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Abstract

In the mid 1950s, scale construction for academic personality
research turned from predicting behaviors to measuring constructs.
Emphasizing construct validity has led the field from being
practically useful to being theoretically “pure”. This was a mistake.
We will address the advantages of using broad scales with low to
moderate internal consistency (fishing nets) as contrasted to
narrow, highly internally consistent (spears) scales. We will suggest
that one catches more fish with nets than with spears. One builds
up nets by using lower level items and nuances rather than more
internally consistent high level factor score estimates. Predicting
multivariate data requires multivariate models rather than
factorially pure measures.
Examples in predicting gender, health, and exercise will be taken
from open source material in the psychTools package with
analysis using the psych package.
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Two broad approaches in personality assessment and theory

1. For the past 70 years, personality assessment has been split
between those who emphasize theoretical constructs thought
to explain behavior and those who “merely” want to predict
it. See (Möttus et al., 2020; Revelle, 2024c; Yarkoni and Westfall, 2017).

• The psychological construct approach is most associated with
the formative work of Jane Loevinger (1957) and Lee
Cronbach and Paul Meehl (Cronbach and Meehl, 1955).

• The straight predictive approach is best represented today by
Robert Hogan and the success of the Hogan Personality
Inventory.

2. Bob Hogan (2024) emphasizes that the successful tests for
predicting real world outcomes such as educational
attainment, occupational status or income are based upon
empirical scoring of items that work. Perhaps the two most
well known examples of this technique include the Strong
Vocational Interest (Strong Jr., 1927) and the MMPI (Hathaway and McKinley,

1943). (Hogan, 2024).
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Construct versus predictive validity

1. Constructs as explanations are much more fun to talk about
(e.g., Extraversion and performance under stress, Revelle
et al., 1976, 1980, 1987; Revelle and Anderson, 1992) and
lead to an emphasis upon sharply defined, unidimensional
tests. These tests are then correlated with other tests to
better define the nomological network of a domain.

• Psychometric techniques such as factor analysis and
assessment of reliability are seen as important skills to master.

• Psychometric tools including R packages (e.g, psych, Revelle,
2024a) can be developed to help do the analysis and tutorials
on how to construct scales and assess reliability are well cited

2. Tests as predictive devices requires writing (choosing) good
items, forming predictive scales, and then cross validating
them. This is not as much fun, but results in higher predictive
validity (but less parsimony) than construct pure measures
(Revelle et al., 2021; Stewart et al., 2022).
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These ideas are not new, merely forgotten

1. Gulliksen (1950) suggested validity varies independently of
internal consistency.

2. Humphreys (1994) examined the phenotypic trait of
intelligence and equated it to the total breadth of the
cognitive repertoire. He argued that short and homogenous
measures can not measure the breadth of intelligence.

3. Nandakumar (1991) citing many papers by Humphreys,
forcefully argues that, from the validity viewpoint, tests should
be deliberately constructed to include numerous minor factors.

4. Tellegen and Waller (2008) explained how to measure
personality traits, one should not focus on maximizing internal
consistency but rather focus on breadth.

5. (Condon et al., 2020; Stewart et al., 2022; Möttus et al., 2020) show how nuances
(items) predict better than higher order scales.

6. Yarkoni and Westfall (2017) discuss the power of machine
learning for prediction.
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Recent work

1. We have previously encouraged researchers to resist the
seductive beauty of latent variables which we equate to
believing in the tooth fairy (Revelle, 2024c).

2. We have also shown how internal consistency trades off with
predictive validity such that less internally consistent tests
may actually be more valid (Eagly and Revelle, 2022; Revelle
and Garner, 2024; Garner, 2024).

3. We have also shown the power of choosing items using
classical scale construction techniques (now called “machine
learning using k-fold cross validation”) to predict real world
criteria (Elleman et al., 2020; Revelle et al., 2021).

4. The central theme of these papers is that predictive validity
should be a major goal of personality researchers and that we
should rediscover some of the techniques that have long been
known, but unfortunately, long forgotten.
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But what are these “forgotten” techniques?

1. Empirical scale construction (choosing items that work) was
the hallmark of the successful scales of the 1930s-1950s.

• Occupational scales on the Strong Vocational Interest (Strong
Jr., 1927) were formed of items endorsed by people in specific
occupations that were not as strongly endorsed by people in
general.

• The clinical scales of the Minnesota Multiphasic Personality
Inventory Behavioral and emotional items were formed from
those items that discriminated a crtierion group from “normal”
controls. (But see Helmes and Reddon, 1993, for a thoughtful
critique, which criticize the MMPI for lack of theory as well as
lack of cross validation of the original scale construction.)

2. Similar empirical scale construction (with an overlay of
socioanalytic theory) (Hogan, 1982, 2024) has driven the
construction of the HPI (Hogan and Hogan, 1995).

3. Hase and Goldberg (1967); Goldberg (1972) compared the
utility of empirical and factor based techniques and found
systematic advantages and disadvantages to both. 8 / 21
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Validity and reliability: a short digression

1. Although we know from Spearman that we can correct for
reliability to find the “True” relationship between two
variables, this does not help us in the real world.

2. Reliability is incorrectly associated with internal consistency
which leads to such derivations as coefficients KR20 (Kuder and

Richardson, 1937), λ3 (Guttman, 1945) or α (Cronbach, 1951).

3. Expressed terms of inter-item correlations, α is just kr̄
1+(k−1)r̄

and increases with test length (k) and the average interitem
correlation (r̄).

4. However, validity of a k item test (ryk ) or the correlation with
an external criterion, Y, also increases with test length, and
the average item validity (r̄y ) but decreases as the inter-item

correlation increases ryk =
kr̄y
σx

=
kr̄y√

k+k∗(k−1)r̄
.
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Reliability and Validity

1. Lets unpack these two equations.
Internal consistency varies by number of items and average
correlation (redundancy).

λ3 = α =
kr̄

1 + (k − 1)r̄
(1)

2. But validity varies by number of items, average within test
correlation and average item validity

ryk =
kr̄y
σx

=
kr̄y√

k + k ∗ (k − 1)r̄
. (2)
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Showing the reliability by validity tradeoff

1. Consider 9 scales formed from

2. 10, 20 or 30 items

3. Average validities of .15, .20, .25

4. Plot scale validity by scale α for .3 < α < .9

5. Important to remember that α ̸= reliability.
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The trade off between test consistency and test validity
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Several Examples

1. To show the power of items, one must give many items to
many subjects. Thus:

2. We use data (952 items, N ≈ 255, 000 )from the SAPA
Project which uses a Massively Missing Completely at
Random (MMCAR) approach.

3. Also use a subset of these data (the spi) included in the
psychTools package.

4. We have previously reported similar results (Revelle et al.,
2021) but now report some new analyses.

5. The basic theme of all of these results is that short,
empirically chosen scales with low internal consistency (fishing
nets) do a better job of prediction than do highly internally
consistent scales (spears).
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But what is SAPA?

1. SAPA (Synthetic Aperture Personality Assessment) presents
random samples of 100-200 items sampled from 6600 items to
volunteer participants interested in their personality (Condon, 2018;

Revelle et al., 2010, 2017, 2021; Zola et al., 2017)

2. Name comes by analogy to Synthetic Aperture Radio
Astronomy which combine many small radio telescopes to
form image from a much larger telescope.

3. Although David Condon has released multiple tranches of
100-200,000 cases from the > 2 ∗ 106 we have collected, here
we just examine an earlier release of 255,000 case on 952
variables.

4. This set includes 19 demographic variables. 696 items from
the International Personality Item Pool Goldberg (1999) and
60 items from the International Cognitive Ability Resource
Condon and Revelle (2014); Condon et al. (2014).
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Design and Analysis

1. For ease of replicability and for demonstration purposes we
use 135 items from the SAPA Personality Inventory (spi)
Condon (2018).

2. We report 4000 subjects who took the spi as part of the
SAPA project. These data are included as an example data
set in the psychTools package (Revelle, 2024b) for R (R Core
Team, 2024).

3. We randomly sampled 1/2 (2,000) subjects and then cross
validated any analyses on the other 2,000 subjects.

4. the spi data set includes 10 criteria of interest.
5. We found 5 “Big Few” scales scores for 5 scales of 14 items

each, 27 lower level/interstitial scales of 5 items each and
then used a simple function bestScales to empirically find
the best 10 items predicting each.

6. for the big Few and little 27, we used multiple correlation
(using lmCor ) to predict the criteria.
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Analysis

1. Multiple correlations of each of 10 criteria predicted by the
Big 5.

2. Multiple correlations of each of 10 criteria predicted by the
Little 27.

3. Short scales (up to 10 items) formed from the items that best
predict the criteria using the bestScales function.

4. All results derived on sample 1, cross validated on sample 2.
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Best items results are very interpretable: Smoking

Table: Best Items predicting smoking ωh = .29, α = .76, r = .28

Variable smoke Item B5 L27
q 1461 -0.22 Never spend more than I can afford. SelfControl
q 1867 -0.18 Try to follow the rules. Consc Authoritarianism
q 1609 0.18 Rebel against authority. Open Authoritarianism
q 598 0.16 Do crazy things. SensationSeeking
q 1624 -0.15 Respect authority. Authoritarianism
q 1173 0.14 Jump into things without thinking. Impulsivity
q 736 -0.14 Easily resist temptations. SelfControl
q 1590 -0.13 Rarely overindulge. SelfControl
q 1462 -0.13 Never splurge. SelfControl
q 56 -0.13 Am able to control my cravings. SelfControl

Rb5 = .18 RL27 = .28 Rbest10 = .28
N Rb5 = 70 NL27 135 Nbest10 10
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Exercise

Table: Best Items predicting exercise ωh = .48, α = .79, r = .29

Variable exer Item B5 L27
q 1024 -0.27 Hang around doing nothing. EasyGoingness
q 1052 -0.24 Have a slow pace to my life. EasyGoingness
q 1452 -0.22 Neglect my duties. Consc Industry
q 1444 -0.21 Need a push to get started. Consc Industry
q 1979 0.20 Work hard. Consc Industry
q 1371 0.20 Love life. WellBeing
q 1505 -0.20 Panic easily. Neuro Anxiety
q 1662 0.19 Seek adventure. SensationSeeking
q 808 -0.19 Fear for the worst. Neuro Anxiety
q 578 -0.19 Dislike myself. Neuro WellBeing

Rb5 = .22 RL27 = .29 Rbest10 = .29
N Rb5 = 70 NL27 135 Nbest10 10
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Health

Table: Best Items predicting health ωh = .57, α = .86, r = .44

A table from the psych package in R
Variable helth Item B5 L27
q 820 0.34 Feel comfortable with myself. WellBeing
q 2765 0.34 Am happy with my life. WellBeing
q 578 -0.33 Dislike myself. Neuro WellBeing
q 811 -0.31 Feel a sense of worthlessness or hopelessness. Neuro WellBeing
q 1371 0.31 Love life. WellBeing
q 56 0.29 Am able to control my cravings. SelfControl
q 1505 -0.27 Panic easily. Neuro Anxiety
q 1452 -0.26 Neglect my duties. Consc Industry
q 808 -0.25 Fear for the worst. Neuro Anxiety
q 1024 -0.25 Hang around doing nothing. EasyGoingness

Rb5 = .40 RL27 = .45 Rbest10 = .45
N Rb5 = 70 NL27 135 Nbest10 10
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Conclusions

1. We have known for years but seem to have forgotten that:

2. Validity and Internal consistency (redundancy) trade off with
other. Increasing internal consistency/redundancy reduces
external validity.

3. Highly internally consistent scales (spears) might make more
theoretical sense but

4. Diffuse scales containing unrelated items that all relate to the
criteria (nets) have higher predictive validity.

5. Cross validated correlations are higher with diffuse items that
can be examined for interpretation than highly intenally
consistent scales.

6. One catches more fish with nets than spears.
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