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Analyzing SAPA Data

• Available-case analysis (ACA) is used to derive synthetic
correlations from ‘MMCAR’ SAPA data.

• Most large-scale surveys use full-information maximum
likelihood (FIML) or multiple imputation (MI) techniques to
analyze their incomplete data.

• Why don’t we do the same?
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Model-based Methods

• ‘Model-based’ methods like maximum likelihood (ML),
FIML, and MI require analysts to specify the probability
distribution (model) to which they expect their data will
conform.

• Pros: Good statistical properties, abundant software (e.g.,
Expectation Maximization, Dempster et al., 1977)

• Cons: Sensitivity to model misspecification, difficult
mathematics/software, data-pattern problems
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Patterns in Missing Data

[a] File Matching [b] Balanced Incomplete Block

Y1 Y2 Y3 Y1 Y2 Y3 Y4

[c] General

Y1 Y2 Y3 Y4 Y5

• Note the general and factor analysis patterns.
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The Pattern Problem
Randomly Sampled Data Are ‘Generally Missing’

• Randomly-sampled SAPA data exhibit a ‘general pattern’
of missingness, which is hardly a ‘pattern’ at all.

• Full-information maximum likelihood (FIML) weights
patterns in sampled data; intuitively, it seems ill-suited to
the analysis of SAPA data.

• What about non-model-based methods?
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Non-Model-Based Methods

• Non-model-based methods may make assumptions about
the model, but they do not require explicit specification
thereof.

• Two standard techniques: Complete case analysis and
available case analysis (ACA, otherwise known as
’pairwise complete’).

• Pros: Often easier to understand and implement; use may
be advisable when model is unknown

• Cons: Potential bias, error
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Available Case Analysis
What Is It?

• Available-case analysis (ACA) uses all observed scores in
parameter estimates, regardless of response-set
completeness.

• The interpretation of ACA for univariate statistics (means,
variances) is simple.

• The interpretation of ACA for multivariate statistics
(covariances, correlations) is not.
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Available Case Analysis
ACA Correlations

• The correlation between two random variables X and Y is

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )
.

• Two common species of ACA correlation: listwise-complete
variance and pairwise-complete variance correlations.

• Listwise-complete: Uses all participants with X in Var(X),
all participants with Y in Var(Y).

• Pairwise-complete: Uses only participants with X and Y in
Var(X) and Var(Y).
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How to Use ACA Correlations
Proceed with Caution (and Use Pairwise-Complete Variance)

• Many claim that ACA correlations are acceptable
estimators when data are MCAR, but no one seems to
have proven that they are.

• The pairwise-complete variance correlation is generally
preferred to the listwise-complete variance correlation
(Wilks, 1932; Matthai, 1951; Little and Rubin, 2002).

• SAPA analyses use pairwise-complete variance
correlations.

• Specifically, we create an interitem correlation matrix in
which all items in all scales appear. Each item in the matrix
is a pairwise-complete variance correlation between two
items.
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Synthetic correlations between SAPA scales

• Correlations between SAPA scales are created
‘synthetically’ from the interitem correlation matrix.

• Specifically, we divide the sum of the correlations of items
between SAPA scales (scales’ covariance)...

• ...by the square root of the product of the sums of the
correlations of items within SAPA scales (scales’
variances).
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Justifying the SAPA Method
Simulation and Monte Carlo Analysis

• Goal: Find out whether correlations between SAPA scales
obtained from ACA and ‘MMCAR’ data are good (precise,
unbiased) estimators.

• Given the sparse literature, we used simulated data and
Monte Carlo analysis to see whether SAPA analyses’
results conformed to expectation.

• We wrote our simulation program using R (R Core Team,
2014).

• Five independent variables and two types of statistical
analyses (FIML and ACA) yielded 16 dependent variables.
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The Parameter Space
Five Independent Variables (IVs)

• N: Number of simulated participants (100, 400, 1600,
6400).

• n: Size of simulated scales (1, 2, 4, 8, or 16 items).
• p: Proportion of items taken (1, .5, .25, .125).
• Rb: Between-scales item intercorrelations (.1, .05, 0).
• Rw : Within-scales item intercorrelations (.2, .3, .4).
• True (latent) value of between-scales correlation is Rb/Rw .
• 720 combinations of IVs.
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Simulation Procedure
• 500 replications run on each combination of independent

variables (N, n, p, Rw , Rb).
• Each replication produced a randomly-generated,

continuous dataset constrained by the active IV
combination.

• Each randomly-generated dataset was analyzed using
both ACA and FIML to produce a sample correlation (r).

• ACA and FIML sample correlations corrected for reliability
were also computed.

• For n = 16, a minres factor analysis with oblimin rotation
sought a two-factor solution at each replication.

• All statistics and their standard errors (SEs) were
calculated by taking the mean and standard deviation,
respectively, of the 500 sample statistics for that IV
combination and type of analysis (ACA or FIML).
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Results: Precision
ACA Uncorrected Correlations’ SEs

• Results will focus on both bias and precision (SEs),
starting with precision.

• As N increases, SE of uncorrected r decreases.
• As p decreases, SE of uncorrected r increases.
• Most importantly: As n increases, SE of uncorrected r

decreases.



Introduction Method Results Discussion References

SE(r)*: Benefits of aggregation increase with n
*SE of ACA Uncorrected r, Rb = .05, Rw = .3, N = 6400
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Another Way of Looking at the Effect of n
Effective Sample Size

• Expected v. observed effective sample sizes (ESS)
• Expected ESS = Np2

• Observed ESS = [(1 – r2)2]/ [(1 + r2)(SE(r)2)]
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ACA: Expected v. Observed ESS, N = 6400
Expected ESS = 100, 400, 1600, 6400 for p = .125, .25, .5, 1, respectively
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Results: Bias
ACA Uncorrected Correlations

• As n increases, uncorrected r approaches the expected
value of corrected r (Rb/Rw ).

• Other IVs had little or no effect on uncorrected r.
• Moral: If you’re not going to correct for reliability, then you’d

better consider aggregating.
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Bias of Uncorrected and Corrected Correlations
ACA, Rb = .05, Rw = .2

p: 0.125 p: 0.25 p: 0.5 p: 1

0.00

0.10

0.20

0.25

0.30

0.40

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
n (items per scale)

C
or

re
la

tio
n 

M
ea

n

Type
corrected
observed

N
100
400
1600
6400



Introduction Method Results Discussion References

Results
Bias and Precision of ACA Alpha-Reliability-Corrected Correlations

• Expected value of corrected r is Rb/Rw .
• Corrected r for incomplete data approached expected

(latent) values with more participants and less
missingness.

• Like SEs of uncorrected r : SEs of corrected r decrease
with more participants, less missingness, and larger scale
size.



Introduction Method Results Discussion References

Results: ACA Factor Analysis
Precision and Bias of Loadings and Intercorrelations

• Factor analyses were performed for n = 16 only.
• Intercorrelations’ (phi) latent value = Rb/Rw

• As N and p increase, phi approaches its latent value.
• Intercorrelations’ SEs decreased as N and p increased.
• Loadings’ latent value = square root of Rw .
• Only Rw strongly affected loadings’ value.
• Loadings’ SEs decreased as N, p, and Rw increased.
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ACA Factor Loadings
Means and Standard Errors, Rb = 0
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ACA Factor Intercorrelations
Means and Standard Errors, Rb = .1
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Results: FIML
Precision and Bias Relative to ACA

• The patterns in the FIML data were the same as in the
ACA data.

• However (and unsurprisingly), FIML tended to fail more
often than ACA did.

• (Precision of ACA relative to FIML) = (ACA SE/FIML SE);
in general, FIML was slightly more precise.

• (Bias of ACA relative to FIML) = (ACA statistic - FIML
statistic); in general, FIML and ACA did not differ in bias.
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Results in Context

• Summary: The combination of ACA and MCAR data
produce estimates of correlations that are only slightly less
precise and no more biased than those obtained using
FIML.

• Important: Effect of n on correlations’ SEs.
• Comforting: Most results conformed to expectation; no

problem with finding correlation from ACA factor analyses.
• Limitations: Simulated rather than real data, clean rather

than messy simulated data, no rigorous theoretical model.
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Conclusion

• SAPA’s correlations have good statistical properties.
• SAPA techniques can be applied to many survey designs

where one wants to increase breadth of coverage but is
limited in the number of items that can be presented.

• With as few as 500-1000 subjects, it is clear that it is better
to present random samples taken from longer scales than
it is to present short forms of equivalent length to all
participants.
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Contact Information

• SAPA’s correlations have good statistical properties.
• SAPA techniques can be applied to many survey designs

where one wants to increase breadth of coverage but is
limited in the number of items that can be presented.

• With as few as 500-1000 subjects, it is clear that it is better
to present random samples taken from longer scales than
it is to present short forms of equivalent length to all
participants.

• If you have questions or comments, please email me at
AshleyBrown2011@u.northwestern.edu

• Thank you!
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Precision and Bias of ACA Relative to FIML
All DVs

• Precision (ACA/FIML) range:
• Uncorrected correlations’ SEs: 0.60 - 1.75
• Corrected correlations’ SEs: 0.42 - 2.15
• Factor intercorrelations’ SEs: 0.48 - 1.32
• Factor loadings’ SEs: 0.83 - 2.54
• Bias (ACA - FIML) range:
• Uncorrected correlations: -0.05 - 0.05
• Corrected correlations: -0.21 - 0.21
• Factor intercorrelations: -0.06 - 0.05
• Factor loadings: -0.01 - 0.01
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SE(r)*: Benefits of aggregation increase with n
*SE of FIML Uncorrected r, Rb = .05
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SE(r) ratio: Benefits of aggregation increase with n
FIML
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FIML: Expected v. Observed ESS, N = 6400
Expected ESS = 100, 400, 1600, 6400 for p = .125, .25, .5, 1, respectively
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Results, Part 2: FIML
Uncorrected r (p <1)/ Uncorrected r (p = 1), Rb = .05
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Uncorrected (dot) v. Corrected (solid) Correlations
FIML, Rb = .05
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Results, Part 3: FIML
Factor Loadings: Means and Standard Errors
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FIML Factor Intercorrelations
Means and Standard Errors
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