| Gleser {psych} | R Documentation |
Gleser, Cronbach and Rajaratnam (1965) discuss the estimation of variance components and their ratios as part of their introduction to generalizability theory. This is a adaptation of their "illustrative data for a completely matched G study" (Table 3). 12 patients are rated on 6 symptoms by two judges. Components of variance are derived from the ANOVA.
data(Gleser)
A data frame with 12 observations on the following 12 variables. J item by judge:
J11a numeric vector
J12a numeric vector
J21a numeric vector
J22a numeric vector
J31a numeric vector
J32a numeric vector
J41a numeric vector
J42a numeric vector
J51a numeric vector
J52a numeric vector
J61a numeric vector
J62a numeric vector
Generalizability theory is the application of a components of variance approach to the analysis of reliability. Given a G study (generalizability) the components are estimated and then may be used in a D study (Decision). Different ratios are formed as appropriate for the particular D study.
Gleser, G., Cronbach, L., and Rajaratnam, N. (1965). Generalizability of scores influenced by multiple sources of variance. Psychometrika, 30(4):395-418. (Table 3, rearranged to show increasing patient severity and increasing item severity.
Gleser, G., Cronbach, L., and Rajaratnam, N. (1965). Generalizability of scores influenced by multiple sources of variance. Psychometrika, 30(4):395-418.
#Find the MS for each component:
#First, stack the data
data(Gleser)
stack.g <- stack(Gleser)
st.gc.df <- data.frame(stack.g,Persons=rep(letters[1:12],12),
Items=rep(letters[1:6],each=24),Judges=rep(letters[1:2],each=12))
#now do the ANOVA
anov <- aov(values ~ (Persons*Judges*Items),data=st.gc.df)
summary(anov)