Introduction 00000000 00

SAPA data

ICAR 000000 000000 psych 00 Conclusion

References

6 decades of dabbling in intelligence

Llfe time career award from International Society for Intellligence Research Evanston, Illinois

> William Revelle Northwestern University Evanston, Illinois USA

NORTHWESTERN UNIVERSITY

July, 2025 Slides available at https:personality-project.org/sapa

Outline

Introduction

I am a personality psychologist who studies intelligence Research at the Personality, Motivation and Cognition lab Motivation and cognitive efficiencey Theory development and tests SAPA data Astronomy as an analogy Psychometrics of SAPA The International Cognitive Ability Resource The development of ICAR Extensions and applications of ICAR

Development of the *psych* package

Conclusion

The secrets of a lifetime career award

- 1. Good luck
- 2. Great mentors
- 3. Great colleagues
- 4. Great students
- 5. Live long enough
- 6. Good luck

I am a personality psychologist who studies intelligence

- 1. I have long said that personality is the last refuge of the generalist in psychology.
- 2. What does that mean?
 - It means that I study the interplay of Affect, Behavior, Cognition and Desire (the ABCDs)
 - That is, how one feels, acts, thinks, and wants.
- 3. To me, how one thinks and what one knows are fascinating problems but we have known since Tolman and Honzik (1930) that knowing how to do something (competence) is not the same as doing it (performance).
- 4. It is this interplay between competence and performance that I will address today.
- 5. For I believe that by understanding "non-cognitive" aspects of personality we can understand the "cognitive" aspects better.

A missionary between two fields

- 1. I have frequently told my American colleagues in personality that they should include intelligence and cognitive ability in their studies.
- 2. I have also frequently said to members of this society that they should include personality variables in their studies.
- 3. I have long viewed personality as including cognitive and non-cognitive aspects of the same field.
- 4. In Europe, this is the field of individual differences. We should strive to include them both in our studies of human and animal behavior.

I am not the first to address this problem

- Perhaps the first experimentalist and serious observer of motivation and competence was Gideon. He conducted a within subject study (N=1, God) which showed the first published crossover interaction.
- More relevant was his assessment of 32,000 volunteers to choose 300 warriors involved measuring desire, affect and knowledge. (McPherson, 1901).
- 3. This combination of cognitive and non-cognitive aspects of personality for selection was most useful.

Plato and the requirements for leadership

Several centuries later, leadership was said to require cognitive ability and an appropriate temperament.

... quick intelligence, memory, sagacity, cleverness, and similar qualities, do not often grow together, and ... persons who possess them and are at the same time highspirited and magnanimous are not so constituted by nature as to live in an orderly and peaceful and settled manner; they are driven any way by their impulses, and all solid principle goes out of them. ... On the other hand, those stable and steadfast and, it seems, more trustworthy natures, which in a battle are impregnable to fear and immovable, are equally immovable when there is anything to be learned; they are always in a torpid state, and are apt to yawn and go to sleep over any intellectual toil." Plato (nd)

Call for Ability-Personality Integration

2300 years later, in their call for a special issue of the *Journal of Intelligence*, Ziegler et al said:

Individual differences research focused in cognitive abilities and personality traits has been relatively successful in predicting human behavior. Very early on, interindividual difference researchers included a wide array of different constructs including personality traits and cognitive abilities. For example, Cattell (1987) proposed a theory of cognitive development which also integrated personality traits. Later, Ackerman (1996) and Ziegler, Danay, Heene, Asendorpf, and Bühner (2012) developed similarly integrative models. These models address the complex dynamic interplay between cognitive abilities and personality, which is particularly relevant from a developmental perspective.

Ziegler et al, continued:

They went on:

However, despite these efforts, there is still little sustained theory and research aimed at integrating both psychological trait foci. In fact, it sometimes appears as if two only slightly overlapping traditions have developed, each using the constructs of the other tradition only as control variables. This is unfortunate because scientists acknowledge the high relevance of addressing the interactions between cognition and personality for enhancing our understanding of human behavior.

Others have made similar claims

- 1. Ackerman and Heggestad (1997); Ackerman (1997, 2018); von Stumm et al. (2011) have all examined the personality-intelligence link.
- 2. For Germans, the link is obvious (Brauer and Proyer, 2024) for the study of individual differences includes those temperamental and cognitive variables.
- 3. Ackerman (1996) reviewed the history of the study of adult intelligence continuing in the tradition of Cronbach and Snow (1981).
- 4. Other important work is summarized in Kanfer et al. (2014).

Introduction

- 1. Showing the interactive effect of arousal manipulations with the personality dimension of Introversion-Extraversion on cognitive performance on Graduate Record Exam like tests (Revelle et al., 1976).
- 2. Showing that the effects found in Revelle et al. (1976) are even more complicated than we thought, and interact with time of day (Revelle et al., 1980).
- 3. Trying to integrate these effects into one overall model of personality, motivation, and performance (Humphreys and Revelle, 1984).
- 4. Developing an open source test of ability (ICAR) so that I (and others) could include ability in any study of personality, interests, attitudes, etc. (Condon and Revelle, 2014).

The PMC lab: Personality, Motivation and Cognition lab

Introduction

- 1. All of the research I will discuss today was done with many very talented undergraduate and graduate students, some of whom continue to work with me, as well as colleagues at NU and around the world.
- 2. Broadly summarizing our research goals, we have labeled our lab as the *Personality, Motivation and Cognition* lab (PMC) although sometimes we also refer to it as the *Telemetrics* lab.
- Without the collaboration and inspiration of these students and colleagues my research would have been much more boring.

Introduction 00000000 00

Motivation 00000 000000000 SAPA data 0000 0000000 ICAR 0000000 0000000 psych 00 Conclusio

References

Motivational effects on cognitive processing

- 1. After I graduated from Pomona and married Eleanor, we went to Sarawak, Malaysia where I taught 6th grade and Eleanor 1st and then 2nd grade in a small (very) upriver school.
- 2. Following the British System, entrance to secondary school required passing the Common Entrance Examination (set by educators in Cambridge).
- 3. While the national pass rate was 30%, the pass rate at Nanga Medamit was 0%,
- 4. My job was to teach enough English, Math, and Social Studies so that they could get into secondary school.
- 5. The parents of the children had never been to school, some had been headhunters.
- 6. At the end of the first year, 7 of 18 passed, the second year led to 14 out of 20.
- 7. This led to my skepticism of cultural differences in ability in that with intense training we could move scores > 2.5 sigma.

Graduate school: measurement, development and motivation

Motivation

- 1. In graduate school I was technically supervised by Don Brown but worked also with Warren Norman, Dick Nisbett, Jack Atkinson and Jim Kulik.
- As long as I could program the data analysis for a developmental study on the effects of cluster colleges on student change (Newcomb et al., 1970, 1971), I was allowed to "follow my nose" - always the best advice for researchers.
- 3. This led to some psychometric work on cluster analysis with Jim Kulik (Kulik et al., 1970) as well as TAing for Jack Atkinson.
- 4. While in Peace Corps I had read (devored) books by Hans Eysenck and then in graduate school tried to integrate his work with that of Atkinson.

SAPA data 00000 00000000 ICAR 0000000 000000 psych 00 Conclusio

References

Motivation and the efficiency of performance

- My dissertation was an ambitious (but unsucessful) attempt to show how combining experimental manipulations with personality could produce evidence for the Yerkes-Dodson "Law" (Yerkes and Dodson, 1908).
- 2. Most previous demonstrations had been dreadfully underpowered or designed so that most results could be interpreted as supportive.
- Thus I designed a study to confirm the predictions from Eysenck that stress should interact with introversion-extraversion and lead to a lower peak level for introverts than for extraverts.
- 4. Following the findings of Zajonc (1965) I used group size (1 vs 2 vs 8 person groups) as social stressors. Other additive stressors were competition, monetary incentive and a loud noise. The results were non-supportive of my hypothesis.

sych

onclusion

References

Caffeine as a stressor

- When discussing my failed results with an advanced undergraduate class, two students suggested;
 - Using practice Graduate Record Exams (GRE) as the stimulus material.
 - Use time stress and caffeine as stressors.
- Their results were very impressive. (Revelle et al., 1976).
- 3. I have always been thankful for the suggestions of Phyllis Amaral and Susan Turriff.

Stress reduced the performance of the introverted group by .6 σ while helping the extraverted group by .6 σ .

Motivation 000000

SAF

ICAR 000000 000000 psych 00 Conclusion

References

Failures to replicate explained

- A graduate student, Kirby Gilliland, suggested that the prior study using 200 mg of caffeine should have been dosed by body weight (0, 2, or 4 mg/kg of caffeine). He also used the new and "improved" measure of Extraversion, the Eysenck Personality Questionnaire (Eysenck and Eysenck, 1975).
- 2. But the results did not replicate the Revelle et al. (1976) unless we use the older version, the Eysenck Personality Inventory (Eysenck and Eysenck, 1964)

ntroduction 00000000 00

Motivation 00000● 0000000000 SAPA data 0000 0000000 ICAR 000000 000000 psych 00 Conc

References

Subsequent replications and extension

With my cognitive colleague, Mike Humphreys, and some very determined graduate students, we finally solved the replicability problem (Revelle et al., 1980).

The crucial variable was impulsivity from the EPI, not the social extraversion as measured by the EPQ.

In addition the effects varied by time of day.

- Every study in the morning showed that low impulsives got worse but high impulsives better when given caffeine.
- This effect reversed in the evening where now the high impulsives got worse and the lower impulsives better with caffeine.

Impulsivity, Caffeine, and Time of Day: the effect on complex cognitive performance

Theory development

- 1. Mike Humphreys and I tried to integrate our results with the theoretical contributions of Atkinson (1964, 1974), Eysenck (1983), and Gray (1970).
- 2. We wanted to explain how personality and motivational stress interacted to affect cognitive performance.
- 3. We also wanted to explain the Yerkes and Dodson (1908) "law".
- 4. We considered three personality traits, the need to achieve, anxiety, and impulsivity.
- 5. These traits then combined or interacted with situational stressors such as incentives, goal difficulty, ego threat, stimulant drugs, time on task and time of day to affect two motivational variables.
- 6. We interpreted motivation in terms of direction (on-task effort) and arousal.

Theory development (continued)

- 4. We considered three personality traits, the need to achieve, anxiety, and impulsivity.
- These traits then combined or interacted with situational stressors such as incentives, goal difficulty, ego threat, stimulant drugs, time on task and time of day to affect two motivational variables.
- 6. We interpreted motivation in terms of direction (on-task effort) and arousal.
- These two components then effect "Sustained Information Transfer" (aka attention), Long term memory and Short term memory.
- 8. At the time we wrote this paper, we assumed the only people who would ever read it had already reviewed it (Humphreys and Revelle, 1984).

Introduction 00000000 00	Motivation	SAPA data 0000 0000000	ICAR 000000 000000	psych 00	Conclusion O	References
Theory development	and tests					

The Humphreys and Revelle (1984) model

Adapted from Humphreys & Revelle, 1984; Revelle, 1989

21/53

Yerkes Dodson as two opposing processes

Figure 5. Curvilinearity derived from two opposing monotonic processes. (The effects of effort are to improve the information-transfer resource but not to affect the memory resource.)

Non-monotonicity as a sign of two processes

- When discussing our results with Clyde Coombs he commented, that of course whenever you have a non-monotonic effect that represents the combination of two monotonic processes (Coombs and Avrunin, 1977).
- 2. The implication is to look for independent processes whenever faced with non-monotonicity,
- 3. Note that most phenomena are non-linear, but still monotonic.
 - This non-linearity but monotonicity can lead to many interactions that are mere effects of the scaling.
 - This is a particular problem with the study of ability for the problem of ceiling and floor effects has led to many false inferences.

Test of theories

- 1. With Kris Anderson, we tested theories of motivational affects on cognitive performance and examined performance on proof reading to test the Easterbrook hypothesis (Anderson and Revelle, 1982) and performance on a visual search task (Anderson and Revelle, 1983).
- 2. Kris and I also discussed the complexities of theory testing and the power of interactive designs in assessing personality-performance relationships (Revelle et al., 1987).
- 3. With Marjorie Leon we tested three theoretical models of why anxiety impedes cognitive performance (Leon and Revelle, 1985).
- 4. With Deb Loftus we reviewed and tested various explanations of the effect of arousal on short and long term memory Revelle and Loftus (1990, 1992).

Arousal and the Easterbrook hypothesis

- 1. With Kris Anderson, we tested theories of motivational affects on cognitive performance and examined performance on proof reading to test the Easterbrook hypothesis (Anderson and Revelle, 1982) and performance on a visual search task (Anderson and Revelle, 1983).
- Kris and I also discussed the complexities of theory testing and the power of interactive designs in assessing personality-performance relationships (Revelle et al., 1987).

Tests of three theories of the effect of anxiety on cognitive processing

- Does anxiety hurt performance by distracting attention (Wine, 1971)?
- Or does anxiety hurt working memory (Eysenck, 1979)?
- Marjorie Leon and I examined the effects of anxiety on visual analogies varying in memory load and total processing demands (Leon and Revelle, 1985)

Figure 3. Error rates and response times for true analogies. (Error rates are calculated for all true analogies. Response times are calculated for true analogies that were solved correctly.)

The effect of exercise and arousal on memory

- There are some strange results suggesting that arousal hurts immediate memory but facilitates long term memory (Geen, 1984)
- Deb Loftus and I reviewed these non-intuitive findings (Revelle and Loftus, 1992) and then tested the effect with an exercise manipulation (Revelle and Loftus, 1990).

Exercise induced high activation did indeed hurt short term but help long term memory.

SAPA: the Synthetic Aperture Personality Assessment Project

- 1. Over the past 20 years, we have been collecting data from the web using what we call the SAPA project.
- Using a Massively Missing Completely at Random (MMCAR) design, we present 50-250 items sampled from > 6400 items.
- Items are sampled at different rates, some with a sampling frequency of 1%, some 25%-50%. demographic items are given to everybody.
- 4. Of the items given, a core set of 135 temperament items (the SAPA Personality Inventory or SPI Condon, 2018) and 60 items from the International Cognitive Ability Resource (ICAR-60 Condon and Revelle, 2014) are oversampled.
- The SPI items as well as many of the other items were originally taken from the International Personality Item Pool (IPIP Goldberg et al., 2006).

What is SAPA and how does it work: FAQ

- 1. Why is it called Synthetic Aperture Personality Assessment (SAPA)?
- 2. If items are missing 95% of the time, how can you possibly measure anything?

A stronomy as an Resolution varies by aperture diameter (bigger is better)

A short diversion: history of radio telescopes Just as with optical telescopes, resolution varies by aperture diameter (bigger is still better)

Aperture can be *synthetically* increased across multiple telescopes or even multiple observatories

Can we increase N (subjects) and n (items) at the same time?

- 1. Frederic Lord (1955) introduced the concept of sampling people as well as items.
- 2. Apply basic sampling theory to include not just people (well known) but also to sample items within a domain (less well known).
- 3. Basic principle of Item Response Theory and tailored tests.
- 4. Used by Educational Testing Service (ETS) to pilot items.
- 5. Used by Programme for International Student Assessment (PISA) in incomplete block design (Anderson et al., 2007).
- 6. Can we use this procedure for the study of individual differences without being a large company?
- 7. Yes, apply the techniques of radio astronomy to combine measures synthetically and take advantage of the web.
- 8. My colleagues and I have discussed this technique for several years as a way of embracing your missingness (Revelle et al., 2010, 2017).

The basic problem: Fidelity versus bandwidth

- 1. Many personality traits, interests and cognitive abilities are multidimensional and have complex structure.
 - To measure these, we need to have the precision that comes with many participants.
 - But we also need the bandwidth that comes with many items.
 - But participants are reluctant to answer very many items.
- 2. This has led to the quandary of should you give many people a few items or a few people, many items?
- 3. Our answer is to do both, but with a *Massively Missing Completely At Random* (MMCAR) data structure.
- 4. We refer to this technique as *Synthetic Aperture Personality Assessment* (SAPA) to recognize the analogy to synthetic aperture radio astronomy (Revelle et al., 2010, 2017).
- 5. This is functionally what Frederic Lord (1955, 1977) suggested 65 years ago. It is time to take him seriously.

Introduction Motivation SAPA data

SAPA overview

- 1. At the sapa-project.org we use Synthetic Aperture Personality Assessment (SAPA) methods to assess $\approx 30 - 100 K$ participants per month. This is just a technique of Massively Missing Completely at Random (MMCAR) data presentation. Each participant is given a random subset of items chosen from an item pool of more than 6600 items. These items, extended from the International Personality Item Pool (Goldberg, 1999) and the International Cognitive Ability Resource (Condon and Revelle, 2014; Revelle et al., 2020), assess temperament, cognitive ability, interests and attitudes as well as self reported behaviors and demographic information.
- Conventional psychometric techniques (both classical and IRT) are used to identify homogeneous scales; empirical item selection procedures are use to develop optimal item composites to predict a wide range of criteria. Data analysis code is done using the *psych* package (Revelle, 2025) in R (R Core Team,

Motivation

SAP	A data
800	0000

ICAR

psych 00 Conclusio

References

Lord (1955) and matrix sampling

- 1. Given an N (subjects) by n (item) matrix, we can sample:
- 2. Type 1: Subjects basic statistical theory
 - \bar{x} and its standard error $\sqrt{\frac{\sigma^2}{N-1}}$
 - r_{xy} and its standard error $\sqrt{\frac{1-r^2}{N-2}}$
- 3. Type 2: Items this is the basis of classical reliability theory especially domain sampling (Tryon, 1957, 1959):
 - KR₂₀ = α = λ₃ represent the correlation of a test with a test just like it sampled from a larger population of items.
 - ω_h and ω_t similarly are estimates of what the general factor, ω_h , or total, ω_t , correlation would be with another representation in the domain. (See Revelle and Condon, 2019, for everything you want to know about reliability but were afraid to ask).
- 4. Type 12: Matrix sampling of subjects and items
 - Special case is balanced incomplete blocks (BIB).
 - General case is Missing Completely at Random (MCAR).

Introduction		SAPA data	ICAR	00	O	References
Psychometrics of SA	ΡΛ		000000			
r sychometrics or 5A						
3 1) 8 x 32 cor	Methods of mplete	collectin 2) 32 × 8	g 256 sub complete	ject * ite 12) 32 ×	ms data 32 MCAR	p=.25
4621363452114	345344364533121241	4 46323114		32.	.64.55	44
2124362316642	2151615443226151651	3 25443314			4645	3.461
5166135115516	546362222443562334	4 43315423		63	6.16.	2
1114134336233	3221561215213561452	2 26314145		3522	25.33	
2535312126456		41433614			.2	
0133313430042		6 42236155				
2403434213133	024242341351343511	0 02421344			5 3 6 6	
1155405445512	.511110242552551055	34514166			523 2 2	
	lo subjects	63/1515/		5	12 1 2	5 61
Type I - Samp	Te subjects	44441342		33	36141	5 5
		13514321		1 54	2 4	33 6
		66365663		45	26	
Type 2 = samp	ole items	12264546		44	1	51
		31466135		13.		6
		32645514			3.142	2212.
		66151251		.42.		244
		14411441		46.	.3.415.	33
Type 12 sampl	e items and subject	ts 62443636		5	243 5	411
		33316236		53.	.44.451	4 .
		63325425		4	3 5 . 2	64.44.
		11531126		1.1.2	264	552
		61155546		3.	.2532	2.3.3
		33245361		1	2433.1	35.
		52241654		2	4 54	2.362
		63212356		22	33215	6
		24414663		53	.435.	241
		63661414		63	3.1	542NORTHW5
		45555223		2 . 4	5	444
		14364433		2.55	26	6 55 6/53

Intro	duc	tion
000	000	000
00		

Motivati 000000

2 8

vation 000 000000 SAPA data ○○○○ ○○○○○●○ ICAR 0000000 psych 00

Conclusion

References

Psychometrics of SAPA

	5 Methods of Collec	ling 200
1)	complete (Ideal)	2) Sampl
	22552141414336514122645166143244	22552141
	32144265454235634562343524256611	
	43553143152141541641526114551151	
	52654223445614444431162645313124	
	62222255242315442652355414213325	
	22125412454242154221456444214564	
	65113311244511226522615346451412	
	54436452425245244554632246526466	
	55223643555215245514633426121226	55223643
	35522554332664265346655451531612	
	63261241341466311243222233323541	63261241
	32224431433144451645255464435552	
	11564655513111334341463561655541	11564655
	24532624664444656366642463322555	
	25516362264523255665245644125611	
	32255635422342631523143414221354	
	23244456631411361161615126144214	
	34526633236542563633625123624421	
	13451522616451531355135621451536	13451522
	31625444241623135123121345134162	
	44252526365556663522524162313453	
	54361436651313615433261662235132	
	46635454552135645224352362433436	46635454
	26511624245416441145655363265265	
	63512331235542645524352562623235	
	11523665433656446452523322216333	11523665
	56436532623253433145633663651242	
	15136366233651513351113353151452	
	46321152211446344326554442255226	
	62156523111352364233551656146433	
	CE242EE22CE22EC222C222C1EC12C222	CE343EE3

Anthon de la Constituent

; 2	5	b		51	U	t	ן	e	e	C	t		Т	•		l	1	Э	r	r		S		C	1	ata	1		
Sai	m	p	le	9	r)	ē	С)¢	bl	e	2											З	3)	lte	en	ns	5
2255	52:	14	14	11	4	3	3	6!	51	4	1	2	2	6	4	5	1	66	5:	Ŀ	4:	3	2	4	4	225	52	21	41
																										321	44	12	65
																										435	53	31	43
																										526	554	2	23
																										622	22	22	55
																										221	.25	54	12
																										651	13	33	11
																										544	36	54	52
5522	23	64	35	55	5	2	1	52	24	15	5	1	4	6	3	3	4:	26	5:	L	2	1	2	2	6	552	23	86	43
																										355	522	25	54
5326	512	24	13	34	1	4	6	63	31	1	2	4	3	2	2	2	2	33	3:	32	2	3	5	4	1	632	61	2	41
																										322	24	4	31
L156	54(65	55	51	3	1	1	1:	33	34	3	4	1	4	6	3	5	61	L	5	5.	5	5	4	1	115	664	6	55
			• •						• •							•		•			•	•	•			245	32	26	24
																		•								255	i16	53	62
			• •						• •							•		•			•	•	•			322	55	56	35
			• •						• •							•		•			•	•	•			232	44	4	56
			• •			•			• •				•		•	•	•	•		•	•	•	•	•		345	526	56	33
L345	51!	52	26	51	6	4	5	1!	53	31	3	5	5	1	3	5	6	21	Ŀ	4 !	5	1	5	3	6	134	51	5	22
			• •			•			• •							•		•			•	•	•	•		316	525	54	44
			• •			•	•		• •				•	•	•	•	•	•		•	•	•	•	•	•	442	252	25	26
			• •			•			• •				•		•	•	•	•		•	•	•	•	•		543	61	4	36
1663	354	45	45	55	2	1	3	5	64	15	2	2	4	3	5	2	3	62	24	4:	3	3	4	3	6	466	33	54	54
			• •			•	•		• •				•	•	•	•	•	•		•	•	•	•	•	•	265	511	6	24
			• •			•	•		• •				•	•	•	•	•	•		•	•	•	•	•	•	635	512	23	31
L152	23(66	54	13	3	6	5	64	44	16	4	5	2	5	2	3	3	22	22	2	1	6	3	3	3	115	523	86	65
			• •		•	•	•	•	• •		•	•	•	•	•	•	•	•		•	•	•	•	•	•	564	36	55	32
	• •		• •	• •	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•		•	•	•	•	•	•	151	.36	53	66
			• •		•	•	•	•	• •		•	•	•	•	•	•	•	•		•	•	•	•	•	•	463	321	1	52
			• •		•	•	•	•	• •		•	•	•	•	•	•	•	•		•	•	•	•	•	•	621	.56	55	23
			~ ~		-	-	-	-	~ ~	~	-	-	-	-	~	-					2	~	~	-					

37 / 53

Introduction	Motivation	SAPA data	ICAR	psych 00	Conclusion O	References
Psychometrics of S	SAPA					
12 (Matri a) 32 x 16 l	x) Sampling	Methods	of collection	ng 256 s	ubject * ite 32 x 32 MCA	ems data
		43244 4	6323114	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		55
	45623435242	56611 2	5443314			.453.46
	16415261145	51151 4	3315423		536.1	6.25
	44311626453	13124 2	6314145		3522 5 .	335
	26523554142	13325 4	1435614		3 . 2 . 2	3265
	24215	14564 4	2236153			
	51122	51412 6	2421344			
	24524	26466 3	5234443		44.4.53	66
	66426 E1E	21220 5	4314100		01525.2	2
	4663112432222	51012 0	413134	•	3 36 1	4
433	1444516452554	1	3514321	-		2 4 33 6
	1113343414635	6	6365663	-	4526	44.3
		1	2264546		44 1	14251.
25353121264	5614334332322465	26411 3	1466135		13	3.5216.
61335154566	4241146126412253	53516 3	2645514		3 . 142	1
24634342151	5362424254135134	35116 6	6151251		.42	31624
11554654453	1231111624233255	16334 1	4411441		463.41.	5.33
		6	2443636		5	5411
		3	3316236		5 3 4 4 . 4 .	.51
		6	3325425		4	5.264.4
		1	1531126		1.1.26	4
		6	1155546			
		3	2243361			
		5	2241034		4	5 6
		2	4414663	-	5 3 4 3	5 241
		6	3661414			.6
		4	5555223		2.45	

2.55....2...6....6.38/555.

The International Cognitive Ability Resource: measuring intelligence on the web

- Wanting to broaden some web based research we had started to study Right Wing Authoritarianism with Greg Laun, Melissa Liebert, another very clever undergraduate, developed some preliminary items to measure cognitive ability as part of a study of musical preferences (Liebert, 2006).
- 2. At a meeting in Krakow we reported the first use of our web based ability items and discussed how they relate to other dimensions of individual differences (Revelle et al., 2010).

ICAR (Condon and Revelle, 2014)

- David Condon then took this beginning set of items and improved them as well validating them against a standard test of ability (the Shipley, 2009) and national data of the ability scores of college majors.
- 2. With some European colleagues, this resulted in the ICAR, an open source measure of cognitive ability. (Condon and Revelle, 2014).
- 3. In 2014 we released the first public domain version of what has become the iCAR.
- 4. The original 4 domains measured in the ICAR were
 - 9 Letter and Number Series items,
 - 11 Matrix Reasoning items,
 - 16 Verbal Reasoning items
 - 24 Three-Dimensional Rotation
- 5. A 16 item subset of the measure, the *ICAR Sample Test*, aka ICAR16 was a balanced set of 4 from each domain.

SAPA data

psych

<u>جې</u>

0

Conclus

References

D

I do not

know

the solution.

10/124

RTHWESTERN

41 / 53

r

G

Example ICAR items

(1) T (2) U (3) V (4) X (5) Y (6) Z

In the following alphanumeric series, what letter comes next?

QSNPL

(1) J (2) H (3) I (4) N (5) M (6) L

Item information for the ICAR 16

- In the spirit of open science, data for 4000 participants on the ICAR16 are available in *psychtools* in R
- The information curves are drawn using the irt.fa function in psych, which, like most of the functions in psych, was developed to handle the severe missingness of our SAPA data.

Item information from factor analysis

42 / 53

- 1. Subsequent item development and validation has extended the original four domains to > 19 item types.
- 2. Additional cognitive items have been developed by David Condon and our other colleagues at the ICAR project (Gühne et al., 2020)
- 3. The newer measures include a
 - forced choice compound remote associates test (Mather et al., 2024)
 - two dimensional rotations (Mather and Condon, 2023)
 - propositional reasoning
 - figural analogies
 - numeracy,
 - map use
 - more complex matrix reasoning problems
 - Computer generated number series have been validated against the original items and added to ICAR (Loe et al., 2018).

NORTHWESTERN

Ripoff or useful?

- 1. When David, Liz and I submitted an article to *Current Directions* one reviewer suggested that to compare the ICAR to the Stanford Binet is analogous to comparing a cheap ripoff to a Versace handbag.
- 2. However, not everyone can afford a Versace handbag.
- 3. We view the utility of ICAR in terms of its wide range of applications in just the past few years.
- 4. Measurement invariance was tested for by Young et al. (2019).
- 5. The validity data correlating with "gold standard" measures found a correlation of .81 with the full scale IQ .94 with the CFA estimated "g"" factor (Young and Keith, 2020).
- There are at least 232 uses of the ICAR in the recent literature (79 in Dworak et al., 2021, 153 since then), Dworak (personal communication, 2025).

Validation vs the WAIS

ICAR over time: examing the Flynn Effect

- Elizabeth Dworak, David Condon and I have reported SAPA based ICAR data over time, showing changes (or lack of changes) over 8 years (Dworak et al., 2023).
- We needed to correct for various changes in the ICAR over the years as new items were added.

Letter and Number Series (9 Items) Age Trends by Year Taken

ICAR changes over 8 years by age vary by subtest

ICAR extensions: Compound Remote Associates Test

- 1. Mednick (1962) popularized the use of remote associations as they relate to intelligence and creativity.
- Bowden and Jung-Beeman (2003) gave normative results for compound remote associate tests which they related to the "Ah ha" or insight effect.
- David Condon generalized the Remote Associates Test to a multiple choice format which is now being given on the SAPA site.
 - Consider the words pine, crab, sauce
 - The word that links these three words starts with s, d, t, r, b, a, none of these, I don't know.
- 4. Mather et al. (2024) report the development and validation of the multiple-choice compound remote associates test.

College majors with high scores on the CRAT

Major	CRA	LN	MR	R3D	VR	FA	PR
Classical languages (Latin and Greek)	99	84	85	97	99	95	93
American studies	99	59	75	72	94	63	97
Poetry writing	98	70	66	68	77	68	75
Fiction writing	97	66	69	73	86	62	95
Anthropology	97	80	75	93	97	84	96
Neuroscience	96	100	100	100	100	100	100
Comparative literature studies	95	77	68	75	84	71	83
Classical studies	94	57	70	92	95	86	92
Spanish	93	64	60	67	97	56	82
Slavic languages	92	82	87	68	98	77	98

Table 3 Top-scoring university majors in descending order of percentile rank on associative ability

Notes: The majors are sorted by percentile on the new CRA item set. Percentile ranks for other cognitive abilities are also presented. LN = let-ter-number series, MR = matrix reasoning, R3D = three-dimensional rotation, VR = verbal reasoning, FA = figural analogies, PR = propositional reasoning

The percentiles of scores on the CRAT as well as Letter-Number series, Matrix Reasoning, 3 dimensional rotation, Verbal Reasoning, Figural Analogies and Propositional Reasoning are shown as well (Mather et al., 2024)

Occupations with high scores on the CRAT

Occupation	CRA	LN	MR	R3D	VR	FA	PR
Education administrator – postsecondary	96	90	70	86	92	60	84
Writer	95	68	54	57	75	66	73
Physicist	94	98	98	99	97	97	97
Postsecondary teacher - philosophy or religion	94	87	87	78	90	92	93
Editor	93	69	66	77	84	71	78
Environmental scientist	93	92	87	86	93	87	94
Veterinarian	92	81	82	83	79	77	83
Other - biological scientist	92	94	96	95	96	94	95
Postsecondary teacher - mathematical science	91	93	93	93	88	83	94
Regulatory affairs manager	91	75	70	62	91	86	95

Table 4 Top-scoring occupations in descending order of percentile rank on associative ability

Notes: The majors are sorted by percentile on the new CRA item set. Percentile ranks for other cognitive abilities are also presented. LN = let-ter-number series, MR = matrix reasoning, R3D = three-dimensional rotation, VR = verbal reasoning, FA = figural analogies, PR = propositional reasoning

The percentiles of scores on the CRAT as well as Letter-Number series, Matrix Reasoning, 3 dimensional rotation, Verbal Reasoning, Figural Analogies and Propositional Reasoning are shown as well (Mather et al., 2024)

Conclusion

References

The psych package for R

- 1. Although not technically limited to intelligence research, the development of the *psych* package for R was meant to supplement the open source nature of my research.
- 2. Partly driven by the need to handle SAPA type data and to validate the ICAR items, *psych* is meant as a Swiss Army Knife for data analysis.
 - That is, it is not the best tool for any problem.
 - But is a collection of pretty good tools for data analysis in general and psychometrics in general.
- 3. *psych* has been under development for the past 20 years and has a new update at least semi-annually.
 - These updates contain the inevitable bug fixes (from bugs reported by users).
 - More importantly, the updates include new functions that I have developed to further my (or my students') research.

AR 00000

<mark>psych</mark> O● Referen

Particularly useful psych functions

- 1. Although we all have our favorite functions, of the > 500 in *psych* the ones most useful for ability research include:
 - describe Descriptive statistics
 - statsBy Basic multilevel statistics by group.
 - fa For conventional factor analysis.
 - irt.fa To do 2PL IRT based upon the factor analysis of polychoric or tetrachoric correlations.
 - scoreOverlap To find the correlations between scales with overlapping items.
- 2. Several vignettes describe the use of *psych* in more detail.
 - scoring scales, finding ω , factor analysis and its alternatives, mediation analysis. etc.

SAPA data 0000 0000000 ICAR 000000 000000 psych 00 Conclusion

References

The secrets of a lifetime career award

- 1. Good luck
- 2. Great mentors
- 3. Great colleagues
- 4. Great students
- 5. Live long enough
- 6. Good luck

Ackerman, P. L. (1996). A theory of adult intellectual development: Process, personality, interests, and knowledge. *Intelligence*, 22(2):227–257.

Ackerman, P. L. (1997). Personality, self-concept, interests, and intelligence: Which construct doesn't fit? *Journal of Personality*, 65(2):171–204.

- Ackerman, P. L. (2018). The search for personality-intelligence relations: Methodological and conceptual issues. *Journal of Intelligence*, 6(2).
- Ackerman, P. L. and Heggestad, E. D. (1997). Intelligence, personality, and interests: Evidence for overlapping traits. *Psychological Bulletin*, 121(2):219–245.
- Anderson, J., Lin, H., Treagust, D., Ross, S., and Yore, L. (2007). Using large-scale assessment datasets for research in science and mathematics education: Programme for International Student Assessment (PISA). *International Journal of Science and Mathematics Education*, 5(4):591–614.

Anderson, K. J. and Revelle, W. (1982). Impulsivity, caffeine, and proofreading: A test of the Easterbrook hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 8(4):614–624.

- Anderson, K. J. and Revelle, W. (1983). The interactive effects of caffeine, impulsivity and task demands on a visual search task. *Personality and Individual Differences*, 4(2):127–134.
- Atkinson, J. W. (1964). *An introduction to motivation.* Van Nostrand.
- Atkinson, J. W. (1974). Strength of motivation and efficiency of performance. In Atkinson, J. W. and Raynor, J. O., editors, *Motivation and Achievement*, pages 117–142. Winston (Halsted Press/Wiley), New York.
- Bowden, E. M. and Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. *Behavior Research Methods, Instruments, & Computers*, 35(4):634–639.

- Brauer, K. and Proyer, R. T. (2024). Introduction to the special issue "personality and individual differences". *Journal of Intelligence*, 12(8).
- Condon, D. M. (2018). The SAPA Personality Inventory: An empirically-derived, hierarchically-organized self-report personality assessment model. *PsyArXiv*.
- Condon, D. M. and Revelle, W. (2014). The International Cognitive Ability Resource: Development and initial validation of a public-domain measure. *Intelligence*, 43:52–64.
- Coombs, C. and Avrunin, G. S. (1977). Single-peaked functions and the theory of preference. *Psychological Review*, 84(2):216 230.
- Cronbach, L. J. and Snow, R. E. (1981). *Aptitudes and instructional methods: A handbook for research on interactions*. Irvington, New York.
- Dworak, E. M., Revelle, W., and Condon, D. M. (2023). Looking

References for Flynn effects in a recent online U.S. adult sample: Examining shifts within the SAPA project. *Intelligence*, 98. Dworak, E. M., Revelle, W., Doebler, P., and Condon, D. M. (2021). Using the International Cognitive Ability Resource as an open source tool to explore individual differences in cognitive ability. Personality and Individual Differences. 169. Eysenck, H. (1983). Is there a paradigm in personality research? Journal of Research in Personality, 17(4):369 – 397. Eysenck, H. J. and Eysenck, S. B. G. (1964). Eysenck Personality Inventory. Educational and Industrial Testing Service, San Diego, California.

Eysenck, H. J. and Eysenck, S. B. G. (1975). Manual of the Eysenck Personality Questionnaire (Junior and Adult). Hodder & Stoughton, Kent, UK.

Eysenck, M. W. (1979). Anxiety, learning, and memory: A reconceptualization. *Journal of Research in Personality*, 13(4):363–385.

Geen, R. G. (1984). Preferred stimulation levels in introverts and extroverts: Effects on arousal and performance. Journal of Personality and Social Psychology, 46(6):1303 – 1312. Goldberg, L. R. (1999). A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. In Mervielde, I., Deary, I., De Fruyt, F., and Ostendorf, F., editors, Personality psychology in Europe, volume 7, pages 7–28. Tilburg University Press, Tilburg, The Netherlands.

Goldberg, L. R., Johnson, J. A., Eber, H. W., Hogan, R., Ashton, M. C., Cloninger, C. R., and Gough, H. G. (2006). The international personality item pool and the future of public-domain personality measures. *Journal of Research in Personality*, 40(1):84–96.

Gray, J. A. (1970). The psychophysiological basis of introversion-extraversion. *Behaviour Research and Therapy*, 8(3):249–266.

Gühne, D., Doebler, P., Condon, D. M., Luo, F., and Sun, L. (2020). Validity and reliability of automatically generated propositional reasoning items: A multilingual study of the challenges of verbal item generation. *European Journal of Psychological Assessment*.

Humphreys, M. S. and Revelle, W. (1984). Personality, motivation, and performance: A theory of the relationship between individual differences and information processing. *Psychological Review*, 91(2):153–184.

Kanfer, R., Ackerman, P. L., and Cudeck, R. (2014). *Abilities,* motivation and methodology: the Minnesota Symposium on Learning and Individual Differences. Routledge.

Kulik, J. A., Revelle, W. R., and Kulik, C. (1970). Scale construction by hierarchical cluster analysis. University of Michigan, unpublished paper.

Leon, M. R. and Revelle, W. (1985). Effects of anxiety on

analogical reasoning: A test of three theoretical models. *Journal* of Personality and Social Psychology, 49(5):1302–1315.

- Liebert, M. (2006). A public-domain assessment of music preferences as a function of personality and general intelligence. Honors Thesis. Department of Psychology, Northwestern University.
- Loe, B., Sun, L., Simonfy, F., and Doebler, P. (2018). Evaluating an automated number series item generator using linear logistic test models. *Journal of Intelligence*, 6(2):20.
- Lord, F. M. (1955). Estimating test reliability. *Educational and Psychological Measurement*, 15:325–336.
- Lord, F. M. (1977). Some item analysis and test theory for a system of computer-assisted test construction for individualized instruction. *Applied Psychological Measurement*, 1(3):447–455.
- Mather, K. A. and Condon, D. M. (2023). Development of a public-domain measure of two-dimensional rotation ability and

preliminary evidence for discriminant validity among occupations. Journal of Intelligence, 11(10). Mather, K. A., Weston, S. J., and Condon, D. M. (2024). Scaling a common assessment of associative ability: Development and validation of a multiple-choice compound remote associates task. Behavior Research Methods, 56(7):1-29. McPherson, W. B. (1901). Gideon's water-lappers. Journal of the American Oriental Society, 22:70–75. Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69(3):220–232. Newcomb, T. M., Brown, D. R., Kulik, J. A., D. J. Reimer, D., and Revelle, W. (1970). Self selection and change. In Gaff, J., editor, The Cluster College. Jossey-Bass, San Francisco. Newcomb, T. M., Brown, D. R., Kulik, J. A., Reimer, D. J., and Revelle, W. (1971). The University of Michigan's Residential College. In The New Colleges: Towards an Appraisal. American College Testing Program, Iowa City.

- Plato (n.d.). Plato The Republic : the complete and unabridged Benjamin Jowett translation (1892). Oxford University Press, Oxford, 3rd edition.
- R Core Team (2025). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.
- Revelle, W. (2025). psych:Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, https://CRAN.r-project.org/package=psych, 2.5.3 edition. R package version 2.5.3.
- Revelle, W., Amaral, P., and Turriff, S. (1976). Introversion-extraversion, time stress, and caffeine: effect on verbal performance. *Science*, 192:149–150.
- Revelle, W., Anderson, K. J., and Humphreys, M. S. (1987). Empirical tests and theoretical extensions of arousal-based

theories of personality. In Strelau, J. and Eysenck, H., editors, *Personality Dimensions and Arousal*, pages 17–36. Plenum, New York.

- Revelle, W. and Condon, D. M. (2019). Reliability from α to ω : A tutorial. *Psychological Assessment.*, 31(12):1395–1411.
- Revelle, W., Condon, D. M., Wilt, J., French, J. A., Brown, A., and Elleman, L. G. (2017). Web and phone based data collection using planned missing designs. In Fielding, N. G., Lee, R. M., and Blank, G., editors, *Sage Handbook of Online Research Methods*, chapter 37, pages 578–595. Sage Publications, Inc., 2nd edition.
- Revelle, W., Dworak, E. M., and Condon, D. M. (2020). Cognitive ability in everyday life: the utility of open source measures. *Current Directions in Psychological Science*, 29(4):358–363.

Revelle, W., Humphreys, M. S., Simon, L., and Gilliland, K. (1980). Interactive effect of personality, time of day, and

caffeine: A test of the arousal model. *Journal of Experimental Psychology General*, 109(1):1–31.

- Revelle, W. and Loftus, D. A. (1990). Individual-differences and arousal - implications for the study of mood and memory. *Cognition and Emotion*, 4(3):209–237.
- Revelle, W. and Loftus, D. A. (1992). The implications of arousal effects for the study of affect and memory. In Christianson, S.-A., editor, *The handbook of emotion and memory: Research and theory*, pages 113–149. Lawrence Erlbaum Associates, Inc, Hillsdale, NJ, England.
- Revelle, W., Wilt, J., and Rosenthal, A. (2010). Individual differences in cognition: New methods for examining the personality-cognition link. In Gruszka, A., Matthews, G., and Szymura, B., editors, *Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control*, chapter 2, pages 27–49. Springer, New York, N.Y.

- Shipley, W. C. (2009). *Shipley-2: manual*. Western Psychological Services.
- Tolman, E. C. and Honzik, C. (1930). Introduction and removal of reward, and maze performance in rats. *University of California Publications in Psychology*, 4:257–275.
- Tryon, R. (1957). Communality of a variable: Formulation by cluster analysis. *Psychometrika*, 22(3):241–260.
- Tryon, R. (1959). Domain sampling formulation of cluster and factor analysis. *Psychometrika*, 24(2):113–135.
- von Stumm, S., Chamorro-Premuzic, T., and Ackerman, P. (2011). Re-visiting intelligence–personality associations. In Chamorro-Premuzic, T., Furnham, A. F., and von Stumm, S., editors, *The Wiley-Blackwell Handbook of Individual Differences*, pages 217–241. Wiley-Blackwell.
- Wine, J. (1971). Test anxiety and direction of attention. *Psychological Bulletin*, 76(2):92–104.

- Yerkes, R. and Dodson, J. (1908). The relation of strength of stimuli to rapidity of habit-information. *Journal of Comparative Neurology and Psychology*, 18:459–482.
- Young, S. R. and Keith, T. Z. (2020). An examination of the convergent validity of the icar16 and wais-iv. *Journal of Psychoeducational Assessment*, 0(0):0734282920943455.
- Young, S. R., Keith, T. Z., and Bond, M. A. (2019). Age and sex invariance of the International Cognitive Ability Resource (ICAR). *Intelligence*, 77:101399.
- Zajonc, R. B. (1965). Social facilitation. *Science*, 149(3681):269–274.

