An introduction to R
Sponsored by
The Association of Psychological Science
and
Society of Multivariate Experimental Psychology

William Revelle

Department of Psychology
Northwestern University
Evanston, Illinois USA
Outline

1. What is R?
 - Where did it come from, why use it?
 - Installing R on your computer and adding packages
 - Installing and using packages
 - Basic R capabilities: Calculation, Statistical tables, Graphics

2. A brief example
 - A brief example of exploratory and confirmatory data analysis

3. Basic statistics and graphics
 - 4 steps: read, explore, test, graph
 - Basic descriptive and inferential statistics
 - t-test, ANOVA, χ^2
 - Linear Regression

4. Psychometrics and beyond
 - Classical Test measures of reliability
 - Multivariate Analysis and Structural Equation Modeling
 - Item Response Theory

5. Basic R commands
 - Basic R
R: Statistics for all us

1. What is it?
2. Why use it?
3. Common (mis)perceptions of R
4. Examples for psychologists
 - graphical displays
 - basic statistics
 - advanced statistics
 - Although programming is easy in R, that is beyond the scope of today
What is R?

A brief example

Basic statistics and graphics

Where did it come from, why use it?

R: What is it?

1. R: An international collaboration
2. R: The open source - public domain version of S+
3. R: Written by statistician (and all of us) for statisticians (and the rest of us)
4. R: Not just a statistics system, also an extensible language.
 - This means that as new statistics are developed they tend to appear in R far sooner than elsewhere.
 - R facilitates asking questions that have not already been asked.
Statistical Programs for Psychologists

- General purpose programs
 - R
 - S+
 - SAS
 - SPSS
 - STATA
 - Systat

- Specialized programs
 - Mx
 - EQS
 - AMOS
 - LISREL
 - MPlus
 - Your favorite program
What is R?

A brief example

Basic statistics and graphics

Where did it come from, why use it?

Statistical Programs for Psychologists

- General purpose programs
 - R
 - $+$
 - A
 - P
 - $TATA$
 - ytat

- Specialized programs
 - Mx (OpenMx is part of R)
 - EQ$
 - AMO$
 - LIREL
 - MPLu$}

Your favorite program
R: A way of thinking

- “R is the lingua franca of statistical research. Work in all other languages should be discouraged.”
- “This is R. There is no if. Only how.”
- “Overall, SAS is about 11 years behind R and S-Plus in statistical capabilities (last year it was about 10 years behind) in my estimation.”
- Q: My institute has been heavily dependent on SAS for the past while, and SAS is starting to charge us a very deep amount for license renewal.... The team is [considering] switching to R, ... I am talking about the entire institute with considerable number of analysts using SAS their entire career. ... What kind of problems and challenges have you faced?
 A: One of your challenges will be that with the increased productivity of the team you will have time for more intellectually challenging problems. That frustrates some people.
R is open source, how can you trust it?

Q: “When you use it [R], since it is written by so many authors, how do you know that the results are trustable?”

A: “The R engine [...] is pretty well uniformly excellent code but you have to take my word for that. Actually, you don’t. The whole engine is open source so, if you wish, you can check every line of it. If people were out to push dodgy software, this is not the way they’d go about it.”

Q: Are R packages bug free?

A: No. But bugs are fixed rapidly when identified.

Q: How does function x work? May I adapt it for my functions.

What is R?: Technically

- R is an open source implementation of S (The statistical language developed at Bell Labs). (S-Plus is a commercial implementation)
- R is a language and environment for statistical computing and graphics. R is available under GNU Copy-left
- R is a group project run by a core group of developers (with new releases semiannually). The current version of R is 3.1.0
- R is an integrated suite of software facilities for data manipulation, calculation and graphical display.

(Adapted from Robert Gentleman and the r-project.org web page)
R is an integrated suite of software facilities for data manipulation, calculation and graphical display. It is:

1. an effective data handling and storage facility,
2. a suite of operators for calculations on arrays, in particular matrices,
3. a large, coherent, integrated collection of intermediate tools for data analysis,
4. graphical facilities for data analysis and display either on-screen or on hardcopy, and
5. a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

Many users think of R as a statistics system. We prefer to think of it of an environment within which statistical techniques are implemented. R can be extended (easily) via packages ... available through the CRAN family of Internet sites covering a very wide range of modern statistics. (Adapted from r-project.org web page)
R: A brief history

1991-93: Ross Dhaka and Robert Gentleman begin work on R project for Macs at U. Auckland
1995: R available by ftp under the GPL
96-97: mailing list and R core group is formed
2000: John Chambers, designer of S joins the R core (wins a prize for best software from ACM for S)
2001-2014: Core team continues to improve base package with a new release every 6 months.
Many others contribute “packages” to supplement the functionality for particular problems
 2003-04-01: 250 packages
 2004-10-01: 500 packages
 2007-04-12: 1,000 packages
 2009-10-04: 2,000 packages
 2011-05-12: 3,000 packages
 2012-08-27: 4,000 packages
 2014-05-16: 5,547 packages (on CRAN) + 824 bioinformatic packages on BioConductor
Rapid and consistent growth in packages contributed to R
What is R?

A brief example

Basic statistics and graphics

Where did it come from: why use it?

Popularity compared to other statistical packages

http://r4stats.com/articles/popularity/ considers various measures of popularity

1. discussion groups
2. blogs
3. Google Scholar citations (> 14,000 citations, ≈ 1,800/year)
4. Google Page rank
R as a way of facilitating replicable science

1. R is not just for statisticians, it is for all research oriented psychologists.

2. R scripts are published in psychology journals to show new methods:
 - *Psychological Methods*
 - *Psychological Science*
 - *Journal of Research in Personality*

3. R based data sets are now accompanying journal articles:
 - The *Journal of Research in Personality* now accepts R code and data sets.
 - JRP special issue in R is coming this fall.

4. By sharing our code and data the field can increase the possibility of doing replicable science.
Reproducible Research: Sweave and KnitR

Sweave is a tool that allows to embed the R code for complete data analyses in \LaTeX documents. The purpose is to create dynamic reports, which can be updated automatically if data or analysis change. Instead of inserting a prefabricated graph or table into the report, the master document contains the R code necessary to obtain it. When run through R, all data analysis output (tables, graphs, etc.) is created on the fly and inserted into a final \LaTeX document. The report can be automatically updated if data or analysis change, which allows for truly reproducible research.

Friedrich Leisch (2002). Sweave: Dynamic generation of statistical reports using literate data analysis. I Supplementary material for journals can be written in Sweave/KnitR.
Misconception: R is hard to use

1. R doesn’t have a GUI (Graphical User Interface)
 - Partly true, many use syntax.
 - Partly not true, GUIs exist (e.g., R Commander, R-Studio).
 - Quasi GUIs for Mac and PCs make syntax writing easier.

2. R syntax is hard to use
 - Not really, unless you think an iPhone is hard to use.
 - Easier to give instructions of 1-4 lines of syntax rather than pictures of menu after menu to pull down.
 - Keep a copy of your syntax, modify it for the next analysis.

3. R is not user friendly: A personological description of R
 - R is introverted: it will tell you what you want to know if you ask, but not if you don’t ask.
 - R is conscientious: it wants commands to be correct.
 - R is not agreeable: its error messages are at best cryptic.
 - R is stable: it does not break down under stress.
 - R is open: new ideas about statistics are easily developed.
Misconceptions: R is hard to learn – some interesting facts

1. With a brief web based tutorial
 http://personality-project.org/r, 2nd and 3rd year undergraduates in psychological methods and personality research courses are using R for descriptive and inferential statistics and producing publication quality graphics.

2. More and more psychology departments are using it for graduate and undergraduate instruction.

3. R is easy to learn, hard to master
 - R-help newsgroup is very supportive
 - Multiple web based and pdf tutorials see (e.g., http://www.r-project.org/)
 - Short courses using R for many applications. (Look at APS program).

4. Books and websites for SPSS and SAS users trying to learn R (e.g., http://r4stats.com/) by Bob Muenchen (look for link to free version).
Ok, how do I get it: Getting started with R

- Download from R Cran (http://cran.r-project.org/)
 - Choose appropriate operating system and download compiled R
- Install R (current version is 3.1.0) (See a tutorial on how to install R and various packages at http://personality-project.org/r/psych)
- Start R
- Add useful packages (just need to do this once)
 - install.packages("ctv") # this downloads the task view package
 - library(ctv) # this activates the ctv package
 - install.views("Psychometrics") # among others
 - Take a 5 minute break
- Activate the package(s) you want to use today (e.g., psych)
 - library(psych) # necessary for most of today's examples
- Use R
Annotated installation guide: don’t type the >

> install.packages("ctv")

> library(ctv)

> install.views("Psychometrics")

#or just install a few packages
> install.packages("psych")

> install.packages("GPARotation")
> install.packages("MASS")
> install.packages("mvtnorm")

• Install the task view installer package. You might have to choose a “mirror” site.
• Make it active
• Install all the packages in the “Psychometrics” task view. This will take a few minutes.
• Or, just install one package (e.g., psych) as well as a few suggested packages that add functionality for factor rotation, multivariate normal distributions, etc.
Installing R on your computer and adding packages

Go to the R.project.org

The R Project for Statistical Computing

Getting Started:

- R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.
- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News:

- R version 3.1.0 (Spring Dance) has been released on 2014-04-10.
- R version 3.0.3 (Warm Puppy) has been released on 2014-03-06.
- The R Journal Vol.5/2 is available.
- useR! 2013, took place at the University of Castilla-La Mancha, Albacete, Spain, July 10-12 2013.
- R version 2.15.3 (Security Blanket) has been released on 2013-03-01.
What is R?

Installing R on your computer and adding packages

Go to the Comprehensive R Archive Network (CRAN)

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R:

- Download R for Linux
- Download R for (Mac) OS X
- Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.

Source Code for all Platforms

Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!

- Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).
- Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes before filing corresponding feature requests or bug reports.
- Source code of older versions of R is available here.
- Contributed extension packages

Questions About R

- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

What are R and CRAN?

R is "GNU S", a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc. Please consult the R project homepage for further information.

CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R. Please use the CRAN mirror nearest to you to minimize network load.
Download and install the appropriate version – PC

Subdirectories:

- **base**
 Binaries for base distribution (managed by Duncan Murdoch). This is what you want to install R for the first time.

- **contrib**
 Binaries of contributed packages (managed by Uwe Ligges). There is also information on third party software available for CRAN Windows services and corresponding environment and make variables.

- **Rtools**
 Tools to build R and R packages (managed by Duncan Murdoch). This is what you want to build your own packages on Windows, or to build R itself.

Please do not submit binaries to CRAN. Package developers might want to contact Duncan Murdoch or Uwe Ligges directly in case of questions / suggestions related to Windows binaries.

You may also want to read the R FAQ and R for Windows FAQ.

Note: CRAN does some checks on these binaries for viruses, but cannot give guarantees. Use the normal precautions with downloaded executables.
Installing R on your computer and adding packages

Download and install the appropriate version – PC

R-3.1.0 for Windows (32/64 bit)

Download R 3.1.0 for Windows (54 megabytes, 32/64 bit)
Installation and other instructions
New features in this version

If you want to double-check that the package you have downloaded exactly matches the package distributed by R, you can compare the md5sum of the .exe to the true fingerprint. You will need a version of md5sum for windows: both graphical and command line versions are available.

Frequently asked questions

- How do I install R when using Windows Vista?
- How do I update packages in my previous version of R?
- Should I run 32-bit or 64-bit R?

Please see the R FAQ for general information about R and the R Windows FAQ for Windows-specific information.

Other builds

- Patches to this release are incorporated in the r-patched snapshot build.
- A build of the development version (which will eventually become the next major release of R) is available in the r-devel snapshot build.
- Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is <CRAN MIRROR>/bin/windows/base/release.htm.

Last change: 2014-04-11, by Duncan Murdoch
What is R?

A brief example

Basic statistics and graphics

Psychometrics and beyond

Basic R commands

Installing R on your computer and adding packages

Download and install the appropriate version – Mac

R for Mac OS X

This directory contains binaries for a base distribution and packages to run on Mac OS X (release 10.6 and above), Mac OS 8.6 to 9.2 (and Mac OS X 10.1) are no longer supported but you can find the last supported release of R for these systems (which is R 1.7.1) here. Releases for old Mac OS X systems (through Mac OS X 10.5) and PowerPC Macs can be found in the old directory.

Note: CRAN does not have Mac OS X systems and cannot check these binaries for viruses. Although we take precautions when assembling binaries, please use the normal precautions with downloaded executables.

R 3.1.0 "Spring Dance" released on 2014/04/10

This binary distribution of R and the GUI supports 64-bit Intel based Macs on Mac OS X 10.6 (Snow Leopard) or higher.

Please check the MD5 checksum of the downloaded image to ensure that it has not been tampered with or corrupted during the mirroring process. For example type:

md5 R-3.1.0-snowleopard.pkg

in the Terminal application to print the MD5 checksum for the R-3.1.0-snowleopard.pkg image. On Mac OS X 10.7 and later you can also validate the signature using pkgutil --check-signature R-3.1.0-snowleopard.pkg

Files:

R-3.1.0-snowleopard.pkg

R 3.1.0 binary for Mac OS X 10.6 (Snow Leopard) and higher, signed package. Contains R 3.1.0 framework, Rapp GUI 1.64 in 64-bit for Intel Macs. The above file is an Installer package which can be installed by double-clicking. Depending on your browser, you may need to press the control key and click on this link to download the file.

This package contains the R framework, 64-bit GUI (R app) and Tcl/Tk 8.6.0 X11 libraries. The latter component is optional and can be omitted when choosing "custom install", it is only needed if you want to use the tcltk R package. GNU Fortran is NOT included (needed if you want to compile packages from sources that contain FORTRAN code) please see the tools directory.

R-3.1.0-mavericks.pkg

R 3.1.0 binary for Mac OS X 10.9 (Mavericks) and higher, signed package. It contains the same software versions as above, but this R build has been built with Xcode 5 to leverage new compilers and functional improvements in Mavericks not available in earlier OS X versions.

Mac-GUI-1.64.tar.gz

Sources for the Rapp GUI 1.64 for Mac OS X. This file is only needed if you want to join the development of the GUI, it is not intended for regular users. Read the INSTALL file for further instructions.

NEWS (for Mac GUI)

News features and changes in the Rapp Mac GUI

The new Rapp Cocoa GUI has been written by Simon Urbanek and Stefano Iacus with contributions from many developers and translators world-wide, see "About R" in the GUI.

Subdirectories:

tools

Additional tools necessary for building R for Mac OS X:

Universal GNU Fortran compiler for Mac OS X (see R for Mac tools page for details).

contrib

Binaries of package builds for Mac OS X 10.6 or higher (Snow Leopard build)

mavericks

Binaries of package builds for Mac OS X 10.9 or higher (Mavericks build)

leopard

Legacy binaries of universal (32-bit and 64-bit) package builds for Mac OS X 10.5 or higher (Leopard build)

universal

Legacy binaries of universal (32-bit) package builds for Mac OS X 10.4 (Tiger build)
Starting R on a PC

R version 3.1.0 (2014-04-10) -- "Spring Dance"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> sessionInfo()
R version 3.1.0 (2014-04-10)
Platform: i386-w64-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=English_United_States.1252
[2] LC_CTYPE=English_United_States.1252

[25 / 123]
Installing a package (psych) on a PC by hand – note error

```
R version 3.1.0 (2014-04-10) -- "Spring Dance"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> install.packages(psych)
Error in install.packages(psych) : object 'psych' not found
> install.packages("psych")
Installing package into ‘C:/users/revelle/My Documents/R/win-library/3.1’
(as ‘lib’ is unspecified)
--- Please select a CRAN mirror for use in this session ---
trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/3.1/psych_1.4.5.zip'
```
R version 3.1.0 (2014-04-10) -- "Spring Dance"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

> install.packages(psy)
Error in install.packages(psy) : object ’psy’ not found
> install.packages("psy")
Installing package into ‘C:/users/revelle/My Documents/R/win-library/3.1’
(as ‘lib’ is unspecified)
--- Please select a CRAN mirror for use in this session ---
trying URL ’http://cran.stat.ucla.edu/bin/windows/contrib/3.1/psycho_4.5’
Content type ’application/zip’ length 2928284 bytes (2.8 Mb)
opened URL
downloaded 2.8 Mb
Start up R and get ready to play (Mac Development version)

R Under development (unstable) (2014-04-17 r65403) -- "Unsuffered Consequences"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin13.1.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

[R.app GUI 1.65 (6738) x86_64-apple-darwin13.1.0]
[Workspace restored from /Users/revelle/.RData]
[History restored from /Users/revelle/.Rapp.history]

> is the prompt for all commands # is for comments
Check the version number for R (should be $\geq 3.1.0$) and for psych ($\geq 1.4.5$)

```r
> library(psych)  #make the psych package active
> sessionInfo()   #what packages are active

R Under development (unstable) (2014-04-17 r65403)
Platform: x86_64-apple-darwin13.1.0 (64-bit)
locale:

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] psych_1.4.5
>
Various ways to run R

1. UNIX (and *NIX like) environments
   - Non interactive
   - Particularly fast if on remote processors
   - RStudio Server as “Integrated Development Environment” (IDE)
   - RStudio can be run remotely with a browser (e.g., even from an iPad)

2. PC
   - quasi GUI + text editor of choice
   - RStudio as “Integrated Development Environment” (IDE)

3. Mac
   - R.app + text editor of choice
   - RStudio as “Integrated Development Environment” (IDE)
R Studio is a useful “Integrated Development Environment” (IDE)
What is R?

A brief example

Basic statistics and graphics

What is R?

Installing R on your computer and adding packages

R Studio may be run on a remote server

```r
> library(psych)
> sessionInfo()
R version 3.0.2 (2013-09-25)
Platform: x86_64-redhat-linux-gnu (64-bit)

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] psych_1.4.5

> ?cor.ci
> keys.list <-
+ extraversion=c("E1", "E2", "E3", "E4", "E5"), neuroticism =c("N1", "N2", "N3", "N4", "N5"),
+ openness =c("O1", "O2", "O3", "O4", "O5"))
> keys <- make.keys(bfi,keys.list)
> rcl <- cor.ci(bfi[1:200],keys,n.iter=10) #also shows the graphic
> cor.plot.upperLowerCI(rcl) #to show the upper and lower confidence intervals
>
```

Upper and lower confidence intervals of correlations

<table>
<thead>
<tr>
<th></th>
<th>agree</th>
<th>conscientious</th>
<th>extraversion</th>
<th>neuroticism</th>
<th>openness</th>
</tr>
</thead>
<tbody>
<tr>
<td>agree</td>
<td>1</td>
<td>0.38</td>
<td>0.51</td>
<td>-0.26</td>
<td>0.39</td>
</tr>
<tr>
<td>consc</td>
<td>0.1</td>
<td>1</td>
<td>0.41</td>
<td>-0.18</td>
<td>0.35</td>
</tr>
<tr>
<td>extav</td>
<td>0.27</td>
<td>0.19</td>
<td>1</td>
<td>-0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>neurot</td>
<td>-0.1</td>
<td>-0.12</td>
<td>1</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>openne</td>
<td>-0.03</td>
<td>0.14</td>
<td>0.15</td>
<td>0.01</td>
<td>1</td>
</tr>
</tbody>
</table>
R is extensible: The use of “packages”

1. More than 5,564 packages are available for R (and growing daily. It was 5,549 last weekend).

2. Can search all packages that do a particular operation by using the sos package
   - `install.packages("sos")` #if you haven't already
   - `library(sos)` # make it active once you have it
     - `findFn("X")` #will search a web data base for all packages/functions that have "X"
     - `findFn("principal components")` #will return 2,061 matches and reports the top 400
     - `findFn("Item Response Theory")` # will return 324 matches
     - `findFn("INDSCAL ")` # will return 7 matches.

3. `install.packages("X")` will install a particular package (add it to your R library – you need to do this just once)

4. `library(X)` # will make the package X available to use if it has been installed (and thus in your library)
A small subset of very useful packages

- General use
  - core R
  - MASS
  - lattice
  - lme4 (core)
  - psych
  - Zelig

- Special use
  - ltm
  - sem
  - lavaan
  - OpenMx
  - GPArotation
  - mvtnorm
  - > 5,500 known
  - + ?

- General applications
  - most descriptive and inferential stats
  - Modern Applied Statistics with S
  - Lattice or Trellis graphics
  - Linear mixed-effects models
  - Personality/psychometrics general purpose
  - General purpose toolkit

- More specialized packages
  - Latent Trait Model (IRT)
  - SEM and CFA (one group)
  - SEM and CFA (multiple groups)
  - SEM and CFA (multiple groups +)
  - Jennrich rotations
  - Multivariate distributions
  - Thousands of more packages on CRAN
  - Code on webpages/journal articles
Basic R commands – remember don’t enter the `>`

R is just a fancy calculator. Add, subtract, sum, products, group

```r
> 2 + 2
[1] 4
> 3^4
[1] 81
> sum(1:10)
[1] 55
> prod(c(1, 2, 3, 5, 7))
[1] 210
```

It is also a statistics table (the normal distribution, the t distribution)

```r
> pnorm(q = 1)
[1] 0.8413447
> pt(q = 2, df = 20)
[1] 0.9703672
```
### Basic R capabilities: Calculation, Statistical tables, Graphics

R is a set of distributions. Don’t buy a stats book with tables!

Table: To obtain the density, prefix with *d*, probability with *p*, quantiles with *q* and to generate random values with *r*. (e.g., the normal distribution may be chosen by using dnorm, pnorm, qnorm, or rnorm.)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>base name</th>
<th>P 1</th>
<th>P 2</th>
<th>P 3</th>
<th>example application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>norm</td>
<td>mean</td>
<td>sigma</td>
<td></td>
<td>Most data</td>
</tr>
<tr>
<td>Multivariate normal</td>
<td>mvnorm</td>
<td>mean</td>
<td>r</td>
<td>sigma</td>
<td>Most data</td>
</tr>
<tr>
<td>Log Normal</td>
<td>lnorm</td>
<td>log mean</td>
<td>log sigma</td>
<td></td>
<td>income or reaction time</td>
</tr>
<tr>
<td>Uniform</td>
<td>unif</td>
<td>min</td>
<td>max</td>
<td></td>
<td>rectangular distributions</td>
</tr>
<tr>
<td>Binomial</td>
<td>binom</td>
<td>size</td>
<td>prob</td>
<td></td>
<td>Bernoulli trials (e.g., coin flips)</td>
</tr>
<tr>
<td>Student’s t</td>
<td>t</td>
<td>df</td>
<td></td>
<td>nc</td>
<td>Finding significance of a t-test</td>
</tr>
<tr>
<td>Multivariate t</td>
<td>mvt</td>
<td>df</td>
<td>corr</td>
<td>nc</td>
<td>Multivariate applications</td>
</tr>
<tr>
<td>Fisher’s F</td>
<td>f</td>
<td>df1</td>
<td>df2</td>
<td>nc</td>
<td>Testing for significance of F test</td>
</tr>
<tr>
<td>$\chi^2$</td>
<td>chisq</td>
<td>df</td>
<td></td>
<td>nc</td>
<td>Testing for significance of $\chi^2$</td>
</tr>
<tr>
<td>Exponential</td>
<td>exp</td>
<td>rate</td>
<td></td>
<td></td>
<td>Exponential decay</td>
</tr>
<tr>
<td>Gamma</td>
<td>gamma</td>
<td>shape</td>
<td>rate</td>
<td>scale</td>
<td>distribution theoryh</td>
</tr>
<tr>
<td>Hypergeometric</td>
<td>hyper</td>
<td>m</td>
<td>n</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>Logistic</td>
<td>logis</td>
<td>location</td>
<td>scale</td>
<td>Item Response Theory</td>
<td></td>
</tr>
<tr>
<td>Poisson</td>
<td>pois</td>
<td>lambda</td>
<td></td>
<td>Count data</td>
<td></td>
</tr>
<tr>
<td>Weibull</td>
<td>weibull</td>
<td>shape</td>
<td>scale</td>
<td>Reaction time distributions</td>
<td></td>
</tr>
</tbody>
</table>
A very small list of the many data sets available

1. `data()` - This opens up a separate text window and lists all of the data sets in the currently loaded packages.
2. `data(package="psych")` - Show the data sets available in a particular package (e.g., `psych`).
3. `data(Titanic)` - Gets the particular data set with its help file (e.g., the survival rates on the Titanic cross classified by age, gender and class).
4. `data(cushny)` - Another original data set used by “student” (Gossett) for the t-test.

> `data()`

> `data(package="psych")`

> `data(Titanic)`

> `data(cushny)`

> `? Titanic`

> `? cushney`
R can draw distributions

curve(dnormal(x),-3,3, ylab="probability of x",main="A normal curve")
What is R?

R can draw more interesting distributions

- **The normal curve**
- **Log normal**
- **Chi Square distribution**
- **Normal and t with 4 df**
The first line draws the normal curve, the second prints the title, the next lines draw the cross hatching.

```r
op <- par(mfrow=c(2,2)) #set up a 2 x 2 graph
curve(dnorm(x),-3,3,xlab="",ylab="Probability of z")
title(main="The normal curve",outer=FALSE)
xvals <- seq(-3,-2,length=100)
dvals <- dnorm(xvals)
polygon(c(xvals,rev(xvals)),c(rep(0,100),rev(dvals)),density=2,angle=-45)
xvals <- seq(-2,-1,length=100)
dvals <- dnorm(xvals)
polygon(c(xvals,rev(xvals)),c(rep(0,100),rev(dvals)),density=14,angle=45)
xvals <- seq(-1,-0,length=100)
dvals <- dnorm(xvals)
polygon(c(xvals,rev(xvals)),c(rep(0,100),rev(dvals)),density=34,angle=-45)
xvals <- seq(2,3,length=100)
dvals <- dnorm(xvals)
polygon(c(xvals,rev(xvals)),c(rep(0,100),rev(dvals)),density=2,angle=45)
xvals <- seq(1,2,length=100)
dvals <- dnorm(xvals)
polygon(c(xvals,rev(xvals)),c(rep(0,100),rev(dvals)),density=14,angle=-45)
xvals <- seq(0,1,length=100)
dvals <- dnorm(xvals)
polygon(c(xvals,rev(xvals)),c(rep(0,100),rev(dvals)),density=34,angle=45)

curve(dlnorm(x),0,5,ylab='Probability of log(x)',main='Log normal')
curve(dchisq(x,1),0,5,ylab='Probability of Chi Sq',xlab='Chi Sq',main='Chi Square distribution')
curve(dnorm(x),-4,4,ylab='Probability of z or t',xlab='z or t',main='Normal and t with 4 df')
curve(dt(x,4),add=TRUE)

op <- par(mfrow=c(1,1)) #back to a normal 1 x 1 graph
```
R can show current statistical concepts:

Type I Errors: It is not the power, it is the prior likelihood

dashed/dotted lines reflect alpha = .05, .01, .001 with power = 1

1. Extreme claims require extreme probabilities
2. Given that a finding is “significant”, what is the likelihood that it is a Type I error?
3. Depends upon the prior likelihood (the ‘sexiness’) of the claim.
A simple scatter plot using `plot`

```r
plot(iris[1:2], xlab = "Sepal.Length", ylab = "Sepal.Width", main = "Fisher Iris data")
```
A simple scatter plot using `plot` with some colors

```r
plot(iris[1:2], xlab="Sepal.Length", ylab="Sepal.Width",
main="Fisher Iris data with colors", bg=c("black","blue","red")[iris[,5]], pch=21)
```
A scatter plot matrix plot with loess regressions using `pairs.panels`

```
pairs.panels(iris[1:4], bg=c("red","yellow","blue"), [iris$Species], pch=21, main="Fisher Iris data by Species")
```
A brief example of exploratory and confirmatory data analysis

A brief example with real data

1. Get the data
2. Descriptive statistics
   - Graphic
   - Numerical
3. Inferential statistics using the linear model
   - regressions
4. More graphic displays
Get the data and describe it

1. First read the data, either from a built in data set, a local file, a remote file, or from the clipboard.

2. Describe the data using the describe function from psych

```r
> my.data <- sat.act # an example data file that is part of psych
or
> file.name <- file.choose() # look for it on your hard drive
or
> file.name <- "http://personality-project.org/r/aps/sat.act.txt"
now read it
> my.data <- read.table(file.name, header=TRUE)
or
> my.data <- read.clipboard() # if you have copied the data to the clipboard
> describe(my.data) # report basic descriptive statistics
```

```
var n mean sd median trimmed mad min max range skew kurtosis se
gender 1 700 1.65 0.48 2 1.68 0.00 1 2 1 -0.61 -1.62 0.02
education 2 700 3.16 1.43 3 3.31 1.48 0 5 5 -0.68 -0.06 0.05
age 3 700 25.59 9.50 22 23.86 5.93 13 65 52 1.64 2.47 0.36
ACT 4 700 28.55 4.82 29 28.84 4.45 3 36 33 -0.66 0.56 0.18
SATV 5 700 612.23 112.90 620 619.45 118.61 200 800 600 -0.64 0.35 4.27
SATQ 6 687 610.22 115.64 620 617.25 118.61 200 800 600 -0.59 0.00 4.41
```
Graphic display of data using `pairs.panels`

```r
pairs.panels(my.data) # Note the outlier for ACT
```

<table>
<thead>
<tr>
<th>Gender</th>
<th>Education</th>
<th>Age</th>
<th>ACT</th>
<th>SATV</th>
<th>SATQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.55</td>
<td>0.11</td>
<td>0.56</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>-0.02</td>
<td>0.15</td>
<td>-0.04</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.04</td>
<td>0.05</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.02</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**A brief example of exploratory and confirmatory data analysis**

Clean up the data using `scrub`. Use `?scrub` for help on the parameters.

```r
> cleaned <- scrub(my.data,"ACT",min=4) #what data set, which variable, what value to fix
> describe(cleaned) #look at the data again
```

<table>
<thead>
<tr>
<th>var</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>trimmed</th>
<th>mad</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>1</td>
<td>700</td>
<td>1.65</td>
<td>0.48</td>
<td>2</td>
<td>1.68</td>
<td>0.00</td>
<td>1</td>
<td>2</td>
<td>-0.61</td>
<td>-1.62</td>
<td>0.02</td>
</tr>
<tr>
<td>education</td>
<td>2</td>
<td>700</td>
<td>3.16</td>
<td>1.43</td>
<td>3</td>
<td>3.31</td>
<td>1.48</td>
<td>0</td>
<td>5</td>
<td>-0.68</td>
<td>-0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>age</td>
<td>3</td>
<td>700</td>
<td>25.59</td>
<td>9.50</td>
<td>22</td>
<td>23.86</td>
<td>5.93</td>
<td>13</td>
<td>65</td>
<td>-0.68</td>
<td>0.35</td>
<td>4.27</td>
</tr>
<tr>
<td>ACT</td>
<td>4</td>
<td>699</td>
<td>28.58</td>
<td>4.73</td>
<td>29</td>
<td>28.85</td>
<td>4.45</td>
<td>15</td>
<td>36</td>
<td>-0.50</td>
<td>-0.36</td>
<td>0.18</td>
</tr>
<tr>
<td>SATV</td>
<td>5</td>
<td>700</td>
<td>612.23</td>
<td>112.90</td>
<td>620</td>
<td>619.45</td>
<td>118.61</td>
<td>200</td>
<td>800</td>
<td>-0.64</td>
<td>0.35</td>
<td>4.27</td>
</tr>
<tr>
<td>SATQ</td>
<td>6</td>
<td>687</td>
<td>610.22</td>
<td>115.64</td>
<td>620</td>
<td>617.25</td>
<td>118.61</td>
<td>200</td>
<td>800</td>
<td>-0.59</td>
<td>0.00</td>
<td>4.41</td>
</tr>
</tbody>
</table>
Find the pairwise correlations, round to 2 decimals

This also shows how two functions can be nested. We are rounding the output of the cor function.

```r
#specify all the parameters being passed
> round(cor(x=sat.act,use="pairwise"),digits=2)
#the short way to specify the rounding parameter
> round(cor(cleaned,use="pairwise"),2)
```

```
gender education age ACT SATV SATQ
gender 1.00 0.09 -0.02 -0.05 -0.02 -0.17
education 0.09 1.00 0.55 0.15 0.05 0.03
age -0.02 0.55 1.00 0.11 -0.04 -0.03
ACT -0.05 0.15 0.11 1.00 0.55 0.59
SATV -0.02 0.05 -0.04 0.55 1.00 0.64
SATQ -0.17 0.03 -0.03 0.59 0.64 1.00
```
A brief example of exploratory and confirmatory data analysis

Display it differently using the lowerCor function

Operations that are done a lot may be made into your own functions. Thus, `lowerCor` finds the pairwise correlations, rounds to 2 decimals, displays the lower half of the correlation matrix, and then abbreviates the column labels to make them line up nicely

```r
> lowerCor(sat.act)

 gendr edctn age ACT SATV SATQ
gender 1.00
education 0.09 1.00
age -0.02 0.55 1.00
ACT -0.04 0.15 0.11 1.00
SATV -0.02 0.05 -0.04 0.56 1.00
SATQ -0.17 0.03 -0.03 0.59 0.64 1.00
```
A brief example of exploratory and confirmatory data analysis.

Testing the significance of one correlation using `cor.test`.

```r
> cor.test(my.data$ACT,my.data$SATQ)
```

Pearson's product-moment correlation

data:  my.data$ACT and my.data$SATQ
t = 18.9822, df = 685, p-value < 2.2e-16
alternative hypothesis: true correlation
is not equal to 0
95 percent confidence interval:
  0.5358435 0.6340672
sample estimates:
cor
0.5871122

1. Specify the variables to correlate
2. Various statistics associated with the correlation.
3. But what if you want to do many tests? Use `corr.test`
Test the correlations for significance using `corr.test` Normal theory

```r
> corr.test(cleaned)
Call: corr.test(x = sat.act)
Correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>gender</th>
<th>education</th>
<th>age</th>
<th>ACT</th>
<th>SATV</th>
<th>SATQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>1.00</td>
<td>0.09</td>
<td>-0.02</td>
<td>-0.04</td>
<td>-0.02</td>
<td>-0.17</td>
</tr>
<tr>
<td>education</td>
<td>0.09</td>
<td>1.00</td>
<td>0.55</td>
<td>0.15</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>age</td>
<td>-0.02</td>
<td>0.55</td>
<td>1.00</td>
<td>0.11</td>
<td>-0.04</td>
<td>-0.03</td>
</tr>
<tr>
<td>ACT</td>
<td>-0.04</td>
<td>0.15</td>
<td>0.11</td>
<td>1.00</td>
<td>0.56</td>
<td>0.59</td>
</tr>
<tr>
<td>SATV</td>
<td>-0.02</td>
<td>0.05</td>
<td>-0.04</td>
<td>0.56</td>
<td>1.00</td>
<td>0.64</td>
</tr>
<tr>
<td>SATQ</td>
<td>-0.17</td>
<td>0.03</td>
<td>-0.03</td>
<td>0.59</td>
<td>0.64</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Sample Size

<table>
<thead>
<tr>
<th></th>
<th>gender</th>
<th>education</th>
<th>age</th>
<th>ACT</th>
<th>SATV</th>
<th>SATQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>687</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SATQ</td>
<td>687</td>
<td>687</td>
<td>687</td>
<td>687</td>
<td>687</td>
<td>687</td>
</tr>
</tbody>
</table>

Probability values (Entries above the diagonal are adjusted for multiple tests.)

<table>
<thead>
<tr>
<th></th>
<th>gender</th>
<th>education</th>
<th>age</th>
<th>ACT</th>
<th>SATV</th>
<th>SATQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>0.00</td>
<td>0.17</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>education</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>age</td>
<td>0.58</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ACT</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SATV</td>
<td>0.62</td>
<td>0.22</td>
<td>0.26</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SATQ</td>
<td>0.00</td>
<td>0.36</td>
<td>0.37</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
What is R?

A brief example

Basic statistics and graphics

Psychometrics and beyond

Basic R commands

A brief example of exploratory and confirmatory data analysis

The SAT.ACT correlations. Confidence values from resampling

ci <- cor.ci(cleaned, main='Heat map of sat.act')

Heat map of sat.act correlations

<table>
<thead>
<tr>
<th></th>
<th>gender</th>
<th>education</th>
<th>age</th>
<th>ACT</th>
<th>SATV</th>
<th>SATQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>1</td>
<td>0.09</td>
<td>-0.02</td>
<td>-0.05</td>
<td>-0.02</td>
<td>-0.17</td>
</tr>
<tr>
<td>education</td>
<td>0.09</td>
<td>1</td>
<td>0.55</td>
<td>0.15</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>age</td>
<td>-0.02</td>
<td>0.55</td>
<td>1</td>
<td>0.11</td>
<td>-0.04</td>
<td>-0.03</td>
</tr>
<tr>
<td>ACT</td>
<td>-0.05</td>
<td>0.15</td>
<td>0.11</td>
<td>1</td>
<td>0.55</td>
<td>0.59</td>
</tr>
<tr>
<td>SATV</td>
<td>-0.02</td>
<td>0.05</td>
<td>-0.04</td>
<td>0.55</td>
<td>1</td>
<td>0.64</td>
</tr>
<tr>
<td>SATQ</td>
<td>-0.17</td>
<td>0.03</td>
<td>-0.03</td>
<td>0.59</td>
<td>0.64</td>
<td>1</td>
</tr>
</tbody>
</table>
The SAT.ACT bootstrapped confidence intervals of correlation

cor.plot(ci, main='upper and lower confidence boundaries')

correlation matrix of the SAT.ACT data:

```
gender
education
age
ACT
SATV
SATQ
```

Values range from -1 to 1, with 0 indicating no correlation.
What is R?

A brief example

Basic statistics and graphics

A brief example of exploratory and confirmatory data analysis

Are education and gender independent? $\chi^2$ Test of association

\[
T <- \text{with}(\text{my.data}, \text{table}(\text{gender}, \text{education}))
\]

\[
\begin{array}{ccccccc}
  & \text{education} \\
\text{gender} & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 27 & 20 & 23 & 80 & 51 & 46 \\
2 & 30 & 25 & 21 & 195 & 87 & 95 \\
\end{array}
\]

\[
\text{chisq.test}(T)
\]

Pearson's Chi-squared test

\[
\text{data: } T \\
\text{X-squared} = 16.0851, \text{ df} = 5, \text{ p-value} = 0.006605
\]
Multiple regression

1. Use the sat.act data example
2. Do the linear model
3. Summarize the results

```R
mod1 <- lm(SATV ~ education + gender + SATQ, data=my.data)
> summary(mod1, digits=2)
Call:
 lm(formula = SATV ~ education + gender + SATQ, data = my.data)
Residuals:
 Min 1Q Median 3Q Max
-372.91 -49.08 2.30 53.68 251.93
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 180.87348 23.41019 7.726 3.96e-14 ***
education 1.24043 2.32361 0.534 0.59363
gender 20.69271 6.99651 2.958 0.00321 **
SATQ 0.64489 0.02891 22.309 < 2e-16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 86.24 on 683 degrees of freedom
(13 observations deleted due to missingness)
Multiple R-squared: 0.4231, Adjusted R-squared: 0.4205
F-statistic: 167 on 3 and 683 DF, p-value: < 2.2e-16
```
A brief example of exploratory and confirmatory data analysis: 

Zero center the data before examining interactions

In order to examine interactions using multiple regression, we must first “zero center” the data. This may be done using the `scale` function. By default, `scale` will standardize the variables. So to keep the original metric, we make the scaling parameter FALSE.

```r
zsat <- data.frame(scale(my.data,scale=FALSE))
describe(zsat)
```

<table>
<thead>
<tr>
<th>var</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>trimmed</th>
<th>mad</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>1</td>
<td>700</td>
<td>0</td>
<td>0.48</td>
<td>0.35</td>
<td>0.04</td>
<td>0.00</td>
<td>-0.65</td>
<td>0.35</td>
<td>-0.61</td>
<td>-1.62</td>
<td>0.02</td>
</tr>
<tr>
<td>education</td>
<td>2</td>
<td>700</td>
<td>0</td>
<td>1.43</td>
<td>-0.16</td>
<td>0.14</td>
<td>1.48</td>
<td>-3.16</td>
<td>1.84</td>
<td>-0.68</td>
<td>-0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>age</td>
<td>3</td>
<td>700</td>
<td>0</td>
<td>9.50</td>
<td>-3.59</td>
<td>-1.73</td>
<td>5.93</td>
<td>-12.59</td>
<td>39.41</td>
<td>52</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td>4</td>
<td>700</td>
<td>0</td>
<td>4.82</td>
<td>0.45</td>
<td>0.30</td>
<td>4.45</td>
<td>-25.55</td>
<td>7.45</td>
<td>33</td>
<td>-0.66</td>
<td></td>
</tr>
<tr>
<td>SATV</td>
<td>5</td>
<td>700</td>
<td>0</td>
<td>112.90</td>
<td>7.77</td>
<td>7.22</td>
<td>118.61</td>
<td>-412.23</td>
<td>187.77</td>
<td>600</td>
<td>-0.64</td>
<td></td>
</tr>
<tr>
<td>SATQ</td>
<td>6</td>
<td>687</td>
<td>0</td>
<td>115.64</td>
<td>9.78</td>
<td>7.04</td>
<td>118.61</td>
<td>-410.22</td>
<td>189.78</td>
<td>600</td>
<td>-0.59</td>
<td></td>
</tr>
</tbody>
</table>

Note that we need to take the output of scale (which comes back as a matrix) and make it into a dataframe if we want to use the linear model on it.
Zero center the data before examining interactions

```r
> zsat <- data.frame(scale(my.data, scale=FALSE))
> mod2 <- lm(SATV ~ education * gender * SATQ, data=zsat)
> summary(mod2)

Call:
 lm(formula = SATV ~ education * gender * SATQ, data = zsat)

Residuals:
 Min 1Q Median 3Q Max
-372.53 -48.76 3.33 51.24 238.50

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.773576 3.304938 0.234 0.81500
education 2.517314 2.337889 1.077 0.28198
gender 18.485906 6.964694 2.654 0.00814 **
SATQ 0.620527 0.028925 21.453 < 2e-16 ***
education:gender 1.249926 4.759374 0.263 0.79292
education:SATQ -0.101444 0.020100 -5.047 5.77e-07 ***
gender:SATQ 0.007339 0.060850 0.121 0.90404
education:gender:SATQ 0.035822 0.041192 0.870 0.38481

Signif. codes: < 0.001 *** 0.001 ** 0.01 * 0.05 . 1
```
Compare model 1 and model 2

Test the difference between the two linear models

```r
> anova(mod1, mod2)
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model 1: SATV ~ education + gender + SATQ</th>
<th>Model 2: SATV ~ education * gender * SATQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res.Df</td>
<td>RSS</td>
</tr>
<tr>
<td>1</td>
<td>683</td>
</tr>
<tr>
<td>2</td>
<td>679</td>
</tr>
</tbody>
</table>

Signif. codes:  0 ^O***~O 0.001 ^O**~O 0.01 ^O*~O 0.05 ^O ~O 0.1 ^O
Show the regression lines by gender

Verbal varies by Quant and gender

```
> with(my.data,plot(SATV~SATQ,
 col=c("blue","red")[gender]))
> by(my.data,my.data$gender,
 function(x) abline
 (lm(SATV~SATQ,data=x),
 lty=c("solid","dashed")
)
> title("Verbal varies by Quant and gender")
```
Show the regression lines by education

Verbal varies by Quant and education

> with(my.data, plot(SATV~SATQ, 
  col=c("blue","red")[gender]))

by(my.data,my.data$education, 
  function(x) abline(lm(SATV~SATQ, 
    lty=c("solid", "dashed", "dotted", 
    "dotdash", "longdash", 
    "twodash")[x$education+1])

> title("Verbal varies by Quant and education")
Questions?
Using R for psychological statistics: Basic statistics

1. Writing syntax
   - For a single line, just type it
   - Mistakes can be redone by using the up arrow key
   - For longer code, use a text editor (built into some GUIs)

2. Data entry
   - Using built in data sets for examples
   - Copying from another program
   - Reading a text or csv file
   - Importing from SPSS or SAS
   - Simulate it (using various simulation routines)

3. Descriptives
   - Graphical displays
   - Descriptive statistics
   - Correlation

4. Inferential
   - the t test
   - the F test
   - the linear model
Data entry overview

1. Using built in data sets for examples
   - `data()` will list > 100 data sets in the datasets package as well as all sets in loaded packages.
   - Most packages have associated data sets used as examples
   - `psych` has > 50 example data sets

2. Copying from another program
   - use copy and paste into R using `read.clipboard` and its variations

3. Reading a text or csv file
   - read a local or remote file

4. Importing from SPSS or SAS

5. Simulate it (using various simulation routines)
Examples of built in data sets from the psych package

```r
> data(package="psych")

Bechtoldt Seven data sets showing a bifactor solution.
Dwyer 8 cognitive variables used by Dwyer for an example.
Reise Seven data sets showing a bifactor solution.
affect Data sets of affect and arousal scores as a function of movie conditions (JPSP-12)
all.income (income) US family income from US census 2008
bfi 25 Personality items representing 5 factors
blot Bond's Logical Operations Test - BLOT
burt 11 emotional variables from Burt (1915)
cities Distances between 11 US cities
epi.bfi 13 personality scales from the Eysenck Personality Inventory and Big 5 inventory
income US family income from US census 2008
iqitems 14 multiple choice IQ items
msq 75 mood items from the Motivational State Questionnaire for 3896 participants
neo NEO correlation matrix from the NEO_PI_R manual
sat.act 3 Measures of ability: SATV, SATQ, ACT
Thurstone Seven data sets showing a bifactor solution
veg (vegetables) Paired comparison of preferences for 9 vegetables
```
What is R?

A brief example

Basic statistics and graphics

4 steps: read, explore, test, graph

Reading data from another program – using the clipboard

1. Read the data in your favorite spreadsheet or text editor
2. Copy to the clipboard
3. Execute the appropriate `read.clipboard` function with or without various options specified

```r
my.data <- read.clipboard() # assumes headers and tab or space delimited
my.data <- read.clipboard.csv() # assumes headers and comma delimited
my.data <- read.clipboard.tab() # assumes headers and tab delimited
 (e.g., from Excel)
my.data <- read.clipboard.lower() # read in a matrix given the lower
my.data <- read.clipboard.upper() # or upper off diagonal
my.data <- read.clipboard.fwf() # read in data using a fixed format width
 (see read.fwf for instructions)
```

4. `read.clipboard()` has default values for the most common cases and these do not need to be specified. Consult `?read.clipboard` for details.
Although the next few examples work perfectly on http files, unfortunately, they do not work on https files. Some websites have switched to https and so we need to add a small fix. This did not make the psych version 1.4.5 release but if you copy the the following code into R it will allow us to read https files. You do not need to type in anything following the # : those are just comments. This is not necessary to do for http files.

```
"read.https" <- function(filename,header=TRUE) {
 #define a new function
 temp <- tempfile() #create a temporary file
 download.file(filename,destfile=temp,method="curl") #copy the https file to temp
 result <- read.table(temp,header=header) #now, do the normal read.table command
 unlink(temp) #get rid of the temporary file
 return(result)} #give us the result
```

Congratulations, you have just written your first R function.
Reading from a local or remote file

1. Perhaps the standard way of reading in data is using the `read` command.
   - First must specify the location of the file
   - Can either type this in directly or use the `file.choose` function. This goes to your normal system file handler.
   - The file name/location can be a remote URL. (Note that `read.file` will not work on https files.)

2. Two examples of reading data

   ```r
 file.name <- file.choose() # this opens a window to allow you find the file
 # or
 datafilename="http://personality-project.org/r/datasets/R.appendix1.data"
 my.data <- read.table(fdatafilename,header=TRUE) # unless it is https (see above)
 # or
 data.ex1=read.https(datafilename,header=TRUE) # read an https file
 > dim(data.ex1) # what are the dimensions of what we read?
 [1] 18 2
 > describe(data.ex1) # do the data look right?
 var n mean sd median trimmed mad min max range skew kurtosis
 Dosage* 1 18 1.89 0.76 2 1.88 1.48 1 3 2 0.16 -1.12
 Alertness 2 18 27.67 6.82 27 27.50 8.15 17 41 24 0.25 1.61
   ```
Put it all together: read, show, describe

```r
datafilename = "http://personality-project.org/r/datasets/R.appendix1.data"
data.ex1 <- read.table(datafilename, header=TRUE) #unless it is https (see above)
dim(data.ex1) # what are the dimensions of what we read?
data.ex1 # show the data
headTail(data.ex1) # just the top and bottom lines
describe(data.ex1) # descriptive stats
```

### Read the data from a remote file

1. Read the data from a remote file

### Show all the cases (problematic if there are are 100s – 1000s)

2. Show all the cases (problematic if there are are 100s – 1000s)

### Just show the first and last (4) lines

3. Just show the first and last (4) lines

### Find descriptive statistics

4. Find descriptive statistics
Read a “foreign” file e.g., an SPSS sav file, using foreign package

read.spss reads a file stored by the SPSS save or export commands.

```r
read.spss(file, use.value.labels = TRUE, to.data.frame = FALSE,
 max.value.labels = Inf, trim.factor.names = FALSE,
 trim_values = TRUE, reencode = NA, use.missings = to.data.frame)
```

- **file**  Character string: the name of the file or URL to read.
- **use.value.labels**  Convert variables with value labels into R factors with those levels?
- **to.data.frame**  return a data frame? Defaults to FALSE, probably should be TRUE in most cases.
- **max.value.labels**  Only variables with value labels and at most this many unique values will be converted to factors if use.value.labels = TRUE.
- **trim.factor.names**  Logical: trim trailing spaces from factor levels?
- **trim_values**  logical: should values and value labels have trailing spaces ignored when matching for use.value.labels = TRUE?
- **use.missings**  logical: should information on user-defined missing values be used to set the corresponding values to NA?
An example of reading from an SPSS file

```r
> library(foreign)

> datafilename <- "http://personality-project.org/r/datasets/finkel.sav"

> eli <- read.spss(datafilename, to.data.frame=TRUE, use.value.labels=FALSE)

> headTail(eli, 2, 2)

> describe(eli, skew=FALSE)

USER HAPPY SOULMATE ENJOYDEX UPSET
1 "001" 4 7 7 1
2 "003" 6 5 7 0
... <NA>
68 "076" 7 7 7 0
69 "078" 2 7 7 1

> var n mean sd median trimmed mad min max range se
USER* 1 69 35.00 20.06 35 35.00 25.20 1 69 68 2.42
HAPPY 2 69 5.71 1.04 6 5.82 0.00 2 7 5 0.13
SOULMATE 3 69 5.09 1.80 5 5.32 1.48 1 7 6 0.22
ENJOYDEX 4 68 6.47 1.01 7 6.70 0.00 2 7 5 0.12
UPSET 5 69 0.41 0.49 0 0.39 0.00 0 1 1 0.06
```

1. Make the `foreign` package active
2. Specify the name (and location) of the file to read
3. Read from a SPSS file
4. Show the top and bottom 2 cases
5. Describe it to make sure it is right
Simulate data (Remember to always call them simulated!)

For many demonstration purposes, it is convenient to generate simulated data with a certain defined structure. The *psych* package has a number of built-in simulation functions. Here are a few of them.

1. Simulate various item structures
   - `sim.congeneric` A one factor congeneric measure model
   - `sim.items` A two factor structure with either simple structure or a circumplex structure.
   - `sim.rasch` Generate items for a one parameter IRT model.
   - `sim.irt` Generate items for a one-four parameter IRT Model

2. Simulate various factor structures
   - `sim.simplex` Default is a four factor structure with a three time point simplex structure.
   - `sim.hierarchical` Default is 9 variables with three correlated factors.
Get the data and look at it

Read in some data, look at the first and last few cases (using `headTail`), and then get basic descriptive statistics. For this example, we will use a built in data set.

```r
> headTail(epi.bfi)

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>138</td>
<td>96</td>
<td>141</td>
<td>51</td>
<td>138</td>
<td>1</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>101</td>
<td>99</td>
<td>107</td>
<td>116</td>
<td>132</td>
<td>7</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>143</td>
<td>118</td>
<td>38</td>
<td>68</td>
<td>90</td>
<td>4</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>104</td>
<td>106</td>
<td>64</td>
<td>114</td>
<td>101</td>
<td>8</td>
<td>54</td>
<td>40</td>
</tr>
</tbody>
</table>
| ...| ...| ...| ...| ...| ...| ...| ...| ...| ...| ...| ...| ...| ...
| 228| 12| 7 | 4 | 3 | 15| 155| 129| 127| 88 | 110| 9 | 35 | 34 |
| 229| 19| 10| 7 | 2 | 11| 162| 152| 163| 104| 164| 1 | 29 | 47 |
| 230| 4 | 1 | 1 | 2 | 10| 95 | 111| 75 | 123| 138| 5 | 39 | 58 |
| 231| 8 | 6 | 3 | 2 | 15| 85 | 62 | 90 | 131| 96 | 24| 58 | 58 |
```

epi.bfi has 231 cases from two personality measures.
What is R?

A brief example

Basic statistics and graphics

Basic descriptive and inferential statistics

Now find the descriptive statistics for this data set

> describe(epi.bfi)

<table>
<thead>
<tr>
<th>var</th>
<th>n</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>trimmed</th>
<th>mad</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>se</th>
</tr>
</thead>
<tbody>
<tr>
<td>epiE</td>
<td>1231</td>
<td>13.33</td>
<td>4.14</td>
<td>14</td>
<td>13.49</td>
<td>4.45</td>
<td>1</td>
<td>21</td>
<td>-0.33</td>
<td>-0.01</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>epiS</td>
<td>1231</td>
<td>7.58</td>
<td>2.69</td>
<td>8</td>
<td>7.77</td>
<td>2.97</td>
<td>0</td>
<td>13</td>
<td>-0.57</td>
<td>0.04</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>epiImp</td>
<td>1231</td>
<td>4.37</td>
<td>1.88</td>
<td>4</td>
<td>4.36</td>
<td>1.48</td>
<td>0</td>
<td>9</td>
<td>0.06</td>
<td>-0.59</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>epilie</td>
<td>1231</td>
<td>2.38</td>
<td>1.50</td>
<td>2</td>
<td>2.27</td>
<td>1.48</td>
<td>0</td>
<td>7</td>
<td>0.66</td>
<td>0.30</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>epiNeur</td>
<td>1231</td>
<td>10.41</td>
<td>4.90</td>
<td>10</td>
<td>10.39</td>
<td>4.45</td>
<td>0</td>
<td>23</td>
<td>0.06</td>
<td>-0.46</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>bflagre</td>
<td>1231</td>
<td>125.00</td>
<td>18.14</td>
<td>126</td>
<td>125.26</td>
<td>17.79</td>
<td>74</td>
<td>167</td>
<td>93</td>
<td>-0.21</td>
<td>-0.22</td>
<td>1.19</td>
</tr>
<tr>
<td>bfcon</td>
<td>1231</td>
<td>113.25</td>
<td>21.88</td>
<td>114</td>
<td>113.42</td>
<td>22.24</td>
<td>53</td>
<td>178</td>
<td>125</td>
<td>-0.02</td>
<td>0.29</td>
<td>1.44</td>
</tr>
<tr>
<td>bfext</td>
<td>1231</td>
<td>102.18</td>
<td>26.45</td>
<td>104</td>
<td>102.99</td>
<td>22.24</td>
<td>8</td>
<td>168</td>
<td>160</td>
<td>-0.41</td>
<td>0.58</td>
<td>1.74</td>
</tr>
<tr>
<td>bfnur</td>
<td>1231</td>
<td>87.97</td>
<td>23.34</td>
<td>90</td>
<td>87.70</td>
<td>23.72</td>
<td>34</td>
<td>152</td>
<td>118</td>
<td>0.07</td>
<td>-0.51</td>
<td>1.54</td>
</tr>
<tr>
<td>bfopen</td>
<td>1231</td>
<td>123.43</td>
<td>20.51</td>
<td>125</td>
<td>123.78</td>
<td>20.76</td>
<td>73</td>
<td>173</td>
<td>100</td>
<td>-0.16</td>
<td>-0.11</td>
<td>1.35</td>
</tr>
<tr>
<td>bdi</td>
<td>1231</td>
<td>6.78</td>
<td>5.78</td>
<td>6</td>
<td>5.97</td>
<td>4.45</td>
<td>0</td>
<td>27</td>
<td>1.29</td>
<td>1.60</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>traitanx</td>
<td>1231</td>
<td>39.01</td>
<td>9.52</td>
<td>38</td>
<td>38.36</td>
<td>8.90</td>
<td>22</td>
<td>71</td>
<td>49</td>
<td>0.67</td>
<td>0.54</td>
<td>0.63</td>
</tr>
<tr>
<td>stateanx</td>
<td>1231</td>
<td>39.85</td>
<td>11.48</td>
<td>38</td>
<td>38.92</td>
<td>10.38</td>
<td>21</td>
<td>79</td>
<td>58</td>
<td>0.72</td>
<td>0.04</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Boxplots are a convenient descriptive device

Show the Tukey “boxplot” for the Eysenck Personality Inventory

Use the box plot function

```r
my.data <- epi.bfi
boxplot(my.data[1:5])
```
An alternative display is a 'violin' plot (available as `violinBy`)

Use the `violinBy` function from `psych`:

```r
violinBy(my.data[1:5])
```
Plot the scatter plot matrix (SPLOM) of the first 5 variables using the `pairs.panels` function

```
use the pairs.panels function from psych

pairs.panels(my.data[1:5])
```
Plot the scatter plot matrix (SPLOM) of the first 5 variables using the `pairs.panels` function but with smaller pch and jittering the points.

Use the `pairs.panels` function from *psych*

`pairs.panels(my.data[1:5],pch='.', jiggle=TRUE)`
Find the correlations for this data set, round off to 2 decimal places

```r
> round(cor(my.data, use = "pairwise"), 2)
epiE epiS epiImp epilie epiNeur bfagree bfcon bfext bfneur bfopen bdi traitanx stateanx
epiE 1.00 0.85 0.80 -0.22 -0.18 0.18 -0.11 0.54 -0.09 0.14 -0.16 -0.23 -0.13
epiS 0.85 1.00 0.43 -0.05 -0.22 0.20 0.05 0.58 -0.07 0.15 -0.13 -0.26 -0.12
epiImp 0.80 0.43 1.00 -0.24 -0.07 0.08 -0.24 0.35 -0.09 0.07 -0.11 -0.12 -0.09
epilie -0.22 -0.05 -0.24 1.00 -0.25 0.17 0.23 -0.04 -0.22 -0.03 -0.20 -0.23 -0.15
epiNeur -0.18 -0.22 -0.07 -0.25 1.00 -0.08 0.23 -0.04 -0.22 -0.03 -0.20 -0.23 -0.15
bfagree 0.18 0.20 0.08 0.17 -0.08 1.00 0.45 0.48 -0.04 0.39 -0.14 -0.31 -0.19
bfcon -0.11 0.05 -0.24 0.23 -0.13 0.45 1.00 0.27 0.04 0.31 -0.18 -0.29 -0.14
bfext 0.54 0.58 0.35 -0.04 -0.17 0.48 0.27 1.00 0.04 0.46 -0.14 -0.39 -0.15
bfneur -0.09 -0.07 -0.09 -0.22 0.63 -0.04 0.04 0.04 1.00 0.29 0.47 0.59 0.49
bfopen 0.14 0.15 0.07 -0.03 0.09 0.39 0.31 0.46 0.29 1.00 -0.08 -0.11 -0.04
bdi -0.16 -0.13 -0.11 -0.20 0.58 -0.14 -0.18 -0.14 0.47 -0.08 1.00 0.65 0.61
traitanx -0.23 -0.26 -0.12 -0.23 0.73 -0.31 -0.29 -0.39 0.59 -0.11 0.65 1.00 0.57
stateanx -0.13 -0.12 -0.09 -0.15 0.49 -0.19 -0.14 -0.15 0.49 -0.04 0.61 0.57 1.00
```
Find the correlations for this data set, round off to 2 decimal places using `lowerCor`

```r
> lowerCor(my.data)

<table>
<thead>
<tr>
<th></th>
<th>epiE</th>
<th>epiS</th>
<th>epImp</th>
<th>epili</th>
<th>epiNr</th>
<th>bfagr</th>
<th>bfcon</th>
<th>bfext</th>
<th>bfner</th>
<th>bfopn</th>
<th>bdi</th>
<th>trtnx</th>
<th>sttnx</th>
</tr>
</thead>
<tbody>
<tr>
<td>epiE</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>epiS</td>
<td>0.85</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>epImp</td>
<td>0.80</td>
<td>0.43</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>epilie</td>
<td>-0.22</td>
<td>-0.05</td>
<td>-0.24</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>epiNeur</td>
<td>-0.18</td>
<td>-0.22</td>
<td>-0.07</td>
<td>-0.25</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfagree</td>
<td>0.18</td>
<td>0.20</td>
<td>0.08</td>
<td>0.17</td>
<td>-0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfcon</td>
<td>-0.11</td>
<td>0.05</td>
<td>-0.24</td>
<td>0.23</td>
<td>-0.13</td>
<td>0.45</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfext</td>
<td>0.54</td>
<td>0.58</td>
<td>0.35</td>
<td>-0.04</td>
<td>-0.17</td>
<td>0.48</td>
<td>0.27</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfneur</td>
<td>-0.09</td>
<td>-0.07</td>
<td>-0.09</td>
<td>-0.22</td>
<td>0.63</td>
<td>-0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfopen</td>
<td>0.14</td>
<td>0.15</td>
<td>0.07</td>
<td>-0.03</td>
<td>0.09</td>
<td>0.39</td>
<td>0.31</td>
<td>0.46</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bdi</td>
<td>-0.16</td>
<td>-0.13</td>
<td>-0.11</td>
<td>-0.20</td>
<td>0.58</td>
<td>-0.14</td>
<td>-0.18</td>
<td>-0.14</td>
<td>0.47</td>
<td>-0.08</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>traitanx</td>
<td>-0.23</td>
<td>-0.26</td>
<td>-0.12</td>
<td>-0.23</td>
<td>0.73</td>
<td>-0.31</td>
<td>-0.29</td>
<td>-0.39</td>
<td>0.59</td>
<td>-0.11</td>
<td>0.65</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>stateanx</td>
<td>-0.13</td>
<td>-0.12</td>
<td>-0.09</td>
<td>-0.15</td>
<td>0.49</td>
<td>-0.19</td>
<td>-0.14</td>
<td>-0.15</td>
<td>0.49</td>
<td>-0.04</td>
<td>0.61</td>
<td>0.57</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Test the significance and use Holm correction for multiple tests

```r
> corr.test(my.data)
Call: corr.test(x = my.data)
Correlation matrix
    epiE  epiS epiImp epilie epiNeur bfagree bfcon bfext bfneur bfonpe bdi traitanx stateanx
  epiE  1.00 0.85 0.80 -0.22 -0.18 0.18 -0.11 0.54 -0.09 0.14 -0.16 -0.23 -0.13
  epiS 0.85 1.00 0.43 -0.05 -0.22 0.20 0.05 0.58 -0.07 0.15 -0.13 -0.26 -0.12
  epiImp 0.80 0.43 1.00 -0.24 -0.07 0.08 -0.24 0.35 -0.09 0.07 -0.11 -0.12 -0.09
  epilie .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  epiNeur .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfagree .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfcon .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfext .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfneur .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfonpe .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bdi .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  traitanx .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  stateanx .. .. .. .. .. .. .. .. .. .. .. .. .. ..

Sample Size
    epiE  epiS epiImp epilie epiNeur bfagree bfcon bfext bfneur bfonpe bdi traitanx stateanx
  epiE  231 231 231 231 231 231 231 231 231 231 231 231 231
  epiS  231 231 231 231 231 231 231 231 231 231 231 231 231
  epiImp 231 231 231 231 231 231 231 231 231 231 231 231 231
  epilie .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  epiNeur .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfagree .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfcon .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfext .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfneur .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bfonpe .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  bdi .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  traitanx .. .. .. .. .. .. .. .. .. .. .. .. .. ..
  stateanx .. .. .. .. .. .. .. .. .. .. .. .. .. ..

Probability values (Entries above the diagonal are adjusted for multiple tests.)
    epiE  epiS epiImp epilie epiNeur bfagree bfcon bfext bfneur bfonpe bdi traitanx stateanx
  epiE  0.00 0.00 0.03 0.27 0.27 1.00 0.00 1.00 1.00 0.59 0.02 1.00
  epiS  0.00 0.00 1.00 0.04 0.08 1.00 0.00 1.00 0.62 1.00 0.00 1.00
  epiImp 0.00 0.00 0.01 1.00 1.00 0.01 0.00 1.00 1.00 1.00 1.00 1.00
  epilie 0.00 0.43 0.00 0.01 0.32 0.03 1.00 0.03 1.00 0.08 0.02 0.61
  epiNeur 0.01 0.00 0.26 0.00 0.00 1.00 1.00 0.33 0.00 1.00 0.00 0.00
  bfagree 0.01 0.00 0.23 0.01 0.21 0.00 0.00 0.00 1.00 0.00 0.95 0.00 0.12
  bfcon 0.08 0.48 0.00 0.00 0.04 0.00 0.00 0.00 1.00 0.00 0.25 0.00 1.00
  bfext 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.76
  bfneur 0.15 0.30 0.18 0.00 0.00 0.00 0.50 0.00 0.00 1.00 0.00 0.00 0.00
  bfonpe 0.04 0.02 0.30 0.70 0.19 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00
  bdi 0.02 0.04 0.11 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00
  traitanx 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00
  stateanx 0.05 0.07 0.18 0.02 0.00 0.00 0.04 0.02 0.00 0.52 0.00 0.00 0.00
```

>
t.test demonstration with Student’s data (from the sleep dataset)

```r
> with(sleep,t.test(extra~group))

Welch Two Sample t-test

data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  -3.3654832  0.2054832
sample estimates:
  mean in group 1 mean in group 2
1.0 2.33

But the data were actually paired. Do it for a paired t-test

> with(sleep,t.test(extra~group,paired=TRUE))

Paired t-test

data: extra by group
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  -2.4598858  -0.7001142
sample estimates:
  mean of the differences
-1.58
```
Two ways of showing Student’s t test data

Student’s sleep data

<table>
<thead>
<tr>
<th>Drug condition</th>
<th>Change in Sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Two ways of showing Student’s t test data

Use the `error.bars.by` and `error.bars` functions. Note that we need to change the data structure a little bit to get the within subject error bars.

```
> error.bars.by(sleep$extra, sleep$group, 
  by.var=TRUE, lines=FALSE, 
  ylab="Change in Sleep", xlab="Drug condition", main="Student's sleep data")
```

```
> error.bars(data.frame(drug1=sleep[1:10,1], 
  drug2=sleep[11:20,1]), within=TRUE, 
  ylab="Change in Sleep", xlab="Drug Condition", main="Student's paired sleep data")
```
What is R?

A brief example

Basic descriptive and inferential statistics

Basic statistics and graphics

Analysis of Variance

1. `aov` is designed for balanced designs, and the results can be hard to interpret without balance: beware that missing values in the response(s) will likely lose the balance.

2. If there are two or more error strata, the methods used are statistically inefficient without balance, and it may be better to use `lme` in package `nlme`.

```r
# read the data into a table
data.ex2 = read.csv(datafilename, header = T)
# show the data
data.ex2
```

<table>
<thead>
<tr>
<th>Observation</th>
<th>Gender</th>
<th>Dosage</th>
<th>Alertness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>m</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>m</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>m</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>m</td>
<td>a</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>f</td>
<td>b</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>f</td>
<td>b</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>f</td>
<td>b</td>
</tr>
</tbody>
</table>
Do the analysis of variances and the show the table of results.

```r
aov.ex2 = aov(Alertness~Gender*Dosage,data=data.ex2) #do the analysis of variance
summary(aov.ex2) #show the summary table
```

```
Df  Sum Sq Mean Sq  F value Pr(>F)
Gender    1 76.562 76.562  2.9518 0.1115
Dosage    1  5.062  5.062  0.1952 0.6665
Gender:Dosage 1  0.063  0.063  0.0024 0.9617
```
Show the results table

```r
> print(model.tables(aov.ex2, "means"), digits=3)
Residuals  12  311.250  25.938

Tables of means
Grand mean

14.0625

Gender
Gender
  f   m
16.25 11.88

Dosage
Dosage
  a   b
13.50 14.62

Gender:Dosage
Dosage
Gender   a   b
  f  15.75 16.75
  m  11.25 12.50
```
1. Somewhat more complicated because we need to convert “wide” data.frames to “long” or “narrow” data.frame.

2. This can be done by using the `stack` function. Some data sets are already in the long format.

3. A detailed discussion of how to work with repeated measures designs is at http://personality-project.org/r/r.anova.html and at http://personality-project.org/r

4. See also the tutorial by Jason French at http://jason-french.com/tutorials/repeatedmeasures.html
Analysis of variance within subjects

```r
> datafilename="http://personality-project.org/r/datasets/R.appendix5.data"
> data.ex5=read.table(datafilename,header=T)  #read the data into a table
> #data.ex5                                  #show the data
> aov.ex5 =
+ aov(Recall~(Task*Valence*Gender*Dosage)+Error(Subject/(Task*Valence))+
+ (Gender*Dosage),data.ex5)
> summary(aov.ex5)

Error: Subject
    Df Sum Sq Mean Sq  F value  Pr(>F)
Gender    1  542.26  542.26  5.6853 0.03449 *
Dosage    2  694.91  347.45  3.6429 0.05803 .
Gender:Dosage    2   70.80   35.40  0.3711 0.69760
Residuals 12 1144.56   95.38
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 1

Error: Subject:Task
    Df Sum Sq Mean Sq  F value  Pr(>F)
Task      1  96.333  96.333 39.8621 3.868e-05 ***
Task:Gender 1   1.333   1.333  0.5517   0.4719
Task:Dosage 2  8.167   4.083  1.6897  0.2257
Task:Gender:Dosage 2  3.167  1.583  0.6552  0.5370
Residuals 12 29.000  2.4177 ...
```

... (lots more)
Multiple regression

1. Use the `sat.act` data set from `psych`
2. Do the linear model
3. Summarize the results

```r
mod1 <- lm(SATV ~ education + gender + SATQ, data=sat.act)
> summary(mod1, digits=2)
```

```
Call:
  lm(formula = SATV ~ education + gender + SATQ, data = sat.act)
Residuals:
    Min     1Q Median     3Q    Max
-372.91  -49.08   2.30   53.68  251.93
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)       180.87348   23.41019   7.726  3.96e-14 ***
education          1.24043    2.32361   0.534   0.59363
gender             20.69271    6.99651   2.958   0.00321 **
SATQ               0.64489    0.02891  22.309  < 2e-16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

Residual standard error: 86.24 on 683 degrees of freedom
(13 observations deleted due to missingness)
Multiple R-squared: 0.4231, Adjusted R-squared: 0.4205
F-statistic: 167 on 3 and 683 DF, p-value: < 2.2e-16
Zero center the data before examining interactions

> zsat <- data.frame(scale(sat.act,scale=FALSE))
> mod2 <- lm(SATV ~ education * gender * SATQ,data=zsat)
> summary(mod2)

Call:
 lm(formula = SATV ~ education * gender * SATQ, data = zsat)

Residuals:

 Min 1Q Median 3Q Max
-372.53 -48.76 3.33 51.24 238.50

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7736 3.305 0.2340 0.8150
education 2.5173 2.338 1.0768 0.2819
gender 18.4859 6.965 2.6542 0.0081 **
SATQ 0.6205 0.029 21.4540 < 2e-16 ***
education:gender 1.2499 4.759 0.2628 0.7929
education:SATQ -0.1014 0.020 -5.0470 5.77e-07 ***
gender:SATQ -0.0073 0.061 0.1208 0.9040
education:gender:SATQ 0.0358 0.041 0.8703 0.3848

Signif. codes: < 0.001 ** 0.01 * 0.05 1
Compare model 1 and model 2

Test the difference between the two linear models

> anova(mod1, mod2)

Analysis of Variance Table

Model 1: SATV ~ education + gender + SATQ
Model 2: SATV ~ education * gender * SATQ

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5079984</td>
<td>4</td>
<td>209742</td>
<td>7.3104</td>
<td>9.115e-06***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Show the regression lines by gender

> with(sat.act,plot(SATV~SATQ,
 col=c("blue","red")[gender]))
> by(sat.act,sat.act$gender,
 function(x) abline
 (lm(SATV~SATQ,data=x),
 lty=c("solid","dashed"))
> title("Verbal varies by Quant
 and gender")
Psychometrics

1. Classical test theory measures of reliability
 - Scoring tests
 - Reliability (alpha, beta, omega)

2. Multivariate Analysis
 - Factor Analysis
 - Components analysis
 - Multidimensional scaling
 - Structural Equation Modeling

3. Item Response Theory
 - One parameter (Rasch) models
 - 2PL and 2PN models
What is R?

A brief example

Basic statistics and graphics

Classical Test measures of reliability

Classic theory estimates of reliability

1 Scoring tests

scoreItems Score 1 ... n scales using a set of keys and finding the simple sum or average of items. Reversed items are indicated by -1.

score.multiple.choice Score multiple choice items by first converting to 0 or 1 and then proceeding to score the items.

2 Alternative estimates of reliability

alpha α reliability of a single scale finds the average split half reliability. (some items may be reversed keyed).

omega ω_h reliability of a single scale estimates the general factor saturation of the test.

guttman Find the 6 Guttman reliability estimates

splitHalf Find the range of split half reliabilities
What is R?

A brief example

Basic statistics and graphics

Classical Test measures of reliability

6,435 split half reliabilities of a 16 item ability test

Split half reliabilities of 16 ability measures

```r
sp <- splitHalf(ability, raw=TRUE, brute=TRUE)
hist(sp$raw, breaks=50)
```
Reliability analysis

Call: alpha(x = ability)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
0.83 0.83 0.84 0.23 4.9 0.0086 0.51 0.25

lower alpha upper 95% confidence boundaries
0.81 0.83 0.85

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N ase alpha se
reason.4 0.82 0.82 0.82 0.23 4.5 0.0093
reason.16 0.82 0.82 0.83 0.24 4.7 0.0091
...
rotate.6 0.82 0.82 0.82 0.23 4.5 0.0092
rotate.8 0.82 0.82 0.83 0.24 4.6 0.0091

Item statistics

n r r.cor r.drop mean sd
reason.4 1442 0.58 0.54 0.50 0.68 0.47
reason.16 1463 0.50 0.44 0.41 0.73 0.45
...
Using `scoreItems` to score 25 Big 5 items (taken from the bfi example)

```r
> keys.list <- list(Agree=c(-1,2:5),Conscientious=c(6:8,-9,-10),Extraversion=c(-11,-12,13:15),Neuroticism=c(16:20),Openness = c(21,-22,23,24,-25))
> keys <- make.keys(bfi,keys.list)
> scores <- scoreItems(keys,bfi)
```

Call: score.items(keys = keys, items = bfi)

(Unstandardized) Alpha:

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Conscientious</th>
<th>Extraversion</th>
<th>Neuroticism</th>
<th>Openness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>0.7</td>
<td>0.72</td>
<td>0.76</td>
<td>0.81</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Average item correlation:

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Conscientious</th>
<th>Extraversion</th>
<th>Neuroticism</th>
<th>Openness</th>
</tr>
</thead>
<tbody>
<tr>
<td>average.r</td>
<td>0.32</td>
<td>0.34</td>
<td>0.39</td>
<td>0.46</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Guttman 6* reliability:

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Conscientious</th>
<th>Extraversion</th>
<th>Neuroticism</th>
<th>Openness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda.6</td>
<td>0.7</td>
<td>0.72</td>
<td>0.76</td>
<td>0.81</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Scale intercorrelations corrected for attenuation

raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Conscientious</th>
<th>Extraversion</th>
<th>Neuroticism</th>
<th>Openness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td>0.70</td>
<td>0.36</td>
<td>0.63</td>
<td>-0.245</td>
<td>0.23</td>
</tr>
<tr>
<td>Conscientious</td>
<td>0.26</td>
<td>0.72</td>
<td>0.35</td>
<td>-0.305</td>
<td>0.30</td>
</tr>
<tr>
<td>Extraversion</td>
<td>0.46</td>
<td>0.26</td>
<td>0.76</td>
<td>-0.284</td>
<td>0.32</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>-0.18</td>
<td>-0.23</td>
<td>-0.22</td>
<td>0.812</td>
<td>-0.12</td>
</tr>
<tr>
<td>Openness</td>
<td>0.15</td>
<td>0.19</td>
<td>0.22</td>
<td>-0.086</td>
<td>0.60</td>
</tr>
</tbody>
</table>
```
### Item by scale correlations:
corrected for item overlap and scale reliability

<table>
<thead>
<tr>
<th></th>
<th>Agree</th>
<th>Conscientious</th>
<th>Extraversion</th>
<th>Neuroticism</th>
<th>Openness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>-0.40</td>
<td>-0.06</td>
<td>-0.11</td>
<td>0.14</td>
<td>-0.14</td>
</tr>
<tr>
<td>A2</td>
<td>0.67</td>
<td>0.23</td>
<td>0.40</td>
<td>-0.07</td>
<td>0.17</td>
</tr>
<tr>
<td>A3</td>
<td>0.70</td>
<td>0.22</td>
<td>0.48</td>
<td>-0.11</td>
<td>0.17</td>
</tr>
<tr>
<td>A4</td>
<td>0.49</td>
<td>0.29</td>
<td>0.30</td>
<td>-0.14</td>
<td>0.01</td>
</tr>
<tr>
<td>A5</td>
<td>0.62</td>
<td>0.23</td>
<td>0.55</td>
<td>-0.23</td>
<td>0.18</td>
</tr>
<tr>
<td>C1</td>
<td>0.13</td>
<td>0.53</td>
<td>0.19</td>
<td>-0.08</td>
<td>0.28</td>
</tr>
<tr>
<td>C2</td>
<td>0.21</td>
<td>0.61</td>
<td>0.17</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>C3</td>
<td>0.21</td>
<td>0.54</td>
<td>0.14</td>
<td>-0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>C4</td>
<td>-0.24</td>
<td>-0.66</td>
<td>-0.23</td>
<td>0.31</td>
<td>-0.23</td>
</tr>
<tr>
<td>C5</td>
<td>-0.26</td>
<td>-0.59</td>
<td>-0.29</td>
<td>0.36</td>
<td>-0.10</td>
</tr>
<tr>
<td>E1</td>
<td>-0.30</td>
<td>-0.06</td>
<td>-0.59</td>
<td>0.11</td>
<td>-0.16</td>
</tr>
<tr>
<td>E2</td>
<td>-0.39</td>
<td>-0.25</td>
<td>-0.70</td>
<td>0.34</td>
<td>-0.15</td>
</tr>
<tr>
<td>E3</td>
<td>0.44</td>
<td>0.20</td>
<td>0.60</td>
<td>-0.10</td>
<td>0.37</td>
</tr>
<tr>
<td>E4</td>
<td>0.51</td>
<td>0.23</td>
<td>0.68</td>
<td>-0.22</td>
<td>0.04</td>
</tr>
<tr>
<td>E5</td>
<td>0.34</td>
<td>0.40</td>
<td>0.55</td>
<td>-0.10</td>
<td>0.31</td>
</tr>
<tr>
<td>N1</td>
<td>-0.22</td>
<td>-0.21</td>
<td>-0.11</td>
<td>0.76</td>
<td>-0.12</td>
</tr>
<tr>
<td>N2</td>
<td>-0.22</td>
<td>-0.19</td>
<td>-0.12</td>
<td>0.74</td>
<td>-0.06</td>
</tr>
<tr>
<td>N3</td>
<td>-0.14</td>
<td>-0.20</td>
<td>-0.14</td>
<td>0.74</td>
<td>-0.03</td>
</tr>
<tr>
<td>N4</td>
<td>-0.22</td>
<td>-0.30</td>
<td>-0.39</td>
<td>0.62</td>
<td>-0.02</td>
</tr>
<tr>
<td>N5</td>
<td>-0.04</td>
<td>-0.14</td>
<td>-0.19</td>
<td>0.55</td>
<td>-0.18</td>
</tr>
<tr>
<td>O1</td>
<td>0.16</td>
<td>0.20</td>
<td>0.31</td>
<td>-0.09</td>
<td>0.52</td>
</tr>
<tr>
<td>O2</td>
<td>-0.01</td>
<td>-0.18</td>
<td>-0.07</td>
<td>0.19</td>
<td>-0.45</td>
</tr>
<tr>
<td>O3</td>
<td>0.26</td>
<td>0.20</td>
<td>0.42</td>
<td>-0.07</td>
<td>0.61</td>
</tr>
<tr>
<td>O4</td>
<td>0.06</td>
<td>-0.02</td>
<td>-0.10</td>
<td>0.21</td>
<td>0.32</td>
</tr>
<tr>
<td>O5</td>
<td>-0.09</td>
<td>-0.14</td>
<td>-0.11</td>
<td>0.11</td>
<td>-0.53</td>
</tr>
<tr>
<td>gender</td>
<td>0.25</td>
<td>0.11</td>
<td>0.12</td>
<td>0.14</td>
<td>-0.07</td>
</tr>
<tr>
<td>education</td>
<td>0.06</td>
<td>0.03</td>
<td>0.01</td>
<td>-0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>age</td>
<td>0.22</td>
<td>0.14</td>
<td>0.07</td>
<td>-0.13</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Correlations of composite scales based upon item correlations

```r
ci <- cor.ci(bfi, keys=keys, main='Correlations of composite scales')
```

**Correlations of composite scales**

```
 Agree Conscientious Extraversion Neuroticism Openness
Agree 1.0000 0.2485 0.4647 -0.178 0.160
Conscientious 0.2485 1.0000 0.2743 -0.218 0.200
Extraversion 0.4647 0.2743 1.0000 -0.218 0.240
Neuroticism -0.178 -0.218 -0.2180 1.000 -0.070
Openness 0.160 0.2000 0.2400 -0.070 1.000
```
Upper and Lower bounds of Correlations of composite scores based upon item correlations and bootstrap resampling

cor.plot(ci,main="Upper and lower bounds of Big 5 correlations")
Factor analysis of Thurstone 9 variable problem

```r
> fa(Thurstone,nfactors=3) #use this built in dataset
> f3

Factor Analysis using method = minres
Call: fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,
 scores = scores, residuals = residuals, SMC = SMC, missing = FALSE,
 impute = impute, min.err = min.err, max.iter = max.iter,
 symmetric = symmetric, warnings = warnings, fm = fm, alpha = alpha)

Standardized loadings based upon correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>MR1</th>
<th>MR2</th>
<th>MR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>0.91</td>
<td>-0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>0.89</td>
<td>0.06</td>
<td>-0.03</td>
</tr>
<tr>
<td>Sent.Completion</td>
<td>0.83</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>First.Letters</td>
<td>0.00</td>
<td>0.86</td>
<td>0.00</td>
</tr>
<tr>
<td>4.Letter.Words</td>
<td>-0.01</td>
<td>0.74</td>
<td>0.10</td>
</tr>
<tr>
<td>Suffixes</td>
<td>0.18</td>
<td>0.63</td>
<td>-0.08</td>
</tr>
<tr>
<td>Letter.Series</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.84</td>
</tr>
<tr>
<td>Pedigrees</td>
<td>0.37</td>
<td>-0.05</td>
<td>0.47</td>
</tr>
<tr>
<td>Letter.Group</td>
<td>-0.06</td>
<td>0.21</td>
<td>0.64</td>
</tr>
</tbody>
</table>

SS loadings

<table>
<thead>
<tr>
<th></th>
<th>MR1</th>
<th>MR2</th>
<th>MR3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.64</td>
<td>1.86</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Proportion Var

| | 0.29| 0.21| 0.17|

Cumulative Var

| | 0.29| 0.50| 0.67|
Factor analysis output, continued

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was 5.2 with Chi Square of 1081.97
The degrees of freedom for the model are 12 and the objective function was 0.01

The root mean square of the residuals is 0
The df corrected root mean square of the residuals is 0.01
The number of observations was 213 with Chi Square = 2.82 with prob < 1

Tucker Lewis Index of factoring reliability = 1.027
RMSEA index = 0 and the 90 % confidence intervals are 0 0.023
BIC = -61.51
Fit based upon off diagonal values = 1
Measures of factor score adequacy

<table>
<thead>
<tr>
<th></th>
<th>MR1</th>
<th>MR2</th>
<th>MR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation of scores with factors</td>
<td>0.96</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td>Multiple R square of scores with factors</td>
<td>0.93</td>
<td>0.85</td>
<td>0.81</td>
</tr>
<tr>
<td>Minimum correlation of possible factor scores</td>
<td>0.86</td>
<td>0.71</td>
<td>0.63</td>
</tr>
</tbody>
</table>
```r
> f3 <- fa(Thurstone, 3, n.obs=213, n.iter=20)  # to do bootstrapping

Coefficients and bootstrapped confidence intervals

<table>
<thead>
<tr>
<th></th>
<th>low</th>
<th>MR1</th>
<th>upper</th>
<th>low</th>
<th>MR2</th>
<th>upper</th>
<th>low</th>
<th>MR3</th>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>0.77</td>
<td>0.91</td>
<td>0.96</td>
<td>-0.12</td>
<td>-0.04</td>
<td>0.07</td>
<td>-0.03</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>0.85</td>
<td>0.89</td>
<td>0.95</td>
<td>-0.01</td>
<td>0.06</td>
<td>0.10</td>
<td>-0.12</td>
<td>-0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Sent.Completion</td>
<td>0.73</td>
<td>0.83</td>
<td>0.87</td>
<td>-0.04</td>
<td>0.04</td>
<td>0.13</td>
<td>-0.08</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>First.Letters</td>
<td>-0.06</td>
<td>0.00</td>
<td>0.10</td>
<td>0.68</td>
<td>0.86</td>
<td>0.93</td>
<td>-0.13</td>
<td>0.00</td>
<td>0.13</td>
</tr>
<tr>
<td>4.Letter.Words</td>
<td>-0.14</td>
<td>-0.01</td>
<td>0.07</td>
<td>0.58</td>
<td>0.74</td>
<td>0.86</td>
<td>0.01</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>Suffixes</td>
<td>0.07</td>
<td>0.18</td>
<td>0.27</td>
<td>0.46</td>
<td>0.63</td>
<td>0.76</td>
<td>-0.20</td>
<td>-0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Letter.Series</td>
<td>-0.04</td>
<td>0.03</td>
<td>0.13</td>
<td>-0.10</td>
<td>-0.01</td>
<td>0.10</td>
<td>0.56</td>
<td>0.84</td>
<td>0.93</td>
</tr>
<tr>
<td>Pedigrees</td>
<td>0.25</td>
<td>0.37</td>
<td>0.46</td>
<td>-0.16</td>
<td>-0.05</td>
<td>0.08</td>
<td>0.27</td>
<td>0.47</td>
<td>0.66</td>
</tr>
<tr>
<td>Letter.Group</td>
<td>-0.16</td>
<td>-0.06</td>
<td>0.06</td>
<td>0.09</td>
<td>0.21</td>
<td>0.31</td>
<td>0.44</td>
<td>0.64</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Interfactor correlations and bootstrapped confidence intervals

<table>
<thead>
<tr>
<th></th>
<th>lower estimate</th>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.40</td>
<td>0.64</td>
</tr>
<tr>
<td>2</td>
<td>0.29</td>
<td>0.63</td>
</tr>
<tr>
<td>3</td>
<td>0.29</td>
<td>0.61</td>
</tr>
</tbody>
</table>
The simple factor structure

```r
factor.diagram(f3) # show the diagram
```

Factor Analysis

```
MR1
 Sentences 0.9
 Vocabulary 0.9
 Sent.Completion 0.8

MR2
 First.Leters 0.9
 4.Letter.Words 0.7
 Suffixes 0.6

MR3
 Letter.Series 0.8
 Letter.Group 0.6
 Pedigrees 0.5
```

Multivariate Analysis and Structural Equation Modeling
What is R? A brief example

Basic statistics and graphics

Multivariate Analysis and Structural Equation Modeling

Two ways of viewing the higher order structure

om <- omega(Thurstone)  omega.diagram(om, sl=FALSE)

Omega

Hierarchical (multilevel) Structure

\[
\begin{align*}
g & \rightarrow F1^* \\
F1^* & \rightarrow Sent.Completion \\
Sent.Completion & \rightarrow Vocabulary \\
Vocabulary & \rightarrow Sentences \\
Sentences & \rightarrow Sent.Completion \\
Sent.Completion & \rightarrow First.Leters \\
First.Leters & \rightarrow 4.Letter.Words \\
4.Letter.Words & \rightarrow Suffixes \\
Suffixes & \rightarrow Letter.Series \\
Letter.Series & \rightarrow Letter.Group \\
Letter.Group & \rightarrow Pedigrees \\
Pedigrees & \rightarrow F2^* \\
F2^* & \rightarrow Sent.Completion \\
Sent.Completion & \rightarrow Vocabulary \\
Vocabulary & \rightarrow Sentences \\
Sentences & \rightarrow Sent.Completion \\
Sent.Completion & \rightarrow First.Leters \\
First.Leters & \rightarrow 4.Letter.Words \\
4.Letter.Words & \rightarrow Suffixes \\
Suffixes & \rightarrow Letter.Series \\
Letter.Series & \rightarrow Letter.Group \\
Letter.Group & \rightarrow Pedigrees \\
Pedigrees & \rightarrow F3^* \\
F3^* & \rightarrow Sent.Completion \\
Sent.Completion & \rightarrow Vocabulary \\
Vocabulary & \rightarrow Sentences \\
Sentences & \rightarrow Sent.Completion \\
Sent.Completion & \rightarrow First.Leters \\
First.Leters & \rightarrow 4.Letter.Words \\
4.Letter.Words & \rightarrow Suffixes \\
Suffixes & \rightarrow Letter.Series \\
Letter.Series & \rightarrow Letter.Group \\
Letter.Group & \rightarrow Pedigrees
\end{align*}
\]
A hierarchical cluster structure found by iclust

iclust(Thurstone)
Structural Equation modeling packages

1. **sem** (by John Fox and others)
   - uses RAM notation

2. **lavaan** (by Yves Rosseel and others)
   - Mimics as much as possible MPLUS output
   - Allows for multiple groups
   - Easy syntax

3. **OpenMx**
   - Open source and R version of Mx
   - Allows for multiple groups (and almost anything else)
   - Complicated syntax
Mutiple packages to do Item Response Theory analysis

1. *psych* uses a factor analytic procedure to estimate item discriminations and locations
   - `irt.fa` finds either tetrachoric or polychoric correlation matrices
     - converts factor loadings to discriminations
   - `plot.irt` plots item information and item characteristic functions
   - look at examples for `irt.fa`
   - two example data sets: `ability` and `bfi`

2. Other packages to do more conventional IRT include *ltm*, *eRm*, *mirt*, + others
Item Response Information curves for 16 ability items from ICAR
A brief technical interlude

1. Data structures
   - The basic: scalers, vectors, matrices
   - More advanced data frames and lists
   - Showing the data

2. Getting the length, dimensions and structure of a data structure
   - length(x), dim(x), str(x)

3. Objects and Functions
   - Functions act upon objects
   - Functions actually are objects themselves
   - Getting help for a function (?function)

4. Vignettes for help on the entire package (available either as part of the help file, or as a web page supplement to the package.)
The basic types of data structures

1. **Scalers** (characters, integers, reals, complex)
   
   ```r
 > A <- 1
 > B <- 2
   ```

2. **Vectors** (of scalers, all of one type) have length
   
   ```r
 > C <- month.name[1:5]
 > D <- 12:24
 > length(D)

 [1] 13
   ```

3. **Matrices** (all of one type) have dimensions
   
   ```r
 > E <- matrix(1:20, ncol = 4)
 > dim(E)

 [1] 5 4
   ```
**Show values by entering the variable name**

```r
> A
[1] 1

> B
[1] 2

> C
[1] "January" "February" "March" "April" "May"

> D

> E

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>1</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>[2,]</td>
<td>2</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>[3,]</td>
<td>3</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>[4,]</td>
<td>4</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>[5,]</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>
```
More complicated (and useful) types: Data frames and Lists

1. Data frames are collections of vectors and may be of different type. They have two dimensions.
   > E.df <- data.frame(names = C, values = c(31, 28, 31, 30, 31))
   > dim(E.df)
   [1] 5 2

2. Lists are collections of what ever you want. They have length, but do not have dimensions.
   > F <- list(first = A, a.vector = C, a.matrix = E)
   > length(F)
   [1] 3
Show values by entering the variable name

```r
> E.df
 names values
 1 January 31
 2 February 28
 3 March 31
 4 April 30
 5 May 31

> F
$first
[1] 1

$a.vector
[1] "January" "February" "March" "April" "May"

$a.matrix
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20
```
1. To show the structure of a list, use `str`

   ```r
 > str(F)
 List of 3
 $ first : num 1
 $ a.vector: chr [1:5] "January" "February" "March" "April" ...
 $ a.matrix: int [1:5, 1:4] 1 2 3 4 5 6 7 8 9 10 ...
   ```

2. To address an element of a list, call it by name or number, to get a row or column of a matrix specify the row, column or both.

   ```r
 > F[[2]]
 [1] "January" "February" "March" "April" "May"
 > F["a.matrix"], 2
 [1] 6 7 8 9 10
 > F["a.matrix"], 2
 [1] 2 7 12 17
   ```
Addressing the elements of a data.frame or matrix

Setting row and column names using paste

```r
> E <- matrix(1:20, ncol = 4)
> colnames(E) <- paste("C", 1:ncol(E), sep = "")
> rownames(E) <- paste("R", 1:nrow(E), sep = "")
> E

 C1 C2 C3 C4
 R1 1 6 11 16
 R2 2 7 12 17
 R3 3 8 13 18
 R4 4 9 14 19
 R5 5 10 15 20

> E["R2",]

 C1 C2 C3 C4
 2 7 12 17

> E[, 3:4]

 C3 C4
 R1 11 16
 R2 12 17
 R3 13 18
 R4 14 19
 R5 15 20
```
Objects and Functions

1. R is a collection of Functions that act upon and return Objects
2. Although most functions can act on an object and return an object \((a = f(b))\), some are binary operators
   - primitive arithmetic functions \(+, -, *, /, \%\%\%\%
   - logical functions \(<, >, ==, !=\)
3. Some functions do not return values
   - `print(x, digits=3)`
   - `summary(some object)`
4. But most useful functions act on an object and return a resulting object
   - this allows for extraordinary power because you can combine functions by making the output of one the input of the next.
   - The number of R functions is very large, for each package has introduced more functions, but for any one task, not many functions need to be learned.
Help

Getting help

1. All functions have a help menu
   - `help(the function)`
   - `? the function`
   - most function help pages have examples to show how to use the function

2. Most packages have “vignettes” that give overviews of all the functions in the package and are somewhat more readable than the help for a specific function.
   - The examples are longer, somewhat more readable. (e.g., the vignette for `psych` is available either from the menu (Mac) or from [http://cran.r-project.org/web/packages/psych/vignettes/overview.pdf](http://cran.r-project.org/web/packages/psych/vignettes/overview.pdf)

3. To find a function in the entire R space, use `findFn` in the `sos` package.

4. Online tutorials (e.g., [http://Rpad.org](http://Rpad.org) for a list of important commands, [http://personality-project.org/r](http://personality-project.org/r)) for a tutorial for psychologists.

5. Online and hard copy books
**Useful functions**

A few of the most useful data manipulations functions (adapted from Rpad-refcard). Use ? for details

- `file.choose()` find a file
- `file.choose(new=TRUE)` create a new file
- `read.table(filename)`
- `read.csv(filename)` reads a comma separated file
- `read.delim(filename)` reads a tab delimited file
- `c(...)` combine arguments
- `from:to` e.g., 4:8
- `seq(from,to,by)`
- `rep(x,times)` repeat x
- `gl(n,k,...)` generate factor levels
- `matrix(x,nrow=,ncol=)` create a matrix
- `data.frame(...)` create a data frame
- `dim(x)` dimensions of x
- `str(x)` Structure of an object
- `list(...)` create a list
- `colnames(x)` set or find column names
- `rownames(x)` set or find row names
- `ncol(x), nrow(z)` number of row, columns
- `rbind(...)` combine by rows
- `cbind(...)` combine by columns
- `is.na(x)` also `is.null(x), is...`
- `na.omit(x)` ignore missing data
- `table(x)`
- `merge(x,y)`
- `apply(x,rc,FUNCTION)`
- `ls()` show workspace
- `rm()` remove variables from workspace
More useful statistical functions, Use ? for details

- `mean(x)`
- `is.na(x)` also `is.null(x)`, is...
- `na.omit(x)` ignore missing data
- `sum(x)`
- `rowSums(x)` see also `colSums(x)`
- `min(x)`
- `max(x)`
- `range(x)`
- `table(x)`
- `summary(x)` depends upon x
- `sd(x)` standard deviation
- `cor(x)` correlation
- `cov(x)` covariance
- `solve(x)` inverse of x
- `lm(y ~ x)` linear model
- `aov(y ~ x)` ANOVA

Selected functions from `psych` package

- `describe(x)` descriptive stats
- `describeBy(x, y)` descriptives by group
- `pairs.panels(x)` SPLOM
- `error.bars(x)` means & error bars
- `error.bars.by(x)` error bars by groups
- `fa(x, n)` Factor analysis
- `principal(x, n)` Principal components
- `iclust(x)` Item cluster analysis
- `scoreItems(x)` score multiple scales
- `score_multiple_choice(x)` score multiple choice scales
- `alpha(x)` Cronbach’s alpha
- `omega(x)` MacDonald’s omega
- `irt.fa(x)` Item response theory through factor analysis
Questions?