xlim=c(-.4,.4),main="")
error.dots(sim5$sapa.validity,sort=FALSE,add=TRUE,pch=18,sd=TRUE,main="",xlim=c(-.4,.4))
error.dots(sim5$short.validity,sort=FALSE,add=TRUE,pch=5,sd=TRUE,main="",xlim=c(-.4,.4))

error.dots(sim5$long.cor,sort=FALSE,eyes=TRUE,sd=TRUE,pch=20,main="Full scale Interfactor correlations",xlim=c(-.4,.4))
error.dots(sim5$long.cor,sort=FALSE,eyes=TRUE,sd=TRUE,pch=20,main="SAPA and Full scale Interfactor correlations",xlim=c(-.4,.4))
error.dots(sim5$sapa.cor,sort=FALSE,add=TRUE,pch=18,sd=TRUE,main="",xlim=c(-.4,.4))
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R code

test.info <- function(n,k=15, N= 100) {
p <- n/k
info <- n * (k-1) * sqrt(N)/(2)
return(info)

}

test.info.p <- function(p,k=15,N=100) {n <- k/p
info <- n * (k-1) * sqrt(N)/(2)
return(info)irwise = 1600",xlim=c(0,1))
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