Chapter 4
Covariance, Regression, and Correlation

“Co-relation or correlation of structure” is a phrase much used in biology, and not least in that
branch of it which refers to heredity, and the idea is even more frequently present than the
phrase; but I am not aware of any previous attempt to define it clearly, to trace its mode of
action in detail, or to show how to measure its degree.(Galton, 1888, p 135)

A fundamental question in science is how to measure the relationship between two vari-
ables. The answer, developed in the late 19th century, in the the form of the correlation
coefficient is arguably the most important contribution to psychological theory and method-
ology in the past two centuries. Whether we are examining the effect of education upon
later income, of parental height upon the height of offspring, or the likelihood of graduating
from college as a function of SAT score, the question remains the same: what is the strength
of the relationship? This chapter examines measures of relationship between two variables.
Generalizations to the problem of how to measure the relationships between sets of variables
(multiple correlation and multiple regression) are left to Chapter 5.

In the mid 19th century, the British polymath, Sir Francis Galton, became interested
in the intergenerational similarity of physical and psychological traits. In his original study
developing the correlation coefficient Galton (1877) examined how the size of a sweet pea
depended upon the size of the parent seed. These data are available in the psych package
as peas. In subsequent studies he examined the relationship between the average height of
mothers and fathers with those of their offspring Galton (1886) as well as the relationship
between the length of various body parts and height Galton (1888). Galton’s data are avail-
able in the psych packages as galton and cubits (Table 4.1)!. To order the table to match
the appearance in Galton (1886), we need to order the rows in decreasing order. Because
the rownames are characters, we first convert them to ranks.

Examining the table it is clear that as the average height of the parents increases, there is a
corresponding increase in the heigh of the child. But how to summarize this relationship? The
immediate solution is graphic (Figure 4.1). This figure differs from the original data in that
the data are randomly jittered a small amount using jitter to separate points at the same
location. Using the interp.qgplot.by function to show the interpolated medians as well as the
first and third quartiles, the medians of child heights are plotted against the middle of their
parent’s heights. Using a smoothing technique he had developed to plot meterological data
Galton (1886) proceeded to estimate error ellipses as well as slopes through the smoothed

I For galton, see also UsingR.
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86 4 Covariance, Regression, and Correlation

Table 4.1 The relationship between the average of both parents (mid parent) and the height of their
children. The basic data table is from Galton (1886) who used these data to introduce reversion to the
mean (and thus, linear regression). The data are available as part of the UsingR or psych packages. See
also Figures 4.1 and 4.2.

> library(psych)

> data(galton)

> galton.tab <- table(galton)

> galton.tab[order (rank (rownames(galton.tab)),decreasing=TRUE),] #sort it by decreasing row values

child
parent 61.7 62.2 63.2 64.2 65.2 66.2 67.2 68.2 69.2 70.2 71.2 72.2 73.2 73.7
73 0 0 0 0 0 0 0 0 0 0 0 1 3 0
72.5 0 0 0 0 0 0 0 1 2 1 2 7 2 4
71.5 0 0 0 0 1 3 4 3 5 10 4 9 2 2
70.5 1 0 1 0 1 1 3 12 18 14 7 4 3 3
69.5 0 0 1 16 4 17 27 20 33 25 20 11 4 5
68.5 1 0 7 11 16 25 31 34 48 21 18 4 3 0
67.5 0 3 5 14 15 36 38 28 38 19 11 4 0 0
66.5 0 3 3 5 2 17 17 14 13 4 0 0 0 0
65.5 1 0 9 5 7 11 11 7 7 5 2 1 0 0
64.5 1 1 4 4 1 5 5 0 2 0 0 0 0 0
64 1 0 2 4 1 2 2 1 1 0 0 0 0 0

medians. When this is done, it is quite clear that a line goes through most of the medians,
with the exception of the two highest values.?

A finding that is quite clear is that there is a “reversion to mediocrity” Galton (1877,
1886). That is, parents above or below the median tend to have children who are closer to
the median (reverting to mediocrity) than they. But this reversion is true in either direction,
for children who are exceptionally tall tend to have parents who are closer to the median
than they. Now known as regression to the mean, misunderstanding this basic statistical
phenomena has continued to lead to confusion for the past century Stigler (1999). To show
that regression works in both directions Galton’s data are also plotted for child regressed on
mid parent (left hand panel) or the middle parent height regressed on the child heights (right
hand panel of Figure 4.2.

Galton’s solution for finding the slope of the line was graphical although his measure of
reversion, r, was expressed as a reduction in variation. Karl Pearson, who referred to Galton’s
function later gave Galton credit as developing the equation we now know as the Pearson
Product Moment Correlation Coefficient Pearson (1895, 1920).

Galton recognized that the prediction equation for the best estimate of Y, ¥, is merely
the solution to the linear equation

Y =by,X+c (4.1)

which, when expressed in deviations from the mean of X and Y, becomes

$=by.x. (4.2)

2 As discussed by Wachsmuth et al. (2003), this bend in the plot is probably due to the way Galton
combined male and female heights.
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Galton's regression
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Fig. 4.1 The data in Table 4.1 can be plotted to show the relationships between mid parent and child
heights. Because the original data are grouped, the data points have been jittered to emphasize the
density of points along the median. The bars connect the first, 2nd (median) and third quartiles. The
dashed line is the best fitting linear fit, the ellipses represent one and two standard deviations from
the mean.

The question becomes one of what slope best predicts Y or y. If we let the residual of
n

prediction be e =y — 73, then V,, the average squared residual Zez /n, will be a quadratic
i=1
function of by ,:

Ve = iez/n = zn:(y—)?)z/n = Zn:(y—by.xx)z/n = Zn:(yz — Zby,xxy—&—bixxz)/n (4.3)

i=1 i=1 i=1 i=1

V, is minimized when the first derivative with respect to b of equation 4.3 is set to 0.

d V n
d(( b")) =Y (2xy—2by.x?) /n = 2Covyy — 2b07 =0 (4.4)
i=1
which implies that
Cov
by.x - o_zxy (45)

That is, by, the slope of the line predicting y given x that minimizes the squared residual
(also known as the squared error of prediction) is the ratio of the Covariance between x and
y and the Variance of X. Similarly, the slope of the line that best predicts x given values of

y will be
bX'y _ CO‘;xy
Gy

. (4.6)
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Fig. 4.2 Galton (1886) examined the relationship between the average height of parents and their
children. He corrected for sex differences in height by multiplying the female scores by 1.08, and then
found the average of the parents (the mid parent). Two plots are shown. The left hand panel shows
child height varying as the mid parent height. The right hand panel shows mid parent height varying
as child height. For both panels, the vertical lines and bars show the first, second (the median), and
third interpolated quartiles. The slopes of the best fitting lines are given (see Table 4.2). Galton was
aware of this difference in slopes and suggested that one should convert the variability of both variables
to standard units by dividing the deviation scores by the inter-quartile range. The non-linearity in the
medians for heights about 72 inches is discussed by Wachsmuth et al. (2003)

As an example, consider the galton data set, where the variances and covariances are found
by the cov function and the slopes may be found by using the linear model function 1lm
(Table 4.2). There are, of course two slopes: one for the best fitting line predicting the height
of the children given the average (mid) of the two parents and the other is for predicting the
average height of the parents given the height of their children. As reported by Galton, the
first has a slope of .65, the second a slope of .33. Figure 4.2 shows these two regressions and
plots the median and first and third quartiles for each category of height for either the parents
(the left hand panel) or the children (the right hand panel). It should be noted how well the
linear regression fits the median plots, except for the two highest values. This non-linearity
is probably due to the way that Galton pooled the heights of his male and female subjects
(Wachsmuth et al., 2003).

4.1 Correlation as the geometric mean of regressions

Galton’s insight was that if both x and y were on the same scale with equal variability, then
the slope of the line was the same for both predictors and was measure of the strength of their
relationship. Galton (1886) converted all deviations to the same metric by dividing through
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Table 4.2 The variance/covariance matrix of a data matrix or data frame may be found by using the
cov function. The diagonal elements are variances, the off diagonal elements are covariances. Linear
modeling using the 1m function finds the best fitting straight line and cor finds the correlation. All three
functions are applied to the Galton dataset galton of mid parent and child heights. As was expected
by Galton (1877), the variance of the mid parents is about half the variance of the children, the slope
predicting child as a function of mid parent is much steeper than that of predicting mid parent from
child. The cor function finds the covariance for standardized scores.

data(galton)

cov(galton)
1m(child~parent,data=galton)
1m(parent~child,data=galton)
round(cor(galton),2)

vV V.V Vv Vv

parent child
parent 3.194561 2.064614
child 2.064614 6.340029

Call:
Im(formula = child ~ parent, data = galton)

Coefficients:
(Intercept) parent

23.9415 0.6463
Call:

Im(formula = parent ~ child, data = galton)

Coefficients:
(Intercept) child
46.1353 0.3256

parent child
parent 1.00 0.46
child 0.46 1.00

by half the interquartile range, and Pearson (1896) modified this by converting the numbers
to standard scores (i.e., dividing the deviations by the standard deviation). Alternatively, the
geometric mean of the two slopes (byy and byx) leads to the same outcome:

(CovyyCovy, Covyy,  Cov
Txy = bxybyx = xz} 5 2= 2 = - (4-7)
0; 0y / o2 Gy2 0,0y
which is the same as the covariance of the standardized scores of X and Y.
Covyy
Foy =Covyp, =Covs » = —= (4.8)

Ox Oy 0Oy
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In honor of Karl Pearson (1896), equation 4.8, which expresses the correlation as the product
of the two standardized deviation scores, or the ratio of the moment of dynamics to the
square root of the product of the moments of inertia, is known as the Pearson Product Mo-
ment Correlation Coefficient. Pearson (1895, 1920), however, gave credit for the correlation
coefficient to Galton (1877) and used r as the symbol for correlation in honor of Galton’s
function or the coefficient of reversion. Correlation is done in R using the cor function, as
well as rcorr in the Hmisc package. Tests of significance (see section 4.4.1) are done us-
ing cor.test. Graphic representations of correlations that include locally smoothed linear
fits (lowess regressions) are shown in the pairs or in the pairs.panels functions. For the
galton data set, the correlation is .46 (Table 4.2).

Fig. 4.3 Scatter plots of matrices (SPLOMs) are very useful ways of showing the strength of relation-
ships graphically. Combined with locally smoothed regression lines (lowess), histograms and density
curves, and the correlation coefficient, SPLOMs are very useful exploratory summaries. The data are
from the sat.act data set in psych.
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4.2 Regression and prediction

The slope by, was found so that it minimizes the sum of the squared residual, but what is
it? That is, how big is the variance of the residual? Substituting the value of b,, found in
Eq 4.6 into Eq 4.3 leads to
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n 2 n 2 n ) n ) 5 )
V’ N Z ’ /n - Z(y_y) /I’l - Z(y_by'xx) /n = Z(y +by.xx - 2by.xXY)/n
i=1 i=1 = part
Covy, Cov
2
V, = Vy + by_XVx - Zby.xCOny = Vy + szxy V-2 Vxxy COny
V.V Cov 2Cov v Cov)zcy
o y+ Vx a Vx R Vx
V=V =V(l-ry) (4.9)

That is, the variance of the residual in Y or the variance of the error of prediction of Y is
the product of the original variance of Y and one minus the squared correlation between X

and Y. This leads to the following table of relationships:

Table 4.3 The basic relationships between Variance, Covariance, Correlation and Residuals

Variance |Covariance with X|Covariance with Y|Correlation with X|Correlation with Y
X Vi 4 ny 1 I'xy
Y vy Cyy Vy Ty 1
)4 Yy Coy = ry0:0y Ty Vy 1 Txy
Y, =Y-Y|(1-r)V, 0 (1-r2)V, 0 V1i-12

4.3 A geometric interpretation of covariance and correlation

Because X and Y are vectors in the space defined by the observations, the

covariance between

them may be thought of in terms of the average squared distance between the two vectors

in that same space (see Equation 3.14). That is, following Pythagorus,

the distance, d, is

simply the square root of the sum of the squared distances in each dimension (for each pair
of observations), or, if we find the average distance, we can find the square root of the sum

of the squared distances divided by n:

n
dey = 1| = Y (xi—i)?
iz
or
1 n
d)%y = n Z(xi —yz)2

which is the same as

but because

(4.10)
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doy = /25 (1 — 1), (4.11)

Compare this to the trigonometric law of cosines,

or

¢ =a* +b* —2ab - cos(ab),

and we see that the distance between two vectors is the sum of their variances minus twice
the product of their standard deviations times the cosine of the angle between them. That
is, the correlation is the cosine of the angle between the two vectors. Figure 4.4 shows these
relationships for two Y vectors. The correlation, ri, of X with Y7 is the cosine of 6; = the ratio
of the projection of ¥; onto X. From the Pythagorean Theorem, the length of the residual Y
with X removed (Y.x) is oyv1—r2.

Correlations as cosines
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Fig. 4.4 Correlations may be expressed as the cosines of angles between two vectors or, alternatively,
the length of the projection of a vector of length one upon another. Here the correlation between X and
Y1 =r1 =cos(61) and the correlation between X and Y» = r; = cos(6:). That Y, has a negative correlation
with X means that unit change in X lead to negative changes in Y. The vertical dotted lines represent
the amount of residual in Y, the horizontal dashed lines represent the amount that a unit change in X
results in a change in Y.
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Linear regression is a way of decomposing Y into that which is predicable by X and that
which is not predictable (the residual). The variance of Y is merely the sum of the variances

of bX and residual Y. If the standard deviation of X, Y, and the residual Y are thought of

as the length of their respective vectors, then the sin of the angle between X and Y is /%

and the vector of length 1 —V, is the projection of Y onto X. (Refer to Table 4.3).

4.4 The bivariate normal distribution

If x and y are both continuous normally distributed variables with mean 0 and standard
deviation 1, then the bivariate normal distribution is

2 2
l R +2x1x2+xz

f(x):me 0 (4.12)

The mvtnorm and MASS packages provides functions to find the cumulative density func-
tion, probability density function, or to generate random elements from the bivariate normal
and multivariate normal and t distributions (e.g., rmvnorm and mvrnorm).

4.4.1 Confidence intervals of correlations

For a given correlation, ry,, estimated from a sample size of n observations and with the
assumption of bivariate normality, the ¢ statistic with degrees of freedom, d f =n—2 may be
used to test for deviations from 0 (Fisher, 1921).

[\

rvn—
1—r2

laf = (4.13)

iy

Although Pearson (1895) showed that for large samples, that the standard error of r was
(1)
n(14r?)

Fisher (1921) used the geometric interpretation of a correlation and showed that for pop-

ulation value p, by transforming the observed correlation r into a z using the arc tangent
transformation:

=) (4.14)

then z will have a mean

with a standard error of

0. =1/\/(n—3) (4.15)
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Confidence intervals for r are thus found by using the r to z transformation (Equation 4.14),
the standard error of z (Equation 4.15), and then back transforming to the r metric (fisherz
and fisherz2r). The cor.test function will find the t value and associated probability value
and the confidence intervals for a pair of variables. The rcorr function from Frank Harrell’s
Hmisc package will find Pearson or Spearman correlations for the columns of matrices and
handles missing values by pairwise deletion. Associated sample sizes and p-values are reported
for each correlation. The r.con function from the psych package will find the confidence
intervals for a specified correlation and sample size (Table 4.4).

Table 4.4 Because of the non-linearity of the r to z transformations, and particularly for large values
of the estimated correlation, the confidence interval of a correlation coefficient is not symmetric around
the estimated value. The two-tailed p values in the following table are based upon the t-test for a
difference from 0 with a sample size of 30 and are found using the pt function. The t values are found
directly from equation 4.13 by the r.con function.

> n <- 30

> r <- seq(0,.9,.1)

> rc <- matrix(r.con(r,n),ncol=2)

> t <- r*sqrt(n-2)/sqrt(1-r-2)

> p <= (1-pt(t,n-2))/2

> r.rc <- data.frame(r=r,z=fisherz(r),lower=rc[,1],upper=rc[,2],t=t,p=p)
> round(r.rc,2)

r z lower upper t P
1 0.0 0.00 -0.36 0.36 0.00 0.25
2 0.1 0.10 -0.27 0.44 0.53 0.15
3 0.20.20 -0.17 0.52 1.08 0.07
4 0.3 0.31 -0.07 0.60 1.66 0.03
5 0.4 0.42 0.05 0.66 2.31 0.01
6 0.5 0.55 0.17 0.73 3.06 0.00
7 0.6 0.69 0.31 0.79 3.97 0.00
8 0.7 0.87 0.45 0.85 5.19 0.00
9 0.8 1.10 0.62 0.90 7.06 0.00
10 0.9 1.47 0.80 0.95 10.93 0.00

4.4.2 Testing whether correlations differ from zero

Null Hypothesis Significance Tests, NHST, examine the likelihood of observing a particular
correlation given the null hypothesis of no correlation. This is may be found by using Fisher’s
test (equation 4.13) and finding the probability of the resulting t statistic using the pt function
or, alternatively, directly by using the corr.test function. Simultaneous testing of sets of
correlations may be done by the rcorr function in the Hmisc package.

The problem of whether a matrix of correlations, R, differs from those that would be
expected if sampling from a population of all zero correlations was addressed by Bartlett
(1950, 1951) and Box (1949). Bartlett showed that a function of the natural logarithm of the
determinant of a correlation matrix, the sample size (N), and the number of variables (p) is
asymptotically distributed as y2:
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2> =—In|R|*(N—1—(2p+5)/6) (4.16)

with degrees of freedom, df = px(p—1)/2. The determinant of an identity matrix is one, and
as the correlations differ from zero, the determinant will tend towards zero. Thus Bartlett’s
test is a function of how much the determinant is less than one. This may be found by the
cortest.bartlett function.

Given that the standard error of a z transformed correlation is 1/4/n—3, and that a
squared z scores is x2, a very reasonable alternative is to consider whether the sum of the
squared correlations differs from zero. When multiplying this sum by n-3, this is distributed
as x* with p*(p-1)/2 degrees of freedom. This is a direct test of whether the correlations
differ from zero Steiger (1980c). This test is available as the cortest function.

4.4.3 Testing the difference between correlations

There are four different tests of correlations and the differences between correlations that
are typically done: 1) is a particular correlation different from zero, 2) does a set of of
correlations differ from zero, 3) do two correlations (taken from different samples) differ from
each other, and 4) do two correlations taken from the same sample differ from each other.
The first question, does a correlation differ from zero was addressed by Fisher (1921) and
answered using a {-test of the observed value versus 0 (Equation 4.13) and looking up the
probability of observing that size ¢ or larger with degrees of freedom of n-2 with a call to pt
(see Table 4.4 for an example). The second is answered by applying a x? test (equation 4.16)
using either the cortest.bartlett or cortest functions. The last two of these questions
are more complicated and have two different sub questions associated with them.

Olkin and Finn (1990, 1995) and Steiger (1980a) provide very complete discussion and
examples of tests of the differences between correlations as well as the confidence intervals for
correlations and their differences. Three of the Steiger (1980a) tests are implemented in the
r.test function in the psych package. Olkin and Finn (1995) emphasize confidence intervals
for differences between correlations and address the problem of what variable to choose when
adding to a multiple regression.

4.4.3.1 Testing independent correlations: ry; is different from riy

To test two whether two correlations are different involves a z-test and depends upon whether
the correlations are from different samples or from the same sample (the dependent or cor-
related case). In the first case, where the correlations are independent, the correlations are
transformed to zs and the test is just the ratio of the differences (in z units) compared to
the standard error of a difference. The standard error is merely the square root of the sum
of the squared standard errors of the two individual correlations:

_ Trip 3y
Lrig—ryy = \/1/(711 ~3 4 1/(m=3) (4.17)

which is the same as
1/2l0g(+12) — 1 /210g (12)

I—r3q

VI —3) + 1/ (m - 3)

Lrip—ry =
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This seems more complicated than it really is and can be done using the paired.r or r.test
functions (Table 4.5).

Table 4.5 Testing two independent correlations using Equation 4.17 and r.test results in a z-test.
> r.test(r12=.25,r34=.5,n=100)

$test

[1] "test of difference between two independent correlations"

$z

[1] 2.046730

$p

[1] 0.04068458

4.4.3.2 Testing dependent correlations: ry; is different from ry3

A more typical test would be to examine whether two variables differ in their correlation
with a third variable. Thus with the variables X1,X,, and X3 with correlations ri,r13 and 3
the t of the difference of rj, minus r;3 is

(l’l— 1)*(1 —|—r23)

trip—riy = (r2—ri3) * - 3 (4.18)
2%|R|_’_(r1242rr|3> (1—rp3)3
where |R| is the determinant of the 3 *3 matrix of correlations and is
Rl =1—=r}, —riy —riy+ 2% riariars (4.19)

(Steiger, 1980a). Consider the case of Extraversion, Positive Affect, and Energetic Arousal
with PA and EA assessed at two time points with 203 participants (Table 4.6). The t for
the difference between the correlations of Extraversion and Positive Affect at time 1 (.6)
and Extraversion and Energetic Arousal at time 1 (.5) is found from equation 4.18 using
the paired.r function and is 1.96 with a p value < .05. Steiger (1980a) and Dunn and
Clark (1971) argue that Equation 4.18, Williams’ Test (Williams, 1959), is preferred to
an alternative test for dependent correlations, the Hotelling T, which although frequently
recommended, should not be used.

4.4.3.3 Testing dependent correlations: ry; is different from riy

Yet one more case is the test of equality of two correlations both taken from the same
sample but for different variables (Steiger, 1980a). An example of this would be whether the
correlations for Positive Affect and Energetic Arousal at times 1 and 2 are the same. For four
variables (Xj...Xy) with correlations ry;...ra4, the z of the difference of rj; minus ry4 is

(z12 —234)Vn—3

=) (4.20)

Lrip—r3g =
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Table 4.6 The difference between two dependent correlations, req pa1 and rey par is found using Equa-
tion 4.18 which is implement in the paired.r and r.test functions. Because these two correlations
share a common element (Extraversion), the appropriate test is found in Equation 4.18.

Ext 1|PA 1|EA 1|PA 2|EA 2
Extraversion 1
Positive Affect 1
Energetic Arousal 1
Positive Affect 2
Energetic Arousal 2

W] = oY O
o oo |+
(=)

—

> r.test(r12=.6,r13=.5,r23=.6,n=203)

Correlation tests

Call:r.test(n = 203, r12 = 0.6, r23 = 0.6, r13 = 0.5)
Test of difference between two correlated correlations
t value 2 with probability < 0.047

where

rizza = 1/2([(r13 — riar23) (raa — raarsa)| 4 [(ria — ris3rsa) (r3 — riaris)]
+[(r13 — r1arsa) (raa — riar1a)] + [(r1a — ri2r2a) (ra3 — roarss)))

reflects that the correlations themselves are correlated. Under the null hypothesis of equiv-
alence, we can also assume that the correlations rjp = r3s4 (Steiger, 1980a) and thus both of
these values can be replaced by their average

- - T2t

NM2=1r33=—7r—.
2

Calling r.test with the relevant correlations strung out as a vector shows that indeed, the

two correlations (.6 and .5) do differ reliably with a probability of .04 (Table 4.7).

Table 4.7 Testing the difference between two correlations from the same sample but that do not
overlap in the variables included. Because the correlations do not involve the same elements, but do
involve the same subjects, the appropriate test is Equation 4.20.

> r.test(r12=.6,r34=.5,r13=.8,r14=.6,r23=.6,r24=.8,n=203)

Correlation tests

Call:r.test(n = 203, r12 = 0.6, r34 = 0.5, r23 = 0.6, r13 = 0.8, r14 = 0.6,
r24 = 0.8)

Test of difference between two dependent correlations

z value 2.05 with probability 0.04
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4.4.3.4 Testing whether correlation matrices differ across groups

The previous tests were comparisons of single correlations. It is also possible to test whether
the observed p * p correlation matrix, Ry for one group of subjects differs from Ry in a
different group of subjects. This has been addressed by several tests, perhaps the easiest
to understand is by Steiger (1980b). Given the null hypothesis of no difference, the sum of
squared differences of the z transformed correlation should be distributed as 2 with p *
(p-1) degrees of freedom. A somewhat more complicated derivation by Jennrich (1970) also
leads to a x? estimate:

1= %tr(Zz) —diag(Z)S™ ' diag(Z) (4.21)

where R = (R; +R3)/2, and the elements of S are the squared elements of R, ¢ = nl * n2
/(n14m2), and Z = >R~ (Ry; — Ry). Both of these tests are available in the psych package:
the normal.cortest finds the sum of squared differences of either the raw or z transformed
correlations, the jennrich.cortest finds > as estimated in equation 4.21. Monte Carlo
simulations of these and an additional test mat.cortest suggest that all three, and in par-
ticular the z-transformed and Jennrich tests are very sensitive to differences between groups
(Revelle and Wilt, 2008).

4.5 Other estimates of association

The Pearson Product Moment Correlation Coefficient (PPMCC') was developed for the case
of two continuous variables with interval properties, which, with the assumption of bivari-
ate normality, can lead to estimates of confidence intervals and statistical significance (see
cor.test). As pointed out by Charles Spearman (1904b), the Pearson correlation may be
most easily thought of as

o L (4.22)
VI LY

Dividing the numerator and the two elements in the square root by either n or n-1, this is,
of course, equivalent to Equation 4.8 for the Pearson Product Moment Correlation Coefficient.
A calculating formula that is sometimes used when doing hand calculations (for those who
are stuck without a working copy of R) and that is useful when finding PPMCC for special
cases (see below) uses raw scores rather than deviation scores:

ny XY, —YX;} Y

. 4.23
V(IEX?2 — (LX) (L Y2 — (LX:)?) -

Generalizing this to formula to Ry, the matrix of correlations between the columns of a
matrix X where x has been zero centered, let

Iyq = diag(——
sd g( diag(X))

that is, where Iyq is a diagonal matrix of the reciprocals of the standard deviations of the
columns of x, then
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R, = Lgxx'Iq (4.24)

is the matrix of correlations between the columns of x.

There are a number of alternative measures of association, some of which appear very
different but are merely the PPMCC for special cases, while there are other measures for
cases where the data are clearly neither continuous nor at the interval level of measurement.
Even more coefficients of association are used as estimates of effect sizes.

4.5.1 Pearson correlation equivalents

Using Spearman’s formula for the correlation (Equation 4.22) allows a simple categoriza-
tion of a variety of correlation coefficients that at first appear different but are functionally
equivalent (Table 4.8).

Table 4.8 A number of correlations are Pearson r in different forms, or with particular assumptions.

If r= \/%, then depending upon the type of data being analyzed, a variety of correlations are

found.
Coeflicient symbol X Y Assumptions
Pearson r continuous | continuous
Spearman rho (p) ranks ranks
Point bi-serial| r,, |dichotomous| continuous
Phi ¢  |dichotomous|dichotomous
Bi serial rpis  |dichotomous| continuous normality of latent X
Tetrachoric rer  |dichotomous|dichotomous|bivariate normality of latent X, Y
polychoric pe categorical | categorical |bivariate normality of latent X, Y
polyserial T'ps categorical | continuous |bivariate normality of latent X, Y

4.5.1.1 Spearman p: a Pearson correlation of ranks

In the first of two major papers published in the American Journal of Psychology in 1904,
Spearman (1904b) reviewed for psychologists the efforts made to define the correlation co-
efficient by Galton (1888) and Pearson (1895). Not only did he consider the application of
the Pearson correlation to ranked data, but he also developed corrections for attenuation
and the partial correlation, two subjects that will be addressed later. The advantage of using
ranked data rather than the raw data is that it is more robust to variations in the extreme
scores. For whether a person has an 8,000 or a 6,000 on an exam, that he or she is the highest
score makes no difference to the ranks. Consider Y as ten numbers sampled from 1 to 20
and then find the Pearson correlation with Y2 and e'. Do the same things for the ranks
of these numbers. That is, find the Spearman correlations. As is clear from Figure 4.5, the
Spearman correlation is not affected by the large non-linear transformation applied to the
data Spearman (1907).

It should be observed, that in many cases the non-linear form is more apparent than real.
Generally speaking, a mere tendency of two characteristics to vary concurrently must be taken,
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it seems to me, as the effect of some particular underlying strict law (or laws) partly neutralized
by a multitude of ’casual’ disturbing influences. The quantity of a correlation is neither more
nor less than the relative influence of the underlying law in question as compared with the total
of all the influences in play. Now, it may easily happen, that the underlying law is one of simple
proportionality but the disturbing influences become greater when the correlated characteristics
are larger (or smaller, as the case may be). Then the underlying simple proportionality will not
appear on the surface; the correlation will seem non-linear. Under such circumstances, r cannot,
it is true, express these variations in the quantity of correlation; it continues, however, to express
completely the mean quantity of correlation.

In the majority of the remaining cases of non-linearity, the latter is merely due to a wrong choice
of the correlated terms. For instance, the correlation between the length of the skull and the
weight of the brain must, obviously, be very far from linear. But linearity is at once restored
(supposing all the skulls to belong to one type) if we change the second term from the brain’s
weight to the cube root of the weight.

To conclude, even when the underlying law itself really has a special non-linear form, although
r by itself reveals nothing of this form, it nevertheless still gives (except in a few extreme and
readily noticeable cases) a fairly approximate measure of the correlation’s quantity. Spearman,
1907 p 168-169

Although a somewhat different formula is reported in Spearman (1904b), the calculating
formula is
6Y d?
n(n?—1)

where d is the difference in ranks. Holmes (2001) presents a very understandable graphical
proof of this derivation. Alternatively, just find the Pearson correlation of the ranked data.

p=1 (4.25)

4.5.1.2 Point biserial: A Pearson correlation of a continuous variable with a
dichotomous variable

If one of two variables, X, is dichotomous, and the other, Y, is continuous, it is still possible
to find a Pearson r, but this can also be done by using a short cut formula. An example of
this problem would be to ask the correlation between gender and height. Done this way, the
correlation is known as the point biserial correlation but it is in fact, just a Pearson r.

If we code one of the two genders as 0 and the other as one, then Equation 4.23 becomes

i npg(Ya—Yy)  Y2—Y) [ npq (4.26)
po — - .
npgn—1)o2 % V(=1

where n is the sample size, p and q are the probabilities of being in group 1 or group 2, ¥}
and Y» are the mean of the two groups and Gy2 is the variance of the continuous variable.
That is, the point biserial correlation is a direct function of the difference between the means
and the relative frequencies of two groups. For a fixed sample size and difference between the
group means, it will be maximized when the two groups are of equal size.

Thinking about correlations as reflecting the differences of means compared to the standard
deviation of the dependent variable suggests a comparison to the t-test. And in fact, the point

biserial is related to the t-test, for with df =n—2,
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Table 4.9 The point biserial correlation is a Pearson r between a continuous variable (height) with a
dichotomous variable (gender). It is equivalent to a t-test with pooled error variance.

> set.seed(42)

> n <- 12 #sample size

> gender <- sample(2,n,TRUE) #create a random vector with two values

> height <- sample(10,n,TRUE)+ 58 + gender*3 #create a second vector with up to 10 values

> g.h <- data.frame(gender,height) #put into a data frame

> g.hlorder(g.h[,1]),] #show the data frame

> cor(g.h) #the Pearson correlation between height and gender

> t.test (height“gender,data=g.h, var.equal=TRUE)

> r <- cor(g.h)[1,2] #get the value of the correlation

> r * sqrt((n-2)/(1-r°2)) #find the t- equivalent of the correlation, compare to the t-test.

gender height

1 63
67
67
63
66
66
67
66
70
71
66
67

O ~NOHE R EP OO WwN
N =

NMNNNMNMNR PP R PB R

-
o

gender height
gender 1.00000 0.54035
height 0.54035 1.00000

Two Sample t-test

data: height by gender
t = -2.0307, df = 10, p-value = 0.06972
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-5.0932281 0.2360852
sample estimates:
mean in group 1 mean in group 2
65.57143 68.00000

# t calculated from point biserial
[1] 2.030729
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Fig. 4.5 Spearman correlations are merely Pearson correlations applied to ranked data. Here y is
randomly sampled from the interval 1-20. y2 is Y2, ye is e, yr, y2r and yer are y, y2 and ye expressed
as ranks. The correlations are found as Pearson r, but those between the second three variables are
equivalent to Spearman p.

Y, Y, Y, —Y, -V hHh-Y
tay = =Y :\/2 L _h-h _hoh oo (4.27)

"‘ x (n+m2)02, o Oy.x
i npq

Comparing Equations 4.27 and 4.26 and recognizing that the Within cell variance in the t-test

is the residual variance in y after x is removed o y =0y 2(1—r2

t-r,,;,“ —r,,;,‘/ l—r (428)

Although the ¢ and point biserial correlation are transforms of each other, it is incorrect to
artificially dichotomize a continuous variable to express the relationship as a t value. If X and
Y are both continuous, the appropriate measure of relationship is the Pearson correlation.
By artificially dichotomizing one variable in order to express the effect as a t rather than a
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r, the strength of the relationship is reduced. Compare the four panels of Figure 4.6. The
underlying scatter plot is shown for four values of a Pearson r (.9, .6, .3, and .0). Forming
groups by setting values of Y < 0 to 0 and values greater than or equal to 0 to 1, results
in the frequency distributions shown at the bottom of each panel. The corresponding point
biserial correlations are reduced by 20%. That is, the point biserial for equal sized groups is
.8 of the original Pearson r. In terms of power to detect a relationship, this is equivalent of
throwing away 36% of the observations.

r= 0.9 rpb = 0.71 rbis = 0.89 r= 0.6 rpb = 0.48 rbis = 0.6
[sel [sel
N N
> o > o
o o
? ?
[se} [se}
N N
> o > o

-1
-1

-2
-2

-3
-3

Fig. 4.6 The point biserial correlation is a Pearson r between a continuous variable and a dichotomous
variable. If both X and Y are continuous and X is artificially dichotomized, the point biserial will be
less than the original Pearson correlation. The biserial correlation is based upon the assumption of
underlying normality for the dichotomized variable. It more closely approximates the “real” correlation.
The estimated density curves for y are drawn for the groups formed from the dichotomized values of
X.
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4.5.1.3 Phi: A Pearson correlation of dichotomous data

In the case where both X and Y are naturally dichotomous, another short cut for the Pearson
correlation is the phi (@) coefficient. A typical example might be the success of predicting
applicants to a graduate school. Two actions are taken, accept or reject, and two outcomes
are observed, success or failure. This leads to the two by two table (Table 4.10) In terms of

Table 4.10 The basic table for a phi, ¢ coefficient, expressed in raw frequencies in a four fold table
is taken from Pearson and Heron (1913)

Success Failure Total
Accept A B RR=A+B
Reject C D R,=C+D
Total |[C; = A+ C|Cb=B+Dn=A+B+C+D

the raw data coded 0 or 1, the phi coefficient can be derived directly from Equation 4.23 by
direct substitution, recognizing that the only non zero product is found in the A cell

nY XiYi—Y X;) Yi=nA—RiC,

AD — BC
VA+B)(C+D)A+C)(B+D)

Table 4.10 may be converted from frequency counts to proportions by dividing all entries by
the total number of observations (A+B+C+D) to produce a more useful table (Table 4.11).
In this table, the total counts (A, B, C, D) are expressed as their proportions (a, b, ¢, d)
and the fraction of applicants accepted % = A-&—Igiigw may be called the Selection Ratio, the
fraction rejected is thus 1-SR. Similarly, the fraction of students who would have succeeded
if accepted is % = % may be called the Hit Rate, and the proportion who would fail

is 1-HR. If being accepted or succeeding is given a score of 1, and rejected or failing, a score

0=

(4.29)

Table 4.11 The basic table for a phi coefficient expressed in proportions

Success Failure Total
Accept| Valid Positive | False Positive | R

Reject |False Negative|Valid Negative| 1 —R
Total C 1-C

of 0, then the PPMCC of Table 4.11 may be found from Equation 4.23 as

0= Yxiyi ny XY —YX;YY; VP—RC

= = = . 4.30
VEREY eI - (LX) Ey? - (£ VRI-RIC(-C) -

The numerator is the number of valid positives (cell a or the percent of valid positives) less
the number expected if there were no relationship (R C). The denominator is the square
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root of the product of the row and column variances. As can be seen by equation 4.30, for
fixed marginals the correlation is linear with the percentage of valid positives.

The ¢ coefficient is a PPMCC between two dichotomous variables. It is not, however, the
equivalent of the PPMCC of continuous data that have been being artificially dichotomized.
In addition, where the cuts are made greatly affects the correlation. Consider the case of two
normally distributed variables (X and Y) that are correlated .6 in the population. If these
variables are dichotomized at -1, 0, or 1 standard deviation from the mean, the correlations
between them are attenuated, most so for the case of one variable being cut at lower value and
the other being cut at the higher value. More importantly, the correlation of two dichotomized
variables formed from the same underlying continuous variable is also seriously attenuated
(Figure 4.7). That is, the correlations between the four measures of X (X, Xlow, Xmid, and
Xhigh), although based upon exactly the same underlying numbers range from .19 to .43.
Indeed, the mazimum value of phi or phi maz (Pmay) is a function of the marginal distributions

and is
¢max = Py (431)
V Pydx

where py+¢qx = p,+¢, =1 and p,, p, represent the proportion of subjects “passing” an item.

The point bi-serial correlation is also affected by the distribution of the dichotomous
variable. The first two rows in Figure 4.7 show how a continuous variable correlates between
.65 to .79 with a dichotomous variable based upon that continuous variable.

4.5.1.4 Tetrachoric and polychoric correlations

If a two by two table is thought to represent an artificial dichotomization of two continuous
variables with a bivariate normal distribution, then it is possible to estimate that correla-
tion using the tetrachoric correlation (Pearson, 1900; Carroll, 1961). A generalization of the
tetrachoric to more than two levels is the polychoric correlation. The tetrachoric function
may be used to find the tetrachoric correlation as can the polychor function in the polycor
package which also will find polychoric correlations.

Perhaps the major application of the tetrachoric correlation is when doing item analysis
when each item is assumed to represent an underlying ability which is reflected as a proba-
bility of responding correctly to the item and the items are coded as correct or incorrect. In
this case (discussed in more detail when considering Item Response Theory in Chapter 8),
the difficulty of an item may be expressed as a function of the item threshold, T, or the
cumulative normal equivalent of the percent passing the item. The tetrachoric correlation
is then estimated by comparing the number in each of the four cells with that expected
from a bivariate normal distribution cut at 7, and 7, (see Figure 4.8 which was drawn using
draw.tetra).

Unfortunately, for extreme differences in marginals, estimates of the tetrachoric do not
provide a very precise estimate of the underlying correlation. Consider the data and ¢ corre-
lations from Figure 4.7. Although the polychoric correlation does a very good job of estimating
the correct value of the underlying correlation between X and Y (.60) for different values of
dichotomization, and correctly finds a very high value for the correlation between the various
sets of Xs and Ys (1.0), in some cases, if there are zero entries in one cell, the estimate is
seriously wrong. One solution to this problem is to apply a correction for continuity which
notes that a 0 case represents some where between 0 and .5 cases. tetrachoric automati-
cally applies this correction but warns when this happens. In Table 4.12, this correction was
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Fig. 4.7 The ¢ coefficient is a Pearson correlation applied to dichotomous data. It should not be used
as a short cut for the relationship between two continuous variables. ¢ is sensitive to the marginal
frequencies of the two variables. Shown is the SPLOM of two continuous variables, X and Y, and
dichotomous variables formed from cutting X and Y at -1, 0 or 1 standard devations from the mean.
Note how the ¢ coefficients underestimate the underlying correlation, particularly if the marginals
differ. The first two rows of the correlations are point bi-serial correlations between continuous X and
Y and dichotomized scores.

not applied. Redoing this analysis with the correction will yield somewhat different results.
Giinther and Hofler (2006) give an example from a comorbidity study where applying or not
applying the correction makes a very large difference. Examples of the effect of the continuity
correction are in the help for tetrachoric.

This problem of differences in endorsement frequency (differences in marginals) will ad-
dressed again when considering factor analysis of items (6.6) where the results will be much
clearer when using tetrachoric correlations.
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Table 4.12 The effect of various cut points upon polychoric and phi correlations. The original data
matrix is created for X and Y using the rmvnorm function with a specified mean and covariance structure.
Three dichotomous versions of X and Y are formed by cutting the data at -1, 0, or 1 standard deviations
from the mean. The tetrachoric correlations are found using the tetrachoric function. These are shown
below the diagonal by using lower.tri. Similarly, by using upper.tri the entries above the diagonal
are phi correlations which are, of course, just the standard Pearson correlation applied to dichotomous
data. The empirical thresholds, 7, are close to the -1, 0, and 1 cutpoints. The data are also tabled to
show the effect of extreme cuts. Compare these correlations with those shown in Figure 4.7.

library(psych)

library(mvtnorm) #needed for rmvorm

set.seed(17) #to reproduce the results

cut <- ¢(-1,-1,0,0,1,1)

D <- rmvnorm(n=1000, sigma=Sigma) #create the data

D3 <- cbind(D,D,D)

d <- D3

D3[t(t(d) > cut)] <- 1

D3[t(t(d) <= cut)] <- 0

xy <- D3[,¢(1,3,5,2,4,6)]

colnames(xy) <- c("Xlow","Xmid","Xhigh","Ylow", "Ymid","Yhigh")
#describe (xy)

tet.mat <- tetrachor(xy,FALSE) #don't correct for continuity
phi.mat <- cor(xy)

both.mat <- tet.mat$rho * lower.tri(tet.mat$rho,TRUE) + phi.mat * upper.tri(phi.mat) #combine them
round (both.mat,2)

round(tet.mat$tau,2) #thresholds

VVVVVVVVVVVVVVVYVYV

Xlow Xmid Xhigh Ylow Ymid Yhigh

Xlow 1.00 0.44 0.19 0.35 0.30 0.18
Xmid 0.99 1.00 0.43 0.34 0.41 0.36
Xhigh 0.97 0.99 1.00 0.19 0.32 0.40
Ylow 0.60 0.64 0.66 1.00 0.44 0.20
Ymid 0.57 0.60 0.61 0.99 1.00 0.44
Yhigh 0.60 0.70 0.65 0.97 0.99 1.00

Xlow Xmid Xhigh Ylow Ymid Yhigh
-0.99 -0.02 0.99 -0.97 0.00 0.97
> table(xyl[,2],xy[,5]) #both middle range

o 1
0 350 144
1 150 356
> table(xyl[,3],xy[,4]) #x high, y low

o 1
0 164 676
1 1 159

> table(xyl[,1],xy[,3]) #both low range

o 1
0162 O
1 678 160

> table(xy[,1],xy[,6]) #x low, y high

0 1
0 160 2
1 675 163
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Fig. 4.8 The tetrachoric correlation is estimated from the marginal distributions of x and y and well
as the joint frequency of x and y. The maximum likelihood estimate assumes bivariate normality.

4.5.1.5 Biserial and polyserial correlations: An estimated Pearson correlation of
a continuous variable with a ordered categorical variable

While the point biserial correlation and the ¢ coefficient are equivalent to a Pearson r, the
biserial correlation and polyserial correlation are not. The point biserial is just a short cut
formula (Equation 4.26) for the Pearson r where one of the two variables, Y, is continuous
and the other, X, is dichotomous. If, however, the dichotomous variable is assumed to be a
dichotomy of a normally distributed variable divided at a particular cut point into two levels
(0 and 1) with probabilities of q and p, then the biserial correlation (rpy) is

—Yipq
G}' Zp

Tbis =

(4.32)

where z,, is the ordinate of the normal curve for the item threshold, 7, where 7 is the cumu-
lative normal equivalent of the probability, p. Thus,
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VP4
Tbis = Tph=———- (4.33)

p

The use of the biserial correlation is highly discouraged by some (e.g., Nunnally, 1967), and
recommend to be used with extreme caution by others (Nunnally and Bernstein, 1984) but
is probably appropriate in the case of modeling the underlying latent relationships between
dichotomous items and continuous measures when the sample size is not too small. Biserial
correlations may be found by using the biserial function. When applied to the data of
Table 4.9, the biserial correlation is .70 compared to the observed Pearson (and thus point-
biserial) correlation of .54. Examining Equation 4.33, it is clear that rp;; > rp; and that even in
the best case (a 50-50 split), the point-biserial will be just 80% of the underlying correlation.

The biserial correlation is a special case of the polyserial correlation, r,s which is the
estimate of a Pearson correlation of two continuous variables when one is continuous and the
other is an ordered categorical variable (say the four - six levels of a personality or mood
item). For a continuous X and a ordered categorical Y, the simple “ad hoc” estimator of
rps (Olsson et al., 1982) is a function of the observed point-polyserial correlation (which is
just the Pearson r), the standard deviation of y, and the normal ordinates of the cumulative
normal values of the probabilities of the alternatives:

I rxy()'y
ps — .
Y2y,

This “ad hoc” estimator is simple to find and is a close approximation to that found by
maximum likelihood. Just as with the biserial and point-biserial correlations, the polyserial
correlation will be greater than the equivalent point-polyserial.

(4.34)

4.5.1.6 Correlation and comorbidity

In medicine and clinical psychology, diagnoses tend to be categorical (someone is depressed
or not, someone has an anxiety disorder or not). Co-occurrence of both of these symptoms
is called comorbidity. Diagnostic categories vary in their degree of comorbidity with other
diagnostic categories. From the point of view of correlation, comorbidity is just a name applied
to one cell in a four fold table. It is thus possible to analyze comorbidity rates by considering
the probability of the separate diagnoses and the probability of the joint diagnosis. This gives
the two by two table needed for a ¢ or ry, correlation. Table 4.13 gives an example using the
comorbidity function.

4.6 Other measures of association

Although most of psychometrics is concerned with combining and partitioning variances and
covariances and the resulting correlations in the manner developed by Galton (1888), Pearson
(1895) and Spearman (1904b), it is useful to consider other measures of association that are
used in various applied settings. The first set of these are concerned with naturally occurring
dichotomies while a second set has to do with measuring the association between categorical
variables (e.g., diagnostic categories). A third set of correlations are those measuring asso-
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Table 4.13 Given the base rates (proportions) of two diagnostic categories (e.g., .2 and .15) and
their co-occurence (comorbidity, e.g. .1), it is straightforward to find the correlation between the two
diagnoses. The tetrachoric coefficient is most appropriate for subsequent analysis.

> comorbidity(.2,.15,.1,c("Anxiety", "Depression"))

Call: comorbidity(dl = 0.2, 42
"Depression"))
Comorbidity table
Anxiety -Anxiety
Depression 0.1 0.05
-Depression 0.1 0.75

0.15, com = 0.1, labels = c("Anxiety",

implies phi = 0.49 with Yule 0.87 and tetrachoric correlation of 0.75

ciations within classes of equivalent measures and uses an analysis of variance approach to
find the appropriate coefficients.

4.6.1 Naturally dichotomous data

There are many variables, particularly those that reflect actions that are dichotomous (giving
a vaccine, admitting to graduate school, diagnosing a disease). Similarly, there are many
outcomes of these actions that are also dichotomous (surviving vs. dieing, finishing the Ph.D
or not, having a disease or not). Although Pearson argued that the latent relationship was
best descried as bivariate normal, and thus the appropriate statistic would be the tetrachoric
correlation, Yule (1912) and others have examined measures of relationship that do not
assume normality. Table 4.14, adapted from Yule (1912) provides the four cell entries that
enter into multiple estimates of associations. Pearson and Heron (1913) responded to Yule
(1912) and showed that even with extreme non-normality, the phi and tetrachoric correlations
were superior to others that had been proposed.

Table 4.14 Two dichotomous variables produce four outcomes. Yule (1912) used the example of vac-
cinated and not vaccinated crossed with survived or dead. Similarly, colleges accept or reject applicants
who either do or do not graduate.

Action|non-action| total

Positive Outcome a b a+b

Negative Outcome| ¢ d c+d
total atc b+d a+b-+c+d

Given such table, there are a number of measures of association that have been or are
being used.
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4.6.1.1 Odds ratios, risk ratios, and the problem of base rates

From a patient’s point of view, it would seem informative to know the ratio of how many
survived versus how many died given a vaccine (a/c). But this ratio is only meaningful in
contrast to the ratio of how many survive who are not vaccinated (b/d). The Odds Ratio
compares these two odds

_ajc _ad
- b/d  be

Unfortunately, if the number of cases is small, and if either the b or c cells is empty, the OR
is infinite. A standard solution in this case is to add .5 to all cells. For cell sizes of n,...ng,
the standard error of the logarithm of the odds ratio is (Fleiss, 1993)

OR (4.35)

1 1 1 1
a b c d

An alternative to the Odds Ratio is the Risk Ratio. For instance, what fraction of patients

given a medication survive , or if a test is given for diagnostic reasons, what percentage

atc
of patients with the disease (a+c) test positive for the disease (a). This is known as the

sensitivity of the test. But it is also important to know what percentage of patients without
the disease test negative (the specficity of the test). More informative is the Relative Risk
Ratio (comparing the risk given the action to the risk not given the action). That is, what is
the ratio of patients who survive given treatment to those who survive not given treatment.

RRR — a/(a+c)  sensitivity — a(b+d)

~ b/(b+d) 1—specificity b(a+c) (4.36)

Odds ratios and relative risk ratios along with confidence intervals may be found using the
epidemiological packages Epi and epitools. Just as the regressions of Y on X and X on Y
yield different slopes, so does the odds ratio depend upon the direction of prediction. That
is, the odds of a positive outcome given an action (a/c) is not the same as the odds of
an action having happened given a positive outcome (a/b). This difference depending upon
direction can lead to serious confusion, for many phenomena that seem highly related in
one direction have only small odds ratios in the opposite direction. This is important to
realize, and somewhat surprising, that the frequency of observing an event associated with a
particular condition (having lung cancer and having been a smoker, having an auto accident
and having been drinking, being pregnant and having had recent sexual intercourse) is much
higher than the frequency in the reverse direction (the percentage of smokers who have lung
cancer, the fraction of drivers who have been drinking who have accidents, the percentage
of women who have recently had sexual intercourse who are pregnant). Consider the case
of the relationship between sexual intercourse and pregnancy (Table 4.17). In this artificial
example, the odds of becoming pregnant given intercourse (a/(a+c)) are .0019, while the odds
of having had intercourse given that one is pregnant is 1.0. The odds ratio % is undefined,
although adding .5 to all cells to correct for zero values, yields an odds ratio of 12.51. The
relative risk is also undefined unless .5 is added, in which case it becomes 12.49. The ¢
coefficient is .04 while the tetrachoric correlation (found using the tetrachoric function) is
.938. But the latter makes the assumption of bivariate normality with extreme cut points. It
is not at all clear that this is appropriate for the data of 4.17.



complete

112 4 Covariance, Regression, and Correlation

4.6.1.2 Yule’s Q and Y

Yule (1900, 1912) developed two measures of association, one of which, Q (for Quetelet),
may be seen as a transform of the Odds Ratio into a metric ranging from -1 to 1. Yule’s @
statistic is

ad—bc ad/bc—1 OR-1
ad+bc  ad/bc+1 OR+1’

0= (4.37)
A related measure of association, the coefficient of colligation, called by Yule (1912) @ but
also known as the Yule’s Y is

vVOR—1

T VOR+1

Yule’s coefficient has the advantage over the odds ratio that is defined even if one of the off
diagonal elements (b or c) is zero in which case Q = 1. However, if b or ¢ is 0, then no matter
what the other cells are, Q will still be one. As a consequence, Yule’s Q was not uniformly
appreciated, and was strongly attacked by Pearson’s student Heron (1911); MacKenzie (1978)
as not consistent with ¢ or the tetrachoric correlation. In a very long article Pearson and
Heron (1913) gives many examples of the problems with Yule’s coefficient and why ¢ gives
more meaningful results. In their paper, Pearson and Heron also consider the problem with
¢, which is that it is limited by differences in the marginal frequencies. Both the Q and Y
statistics are found in the Yule function.

4.6.1.3 Even more measures of association for dichotomous data

In psychometrics, the preferred measures of association for dichotomous data is either the
tetrachoric correlation (based upon normal theory) or a Pearson correlation, which when
applied to dichotomous data is the phi coefficient. However, in other fields a number of mea-
sures of similarity have been developed. Jackson et al. (1989) distinguishes between measures
of co-occurence and measures of association. The phi, tetrachoric, and Yule coefficients are
measures of association, while there are at least 8 measures of similarity. The oldest, Jaccard’s
coefficient of community was developed to measure the frequency with which two species co-
occured across various regions of the Jura mountains and is just the number of co-occurences
(a) divided by the number of species in one or the other or both districts (a + b + c¢).

When these measures are rescaled so that their maximum for perfect association is 1,
and the index when there is no association is zero, most of these indices are equivalent to
Loevinger’s H statistic (Loevinger, 1948; Warrens, 2008).

These different measures of similarity typically are used in fields where the clustering of
objects (not variables) is important. That most of them are just transforms of Loevinger’s H
suggests that there is less need to consider each one separately (Warrens, 2008).

4.6.1.4 Base rates and inference

In addition to the problem of direction of inference is the problem of base rates. Even for

a
tests with high sensitivities (——) and specificities ( 5 if the base rates are extreme,
a+c

brd )s
misdiagnosis is common. Consider the well known example of a very sensitive and specific

test for HIV/AIDS. Let these two values be .99. That is, out of 100 people with HIV/AIDS,
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Table 4.15 It is important to realize, and somewhat surprising, that the frequency of observing an
event associated with a particular condition (e.g., lung cancer and smoking, auto accidents and drinking,
pregnancy and sexual intercourse) are very different from the inverse (e.g. smoking and lung cancer,
drinking and auto accidents, sexual intercourse and pregnancy). In this hypothetical example, a couple
is assumed to have had sexual intercourse twice a week for ten years and to have had two children.
From the two x two table, it is possible calculate the tetrachoric correlation using the polychor or
tetrachoric functions, Yule’s Q using Yule, the ¢ correlation using the phi, and Cohen’s kappa using
cohen.kappa function as well .

Intercourse|No intercourse|total
Pregnant 2 0 2
Not pregnant 1038 2598|3638
total 1040 2600|3640

> pregnant = matrix(c(2,0,1038,2598),ncol=2)
> colnames (pregnant) <- c("sex","nosex")

> rownames (pregnant) <- c("yes","no")

> pregnant

sex nosex
yes 2 1038

no 0 2598

> polychor (pregnant)
[1] 0.9387769

> Yule(pregnant)

(11 1

> phi(pregnant)
[1] 0.0371
> wkappa (pregnant)

$kappa
[1] 0.002744388

Table 4.16 Alternative measures of co-occurence for binary data (adapted from Jackson et al. (1989);
Warrens (2008)).

Coefficient Index Reference
Jaccard o7e  Jaccard (1901)
Sorenson-Dice ﬁ 77
Russell-Rao m ?
Sokal e ?
Ochiai ?

V/ (a+b)(a+c)

etc.
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the test correctly diagnoses 99 of them. Of 100 people for whom the test returns a negative
result, 1 has the disease. Assume that 1% of a sample of 10,000 people are truly infected
with HIV/AIDS. What percentage of the sample will test positive? What is the likelihood of
having the disease if the test returns positive? The answer is that roughly 2% of the sample
tests positive and half of those are false positives.

Table 4.17 High specificity and sensitivity do not necessarily imply a low rate of false positives or
negatives if the base rates are extreme. Even with specificities and sensitivies of 99%, 50% of those
diagnosed positive are false positives.

HIV/AIDS Yes|HIV/AIDS No| total
Test Positive 99 99 198
Test Negative 1 2598| 9802
total 100 9,900(10,000

4.6.2 Measures of association for categorical data

Some categorical judgments are made using more than two outcomes. For example, two
diagnosticians might be asked to categorize patients three ways (e.g., Personality disorder,
Neurosis, Psychosis) or to rate the severity of a tumor (not present, present but benign,
serious, very serious). Just as base rates affect observed cell frequencies in a two by two table,
they need to be considered in the n way table Cohen (1960). Consider Table 4.18 which is
adapted from Cohen (1968). Let O be the matrix of observed frequencies and E = RC where
R and C are the row and column (marginal) frequencies. Kappa corrects the proportion of
matches, p,, (the number of times the judges agree) with what would be expected by chance,
pe (the sum of the diagonal of the product of the row and column frequencies). Thus

tr(0—E)
1—tE

K:po_Pe _

1_pe

(4.38)

Table 4.18 Cohen’s kappa measures agreement for n-way tables for two judges. It compares the
observed frequencies on the main diagonal with those expected given the row marginals. The ex-
(44+.204.06)-(30+.094.02) _ 49

1—(:30+.09+.02) =

pected scores (shown in parentheses) are the products of the marginals. k =
Adapted from Cohen (1968).

Judge 1
Personality disorder Neurosis Psychosis Di.
Personality disorder .44 (.30) .07 (.18) .09 (.12) .60
Judge 2|Neurosis .05 (.15) .20 (.09) .05 (.06) .30
Psychosis .01 (.05) .03 (.03) .06 (.02) .10
p.j .50 .30 .20 1.00
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As discussed by Hubert (1977) and Zwick (1988), kappa is one of a family of statistics that
correct observed agreement with expected agreement. If raters are assumed to be random
samples from a pool of raters, then the marginal probabilities for each rater may be averaged
and the expected values will be the squared marginals (Scott, 1955). kappa does not assume
equal marginal frequencies and follows the x> logic of finding expectancies based upon the
product of the marginal frequencies. However, kappa considers all disagreements to be equally
important and just considers entries on the main diagonal.

If some disagreements are more important than others, then the appropriate measure is
weighted kappa (Cohen, 1968):

K, = Po— WPe (4.39)

1— WPe

where wp, = Y w;;poij and similarly wp, =} w;;peij. With the addition of a weighting function,
w;; that weights the diagonal 1 and the off diagonal with weights depending upon the inverse
of the squared distance between the categories, the weighted kappa coefficient is equivalent
to one form of the intraclass correlation coefficient (see 4.6.3) (Fleiss and Cohen, 1973).
Weighted Kappa is particularly appropriate when the categories are ordinal and a near miss
is less important than a big miss (i.e., having one judge give a medical severity rating of not
present and the other judge rating the same case as very serious shows less agreement than
one judge giving a very serious and the other a serious rating). Another use of weighted kappa
is even if the categories are not ordinal, some mistakes are more important than others.

The variance of kappa or weighted kappa for large samples may be found using formulas
in Fleiss et al. (1969). By using the resulting standard errors, it is possible to find confidence
intervals for kappa and weighted kappa (Hubert, 1977; Fleiss et al., 1969). Calculations of
kappa and weighted kappa are done in several packages: Kappa in ved (a very nice package
for Visualizing Categorical Data), wkappa in psy, and cohen.kappa in psych.

4.6.3 Intraclass Correlation

The Pearson correlation coefficient measures similarity of patterns of two distinct variables
across people. The variables are two measures (say height and weight) on the same set of
people, and the two variables are logically distinct. But sometimes it is desired to measure
how similar pairs (or more) of people are on one variable. Consider the problem of similarity
of pairs twins on a measure of ability (Table 4.19). For five pairs of twins, they may be
assigned to be the first or second twin based upon observed score (Twin 1 and Twin 2), or
as they are sampled (Twin 1* and Twin 2*). The correlation between the twins in the first

Table 4.19 Hypothetical twin data. The Twin 1 and Twin columns have been ordered by the value
of the lower scoring twin, the Twin 1* and Twin 2* columns suggest what happens if the twins are
randomly assigned to twin number.

Pair Twin 1 Twin 2 Twin 1* Twin 2*

1 80 90 80 90
2 90 100 100 90
3 100 110 110 100
4 110 120 110 120
5 120 130 130 120
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two columns is 1, but between the second two sets of columns it is .80. That the twins in
the first two columns are not perfectly similar is obvious, in that their scores systematically
differ by 10 points. The normal correlation, by removing the means of the scores, does not
detect this effect. One solution, sometimes seen in the early behavior genetics literature was
to double enter each twin, that is, to have each twin appear once in the first column and
once in the second column. This effectively pools the mean of the two sets of twins and finds
the correlation with respect to deviations from this pooled mean. The value in this case is
.77. Why do these three correlations differ and what is is the correct value of the similarity
of the twins?

The answer comes from the intraclass correlation coefficient, or ICC and a consideration
of the sources of variance going into the twin scores. Consider the traditional analysis of
variance model:

Xij :,Lt+ai+bj+(ab)ij+eij

where u is the overall mean for all twins, a; is the mean for the ith pair, b; is the mean for
the first or second column, ab;; reflects the interaction of particular twin pair and being in
column 1 or 2, and e;; is residual error. In the case of twins, ab;; and e;; are indistinguishable

and may be combined as w;;. Then the total variance o7 may be decomposed

o} =07 +0; +0,.
and the fraction of total variance (between + within pair variance) due to difference between
the twin pairs is the intraclass correlation measure of similarity:

o2 o2

l L
pzizi.
o} 0o} +0;+o0l

An equivalent problem is the problem of estimating the agreement in their ratings between
two or more raters. Consider the ratings of six targets by four raters shown in Table 4.20.
Although the raters have an average intercorrelation of .76, they differ drastically in their
mean ratings and one (rater 4) has a much higher variance. As reviewed by Shrout and Fleiss

(1979) there are at least six different intraclass correlations that are commonly used when
considering the agreement between k different judges (raters) of n different targets:

1. Case 1: Targets are randomly assigned to different judges. (This would be equivalent to
the twins case above).

2. Case 2: All targets are rated by the same set of randomly chosen judges.

Case 3: All targets are rated by the same set of fixed judges.

4. Case 1-b:The expected correlation of the average ratings across targets of the mean ratings
of randomly assigned judges with another set of such measures.

5. Case 2-b: The expected correlation of the average ratings across targets from one set of
randomly chosen judges with another set.

6. Case 3-b: The expected correlation of the average ratings across targets of fixed judges.

@

All six of these intraclass correlations may be estimated by standard analysis of variance
implemented in the ICC function in psych. If the ratings are numerical rather than categorical,
the ICC is to be preferred to k¥ or weighted x which were discussed above (4.6.2).
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Table 4.20 Example data from four raters for six targets demonstrate the use of the intraclass cor-
relation coefficient. Adapted from Shrout and Fleiss (1979)

Subject Rater 1 Rater 2 Rater 3 Rater 4

1 9 2 5 8
2 6 1 3 2
3 8 4 6 8
4 7 1 2 6
5 10 5 6 9
6 6 2 4 7

> round((sum(cor (SF79)) - 4)/12,2)
[1] 0.76

> describe(SF79)

var n mean sd median trimmed mad min max range skew kurtosis se
Vi 167.67 1.63 7.5 7.67 2.22 6 10 4 0.21 -1.86 0.67
V2 26 2.50 1.64 2.0 2.50 1.48 1 5 4 0.45 -1.76 0.67
V3 36 4.33 1.63 4.5 4.33 2.22 2 6 4 -0.21 -1.86 0.67
V4 46 6.67 2.50 7.5 6.67 1.48 2 9 7 -0.90 -0.83 1.02

> ICC(SF79)

ICC1 ICC2 ICC3 ICC12 ICC22 ICC32
[1,] 0.17 0.29 0.71 0.44 0.62 0.91

4.6.4 Quantile Regression

Originally introduced by Galton (1889), regression of deviations from the median in terms
of quantile units has been rediscovered in the past decade Gilchrist (2005). The package
quantreg by Koenker (2007) implements these procedures.

4.6.5 Kendall’s Tau

7 is a rank order correlation based on the number of concordant (same rank order) and
disconcordant (different rank order) pairs (Dalgaard, 2002). If there are no ties in the ranks
for the x; and y;

e Yicjsign(x; —x;)* sign(y; — yi)
N nn—1)/2

T counts the number of pairs that have the same rank orders and compares this to the number
of pairs. If two vectors, x and y, are monotonically the same, T will be one. Kendall is an
option in the cor function in base R and is also available as the Kendall function in the
Kendall package.
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4.6.6 Circular-circular and circular-linear correlations

As discussed earlier (3.4.1), when data represent angles (such as the hours of peak alertness
or peak tension during the day), we need to apply circular statistics rather than the more
normal linear statistics (see Jammalamadaka and Lund (2006) for a very clear set of exam-
ples of circular statistics). The generalization of the Pearson correlation to circular statistics
is straight forward and is implemented in cor.circular in the circular package and in cir-
cadian.cor in the psych package. Just as the Pearson r is a ratio of covariance to the square
root, of the product of two variances, so is the circular correlation. The circular covariance
of two circular vectors is defined as the average product of the sines of the deviations from
the circular mean. The variance is thus the average squared sine of the angular deviations
from the circular mean.

Consider the data shown in Table 3.8. Although the Pearson r of these variables range
from -.78 to .06, the circular correlations among all of them are exactly 1.0. (The separate
columns are just phase shifted by 5 hours and thus the deviations from the circular means
are identical.)

In addition to the circular-circular correlation, there is also the correlation between a
circular variable and a linear variable (the circular-linear correlation). The circular-linear
covariance is the product of the sine of the angular deviation from the circular mean times
the deviation of the linear variable from its mean. It may be found by the cor.circular
or the circadian.linear.cor functions. In the example in Table 4.21, the circular variable
of hour of peak mood for Tense Arousal has a perfect positive circular-linear correlation
with the linear variable, Extraversion, and a slight positive correlation with Neuroticism. By
comparison, the traditional, Pearson correlations for these variables were -.78 and -.18.

4.7 Alternative estimates of effect size

There are a number of ways to summarize the importance of a relationship. The slope of the
linear regression, by ,is a direct measure of how much one variable changes as a function of
changes in the other variable. The regression is in the units of the measure. Thus, Galton
could say that the height of children increased by .65 inches (or centimeters) for every increase
in 1 inch (or centimeter) of the mid parent. As a measure of effect with meaningful units,
the slope is probably the most interpretable.

But, for much of psychological data, the units are arbitrary, and discussing scores in
terms of deviations from the mean with respect to the standard deviation (i.e., standard
scores) is more appropriate. In this case, the correlation is the preferred unit of effect. Using
correlations, Galton would have said that the relationship between mid parent and child
height was .46. Experimentalists tend to think of the effects in terms of differences between
the means of two groups, the two standard estimates of effect size of group differences are
Cohen’s d (Cohen, 1988) and Hedges’ g (Hedges and Olkin, 1985), both of which compare
the mean difference to estimates of the within cell standard deviation. Cohen’s d uses the
population estimate, Hedge’s g the sample estimate. Useful reviews of the use of these and
other ways of estimating effect sizes for meta-analysis include Rosnow et al. (2000) and the
special issue of Psychological Methods devoted to effect sizes Becker (2003). Summaries of
these various formulae are in Table 4.22.
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Table 4.21 The Pearson correlation for circular data misrepresents the relationships between data
that have a circular order (such as time of day, week, or year). The circular correlation considers the
sine of deviations from the circular mean. The correlation between a linear variable (e.g., extraversion
or neuroticism) with a circular variable is found using the circular-linear correlation.

> time.person #the raw data (four circular variables, two linear variables)

EA PA TA NegA extraversion neuroticism

1 914 19 24 1 3
211 16 21 2 2 6
3 13 18 23 4 3 1
4 15 20 1 6 4 4
517 22 3 8 5 5
6 19 24 5 10 6 2

> round(cor(time.person),2) #the Pearson correlations

EA PA TA NegA extraversion neuroticism
EA 1.00 1.00 -0.78 -0.34 1.00 -0.14
PA 1.00 1.00 -0.78 -0.34 1.00 -0.14
TA -0.78 -0.78 1.00 0.06 -0.78 -0.18
Negh -0.34 -0.34 0.06 1.00 -0.34 -0.23
extraversion 1.00 1.00 -0.78 -0.34 1.00 -0.14
neuroticism -0.14 -0.14 -0.18 -0.23 -0.14 1.00

> circadian.cor(time.person[1:4]) # the circular correlations
> round(circadian.linear.cor(time.person[1:4],time.person([5:6]),2)

EA PA TA NegA
EA 1 1 1 1
PA 1 1 1 1
TA 1 1 1 1
NeghA 1 1 1 1
extraversion neuroticism
EA 1 0.18
PA 1 0.18
TA 1 0.18
Negh 1 0.18

4.8 Sources of confusion

The correlation coefficient, while an extremely useful measure of the relationship between
two variables, can sometimes lead to improper conclusions. Several of these are discussed in
more detail below. One of the most common problems is restriction of range of either one of
the two variables. The use of sums, ratios, or differences can also lead to spurious correlations
when none are truly present. Some investigators will ipsatize scores either intentionally or
non-intentionally and discover that correlations of related constructs are seriously reduced.
Sitmpson’s paradox is a case of correlations between data measured at one level being reversed
when pooling data across a grouping variable at a different level. The importance of a correla-
tion for practical purposes is also frequently dismissed by reflexively squaring the correlation
to understand the reduction in variance accounted for by the correlation. In practical decision
making situations, the slope of the linear relationship between two variables is much more
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Table 4.22 Alternative Estimates of effect size. Using the correlation as a scale free estimate of effect
size allows for combining experimental and correlational data in a metric that is directly interpretable
as the effect of a standardized unit change in x leads to r change in standardized y.

Regression byx = %2” by byy=r %
Pearson correlation ey = (g_“(»;y Ty '
Cohen’s d d= U;XXZ F= \/aflTM d— 12;2
Hedge’s g g:lfx2 r:m g=
t - test t=2d\/df r=\/22](>+df) r= idré
F-test F=4d%df r=\/F/(F+df) F= fzflré
Chi Square r=+/22/n 2 =r’n
Odds ratio =N 1= e | MO = S
Fequivalent r with probability p I' = Tequivalent

important than the squared correlation and it is more appropriate to consider the slope of
the mean differences between groups (Lubinski and Humphreys, 1996). Finally, correlations
can be seriously attenuated by differences in skew between different sets of variables.

4.8.1 Restriction of range

The correlation is a ratio of covariance to the square root of the product of two variances
4.8. As such, if the variance of the predictor is artificially constrained, the correlation will be
reduced, even though the slope of the regression remains the same. Consider an example of
1,000 simulated students with GREV and GREQ scores with a population correlation of .6.
If the sample is restricted in its variance (say only students with GREV > 600 are allowed
to apply, the correlation drops by almost 1/2 from .61 to .34.(Table 4.23, Figure 4.9).

An even more serious problem occurs if the range is restricted based upon the sum of the
two variables. This might be the case if an admissions committee based their decisions upon
total GRE scores and then examined the correlation between their predictors. Consider the
correlation within those applicants who had total scores of more than 1400. In this case, the
correlation for those 11 hypothetical subjects has become -.34 even though the underlying
correlation was .61! Similar problems will occur when choosing a high group based upon
several measures of a related concept. Some researchers examine the relationship among
measures of negative affecting with a group chosen to be extreme on the trait. That is,
what is the correlation between measures of neuroticism, anxiety, and depression within a
selected set of patients rather than the general population. Consider the data set epi.bfi
which includes measures of Neuroticism using the Eysenck Personality Inventory (Eysenck
and Eysenck, 1964), of Depression using the Beck Depression Inventory Beck et al. (1961)
and Trait Anxiety using the State Trait Anxiety Inventory (Spielberger et al., 1970) for 231
undergraduates. For the total sample, these three measures have correlations of .53, .73 and
.65, but if a broad trait of negative affectivity is defined as the sum of the three standardized
scales, and an “at risk” group is defined as more than 1 s.d. on this composite is chosen, the
correlations become -.08, -.11, and .17.
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Table 4.23 Restricting the range of one variable will reduce the correlation, although not change the
regression slope. Simulated data are generated using the mvrnorm function from the MASS package.
To give the example some context, the variables may be taken to represent “GRE Verbal” and “GRE
Quantitative”. The results are shown in Figure 4.9.

library (MASS)

set.seed(42)

GRE <- data.frame (mvrnorm(1000,c(500,500) ,matrix(c(10000,6000,6000,10000) ,ncol=2)))
colnames (GRE) <- c("GRE.V","GRE.Q")

op <- par(mfrow = c(1,2))

plot (GRE,x1im=c(200,800),ylim=c(200,800) ,main="Unrestricted")

Imc <- Im(GRE.Q ~ GRE.V,data=GRE)

abline(1mc)

text (700,200,paste("r =",round(cor(GRE) [1,2],2)))

text (700,250, paste("b =",round(Imc$coefficients[2],2)))

GREs <- subset (GRE,GRE$GRE.V > 600)

plot (GREs,x1im=c(200,800),ylim=c(200,800) ,main="Range restricted")
Imc <- Im(GRE.Q ~ GRE.V,data=GREs)

abline(1mc)

text (700,200,paste("r =",round(cor(GREs) [1,2],2)))

text (700,250, paste("b =",round(1lmc$coefficients[2],2)))

Unrestricted Range restricted

200 300 400 500 600 700 800

200 300 400 500 600 700 800

g g
w w
s 4
O] o
> b=054
4 o ° r=0.61 . r=0.33
I I I I I I I I I I I I I I
200 300 400 500 600 700 800 200 300 400 500 600 700 800
GRE.V GRE.V

Fig. 4.9 The effect of restriction of range on correlation and regression. If the predictor (X) variable is
restricted by selection, the regression slope does not change, but the correlation drops. Data generated
using mvrnorm as shown in Table 4.23.

4.8.2 Spurious correlations

Although viewing the correlation coefficient as perhaps his greatest accomplishment, Pearson
(1910) listed a number of sources of spurious correlations (Aldrich, 1995). Among these was
the problem of ratios and of sums, and of correlations induced by mixing different groups.
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4.8.2.1 The misuse of ratios, sums and differences

It is not uncommon to convert observations to ratios of the amount X; with respect to some
common baseline, T. Consider the case of discretionary income spent on CDs, books, and
wine with respect to the total discretionary income, T. Although these four variables might
themselves be uncorrelated, by expressing them all as a ratio of a common variable, the ratios
are spuriously correlated (Table 4.24).

Just as forming ratios can induce spurious correlations, so can addition or subtraction.
Table 4.24 considers the difference between amount spent on CDs, Books, or Wine and
total income. Even though the raw data are uncorrelated, the differences are correlated. The
reason behind this is that 50% of the variance of the ratio or difference score is associated
with the common variable. Thus, the expected amount of variance beween two such ratios
or differences would be 25% for an expected correlation of .5.

Table 4.24 When expressing variables as a ratio or a sum or difference of two unrelated variable,
the ratios and differences are correlated, even though the variables themselves are not. The amount of
money spent on CDs, books or wine is unrelated to the other two and to total income. But the ratio
of amount spent on CDs, books, or wine as fraction of total income (CDsratio , etc) as well as the
differences in amount spent (CDs - Income) are correlated.

> x <- matrix(rnorm(1000),ncol=4) + 4
>  colnames(x) <- c("CDs","Books", "Wine", "Income")
> x.df <- data.frame(x,x/x[,4], (x-x[,4]))
> colnames(x.df) <- c("CDs", "Books","Wine","Income",
+ paste(c("CDs", "Books", "Wine", "Income"), "ratio",sep=""),
+ paste(c("CDs", "Books", "Wine", "Income"), "diff",sep=""))
> round(cor(x.df[-c(8,12)]),2)

CDs Books Wine Income CDsratio Booksratio Wineratio CDsdiff Booksdiff Winediff
CDs 1.00 0.00 -0.04 0.02 0.64 -0.04 -0.06 0.71 -0.02 -0.05
Books 0.00 1.00 -0.01 -0.03 0.00 0.61 0.00 0.02 0.72 0.01
Wine -0.04 -0.01 1.00 0.04 -0.07 -0.05 0.58 -0.06 -0.04 0.69
Income 0.02 -0.03 0.04 1.00 -0.68 -0.73 -0.72 -0.69 -0.71 -0.70
CDsratio 0.64 0.00 -0.07 -0.68 1.00 0.55 0.52 0.94 0.47 0.44
Booksratio -0.04 0.61 -0.05 -0.73 0.55 1.00 0.59 0.49 0.94 0.50
Wineratio -0.06 0.00 0.58 -0.72 0.52 0.59 1.00 0.46 0.49 0.94
CDsdiff 0.71 0.02 -0.06 -0.69 0.94 0.49 0.46 1.00 0.49 0.46
Booksdiff -0.02 0.72 -0.04 -0.71 0.47 0.94 0.49 0.49 1.00 0.49
Winediff -0.05 0.01 0.69 -0.70 0.44 0.50 0.94 0.46 0.49 1.00

4.8.2.2 Correlation induced by ipsatization and other devices

When studying individual differences in values (e.g, Allport et al., 1960; Hinz et al., 2005), it
is typical to ipsatize the scores (Cattell, 1945). That is, the total score of all the values is fixed
at a constant for all participants and an increase in one necessarily implies a decrease in the
others. Essentially this is zero centering the data for each participant. Psychologically this
means everyone has the same total of value strength. Even for truly uncorrelated variables,
ipsatization forces a correlation of -1/(k -1) for k variables and reduces the rank of the
correlation matrix by 1 (Dunlap and Cornwell, 1994).
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This problem can occur in more subtle ways than just fixing the sum to be a constant.
Sometimes ratings are made on a forced choice basis (choose which behavior is being shown)
and leads to the strange conclusion that e.g., being friendly is unrelated to being sociable.
When allowing the ratings not to be forced choices but rather the amount of each behavior is
rated separately, the normal structure is observed (Romer and Revelle, 1984). This problem
also can be seen in cognitive psychology when raters are asked to choose which cognitive
process is being used, rather than how much each process is being used.

4.8.2.3 Simpson’s Paradox and the within versus between correlation problem

The confounding of group differences with within group relationships to produce spurious
overall relationships has plagued the use of correlation since it was developed. Consider
the classic example of inappropriately deciding that an antitoxin is effective even though in
reality it has no effect (Yule, 1912). If women have a higher mortality from a disease than
do men, but more men are given the antitoxin than the women, the pooled data would show
a favorable effect of the antitoxin, even though it in fact had no effect. Similarly, between
1974 and 1978 the tax rate decreased within each of several income categories, although the
overall tax rate increased Wagner (1982). So called ecologicial correlations Robinson (1950)
are correlations of group means and either can or can not reflect relationships within groups.

One of the most well known examples of this effect, known as Simpson’s paradoxr, where
relationships within groups can be in the opposite direction of the relationships for the entire
sample (Simpson, 1951) was found when studying graduate admissions to the University of
California, Berkeley. In 1973, UCB had 2691 male applicants and 1198 females applicants. Of
the males, about 44% were admitted, of the females, about 35%. What seems to be obvious
sex discrimination in admissions became a paper in Science when it was discovered that the
individual departments, if discriminating at all, discriminated in favor of women (Bickel et al.,
1975). The women were applying to the departments which admitted fewer applicants as a
percentage of applicants (i.e., two thirds of the applicants to English but only 2 percent to
mechanical engineering were women). The correlation across departments of percent female
applicants and difficulty of admission was .56. This data set UCBAdmissions is used as an
example of various graphical displays.

Problems similar to the UCB case can arise when pooling within subject effects across
subjects. For instance when examining the structure of affect the structure across subjects
is very different from the structure within subjects. Across subjects, positive and negative
affect are almost independent, while within subjects the correlation reliabily varies from
highly positive to highly negative (Rafaeli et al., 2007).

4.8.2.4 Correlations of means # correlations of observations

There are other cases, however, when the correlations of group means clarifies the importance
of the underlying relationship (Lubinski and Humphreys, 1996).

elaborate
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4.8.2.5 Base rates and skew

A difficulty with the Pearson correlation (but not rank order correlations such as Spearman’s
p) is when the data differ in the amount of skew. This problem arises, for example when
examining the structure of measures of positive and negative affect (Rafaeli and Revelle,
2006), or when looking for correlates of psychopathology. The Pearson r can be greatly
attenuated with large differences in skew. Correlations of rank orders (i.e., Spearman’s rho)
do not suffer from this problem. Consider a simple example of two bivariate normal variables,
x and y with a population correlation of .71. Consider also various transformations of these
original data to have positive and negative skew. log.x and log y are negatively skewed, -
log(-x) (log.nx) and -log(-y) have positive skew. Similarly the exponential of x (exp.x) and
y (exp.y) have very large positive skews while their negative inverses (exp.nx= —e™*) have
large negative skews (Table 4.25, Figure 4.8.2.5).
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Fig. 4.10 Differences in skew can attenuate correlations. Two variables, x and y, are correlated .71 in
the bivariate normal case. Four variations of each and x and y are generated by log and exponential
transforms of original or reversed values to induce positive and negative skew.
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Table 4.25 Descriptive statistics of skew example
> describe(skew.df)

> describe(skew.df)

var n mean sd median trimmed mad min max range skew kurtosis
X 1 1000 0.00 1.03 0.01 0.00 0.96 -3.20 3.47 6.67 -0.05 0.07
log.x 2 1000 1.35 0.29 1.39 1.37 0.24 -0.22 2.01 2.23 -1.15 2.73
log.nx 3 1000 -1.35 0.29 -1.38 -1.37 0.24 -1.97 0.64 2.61 1.10 3.23
exp.x 4 1000 91.93 122.03 55.22 67.64 49.38 2.23 1756.20 1753.98 4.94 43.58
exp.nx 5 1000 -93.82 127.51 -53.98 -67.54 47.03 -1338.84 -1.70 1337.14 -4.34 27.74
y 6 1000 -0.02 0.99 -0.04 -0.03 1.02 -3.68 2.74 6.42 0.04 -0.08
log.y 7 1000 1.35 0.28 1.38 1.37 0.25 -1.14 1.91 3.05 -1.36 7.12
log.ny 8 1000 -1.36 0.27 -1.40 -1.38 0.25 -2.04 -0.23 1.81 0.91 1.40
exp.y 9 1000 87.51 106.14 52.40 65.79 45.79 1.38 844.76 843.38 3.39 15.45
exp.ny 10 1000 -90.05 119.15 -56.89 -69.21 49.25 -2167.17 -3.53 2163.64 -7.40 103.09

Examining the SPLOM it is clear that small differences in skew do not lead to a large
attenuation, but that as the differences in skew go up, particuarly if they are in opposite
directions, the correlations are seriously attenuated. This is true not just with the set of
transformations of each variable x with transformations of x, but even more serious when
examining the correlations between the transformed values x and y. For this particular ex-
ample, because the transformations were monotonic, the Spearman rho correlations correctly
were 1s within the x and y set, and .69 between.

When working with only a few levels rather than the many shown in Figure 4.8.2.5, the
problems of skew are also known as a problems of base rates. If the probability of success on
a task is much greater than the probability of failure, and the probability of a predictor of
success being positive is much than the probability of it being negative, then the dichotomous
variable of success/failure can not have a high correlation with the predictor, even if the
underlying relationship were perfect.

4.8.3 Non linearity, outliers and other problems: the importance
of graphics

Although not all threats to inference can be detected graphically, one of the most powerful
statistical tests for non-linearity and outliers is the well known but not often used “inter-
occular trauma test”. A classic example of the need to examine one’s data for the effect of non-
linearity and the effect of outliers is the data set of Anscombe (1973) which is included as the
data(anscombe) data set. This data set is striking for it shows four patterns of results, with
equal regressions and equal descriptive statistics. The graphs differ drastically in appearance
for one actually has a curvilinear relationship, two have one extreme score, and one shows
the expected pattern. Anscombe’s discussion of the importance of graphs is just as timely
now as it was 35 years ago:

Graphs can have various purposes, such as (i) to help us perceive and appreciate some broad
features of the data, (ii) to let us look behind these broad features and see what else is there.
Most kinds of statistical calculaton rest on assumptions about the behavior of the data. Those
assumptions may be false, and the calculations may be misleading. We ought always to try to
check whether the assumptions are reasonably correct; and if they are wrong we ought to be able
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to perceive in what ways the are wrong. Graphs are very valuable for these purposes. (Anscombe,
1973, p 17).

The next chapter will generalize the correlation coefficient from the case of two variables to
the case of multiple predictors (multiple R) and the problem of statistical control from one
or more variables when considering the relationship between variables. The problems that
arise in the two variable case are even more pronounced in the multiple variable case.



