
Chapter 7

Classical Test Theory and the Measurement of
Reliability

Whether discussing ability, affect, or climate change, as scientists we are interested in the
relationships between our theoretical constructs. We recognize, however, that our measure-
ments are not perfect and that any particular observation has some unknown amount of error
associated with that measurement for “all measurement is befuddled by error” (McNemar,
1946, p 294). When estimating central tendencies, the confidence interval of the mean may
be estimated by the standard error of the sample observations, and may be calculated from
the observed standard deviation and the number of observations. This is, of course, the basic
concept of Gossett and Fisher.

Error may be both random as well systematic. Random error reflects trial by trial variabil-
ity due to unknown sources while systematic error may reflect situational or individual effects
that may be specified. Perhaps the classic example of systematic error (known as the personal
equation) is the analysis of individual differences in reaction time in making astronomical ob-
servations. “The personal equation of an observer is the interval of time which habitually
intervenes between the actual and the observed transit of a star...” (Rogers, 1869). Before
systematic individual differences were analyzed, the British astronomer Maskelyn fired his as-
sistant Kennebrook for making measurements that did not agree with his own (Stigler, 1986).
Subsequent investigations of the systematic bias (Safford, 1898; Sanford, 1889) showed con-
sistent individual differences as well as the effect of situational manipulations such as hunger
and sleep deprivation (Rogers, 1869).

Systematic error may be removed. What about the effect of random error? When estimat-
ing individual scores we want to find the standard error for each individual as welll as the
central tendency for that individual. More importantly, if we want to find the relationship
between two variables, the errors of observation will affect the strength of the correlation be-
tween them. Charles Spearman (1904b) was the first psychologist to recognize that observed
correlations are attenuated from the true correlation if the observations contain error.

Now, suppose that we wish to ascertain the correspondence between a series of values, p, and
another series, q. By practical observation we evidently do not obtain the true objective values, p
and q, but only approximations which we will call p’ and q’. Obviously, p’ is less closely connected
with q’, than is p with q, for the first pair only correspond at all by the intermediation of the
second pair; the real correspondence between p and q, shortly rpq has been ”attenuated” into rp�q�

(Spearman, 1904b, p 90).

This attenuation of the relationship between p and q may be seen graphically in Figure 7.1
panel A. An alternative way of considering this is examine the effect of combining true scores
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(dashed line) with error scores (light solid lines) to produce observed score (heavy solid line)
as shown in Figure 7.2.
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Fig. 7.1 Spearman‘s model of attenuation and reliability. Panel A: The true relationship between p
and q is attenuated by the error in p’ and q’. Panel B: the correlation between the latent variable p
and the observed variable p’ may be estimated from the correlation of p’ with a parallel test.
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7.1 Reliability and True Scores

The classic model of reliability treats an observed score, p’, as made up of two independent
components: the latent true score, p, and a latent error score, e (Figure 7.1 panel A). Errors
are “accidental deviations [that] are different in every individual case (hence are often called
the ‘variable errors’) and occur quite impartially in every direction according to the known
laws of probability” (Spearman, 1904b, p 76), and may be seen as randomly“augmenting and
diminishing” observed values, and “tending in a prolonged series to always more and more
perfectly counterbalance one another” (Spearman, 1904b, p 89).

Consider a simple case of asking students their ages but to insure privacy, asking them to
flip a coin before giving their answer. If the coin comes up heads, they should add 1 to their
real age, if it comes up tails, they should subtract 1. Clearly no observed score corresponds
to the true scores. But if we repeat this exercise 10 times, then the mean for each student
will be quite close to their true age. Indeed, as the number of observations per student
increases, the mean score will tend towards their true score with a precision based upon the
inverse of the square root of the number of observations. True score can then be defined as
the expected value, over multiple trials, of the observed score (Figure 7.2). Unfortunately, if
errors are systematically biased in one direction or another, this definition of true score will
not produce Platonic Truth. (The classic example is if one is attempting to determine the sex
of young chickens, errors will not have an expected value of zero, but rather will be slightly
biased towards the other sex Lord and Novick (1968)).

Using more modern notation by replacing p’ with x (for observed score) and p with t (for
true score), then each individual score, x, reflects a true value, t, and an error value, e, and
the expected score over multiple observations of x is t, and the expected score of e for any
value of p is 0. Then, because the expected error score is the same for all true scores, the
covariance of true score with error score (σte) is zero, and the variance of x, σ2

x , is just

σ2
x = σ2

t +σ2
e +2σte = σ2

t +σ2
e .

Similarly, the covariance of observed score with true score is just the variance of true score

σxt = σ2
t +σte = σ2

t

and the correlation of observed score with true score is

ρxt =
σxt�

(σ2
t +σ2

e )(σ2
t )

=
σ2

t�
σ2

x σ2
t
=

σt

σx
. (7.1)

By knowing the correlation between observed score and true score, ρxt , and from the definition
of linear regression (Eqs. 4.2,4.6) predicted true score, t̂, for an observed x may be found from

t̂ = bt.xx =
σ2

t
σ2

x
x = ρ2

xtx. (7.2)

All of this is well and good, but to find the correlation we need to know either σ2
t or σ2

e . The
question becomes how do we find σ2

t or σ2
e ?.
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Fig. 7.2 Observed score (heavy solid line) is made up of true score (dotted line) and error scores at
each level of true score (light solid lines). The variance of true score more closely approximates that of
observed score when the error variances are small and the reliability is greater.

7.1.1 Parallel Tests, Reliability, and Corrections for Attenuation

To ascertain the amount of this attenuation, and thereby discover the true correlation, it appears
necessary to make two or more independent series of observations of both p and q. (Spearman,
1904b, p 90)

Spearman’s solution to the problem of estimating the true relationship between two variables,
p and q, given observed scores p’ and q’ was to introduce two or more additional variables
that came to be called parallel tests. These were tests that had the same true score for each
individual and also had equal error variances. To Spearman (1904b p 90) this required finding
“the average correlation between one and another of these independently obtained series of
values” to estimate the reliability of each set of measures (rp�p� ,rq�q�), and then to find

rpq =
rp�q�√rp�p�rq�q�

. (7.3)
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Rephrasing Spearman (1904b, 1910) in more current terminology (Lord and Novick, 1968;
McDonald, 1999), reliability is the correlation between two parallel tests where tests are said
to be parallel if for every subject, the true scores on each test are the expected scores across
an infinite number of tests and thus the same, and the true score variances for each test are
the same (σ2

p�1
= σ2

p�2
= σ2

p�), and the error variances across subjects for each test are the same

(σ2
e�1
= σ2

e�2
= σ2

e�) (see Figure 7.1). The correlation between two parallel tests will be

ρp�1 p�2
= ρp�p� =

σp�1 p�2�
σ2

p�1
σ2

p�2

=
σ2

p +σpe1 +σpe2 +σe1e2

σ2
p�

=
σ2

p

σ2
p�
. (7.4)

Expressing Equation 7.4 in terms of observed and true scores and comparing it to Equation 7.1
we see that the correlation between two parallel tests is the squared correlation of each test
with true score and is the percentage of test variance that is true score variance

ρxx =
σ2

t
σ2

x
= ρ2

xt . (7.5)

Reliability is the fraction of test variance that is true score variance. Knowing the reliability
of measures of p and q allows us to correct the observed correlation between p’ and q’ for
the reliability of measurement and to find the unattenuated correlation between p and q.

rpq =
σpq�
σ2

pσ2
q

(7.6)

and

rp�q� =
σp�q��
σ2

p�σ
2
q�

=
σp+e�1

σq+e�2�
σ2

p�σ
2
q�

=
σpq�
σ2

p�σ
2
q�

(7.7)

but from Eq 7.5,
σ2

p = ρp�p�σ2
p� (7.8)

and thus, by combining equation 7.6 with 7.7 and 7.8 the unattenuated correlation between
p and q corrected for reliability is Spearman’s equation 7.3

rpq =
rp�q�√rp�p�rq�q�

. (7.9)

As Spearman recognized, correcting for attenuation could show structures that otherwise,
because of unreliability, would be hard to detect. A very thoughtful discussion of the necessity
of correcting measures for attenuation has been offered by Schmidt and Hunter (1999) who
suggest that all measures should be so corrected. Borsboom and Mellenbergh (2002) disagree
and suggests that rather than apply corrections for attenuation from classical test theory, it
is more appropriate to think in a structural modeling context. But as will be discussed in
Chapter 10, this will lead to almost the same conclusion. An example of the power of correct-
ing for attenuation may be seen in Table 7.1. The correlations below the diagonal represent
observed correlations, the entries on the diagonal the reliabilities, and the entries above the
diagonal, the correlations corrected for reliability using equation 7.9. The data were gener-
ated using the sim.structural function to represent three different latent variables with
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a particular structure and then the corrections for attenuation were made using the cor-
rect.cor function. Note how the structural relationships are much clearer when correcting
for attenuation. That is, variables loading on the same factor have dis-attenuated correlations
of unity, and the dis-attenuated correlations between variables loading on different factors
reflects the correlations between the factors.

Table 7.1 Correlations can be corrected for attenuation using Equation 7.9. The raw correlations in
the last matrix were created from the factor (fx) and structure matrices (Phi) shown at the top of
the table using the sim.structural function. In the last matrix, raw correlations are shown below the
diagonal, reliabilities on the diagonal, and disattenuated correlations above the diagonal. Note how the
structural relationships are much clearer when correcting for attenuation. That is, variables loading on
the same factor have dis-attenuated correlations of unity, and the dis-attenuated correlations between
variables loading on different factors reflects the correlations between the factors.

#define the observed variable factor loadings
> fx <- matrix(c(.9,.8,.6,rep(0,7),.6,.8,-.7,rep(0,8),.6,.5,.4),ncol=3)
> colnames(fx) <- colnames(Phi)
> rownames(fx) <- paste("V",1:8,sep="")
> fx

F1 F2 F3
V1 0.9 0.0 0.0
V2 0.8 0.0 0.0
V3 0.6 0.6 0.0
V4 0.0 0.8 0.0
V5 0.0 -0.7 0.0
V6 0.0 0.0 0.6
V7 0.0 0.0 0.5
V8 0.0 0.0 0.4

#define the structural relationships
> Phi <- matrix(c(1,0,.707,0,1,rep(.707,3),1),ncol=3)
> colnames(Phi) <- rownames(Phi) <- paste("F",1:3,sep="")
> print(Phi,2)

F1 F2 F3
F1 1.0 0.0 0.7
F2 0.0 1.0 0.7
F3 0.7 0.7 1.0

> r <- sim.structural(fx,Phi) #create a correlation matrix with known structure
> print (correct.cor(r$model,r$reliability),2) #correct for reliability

V1 V2 V3 V4 V5 V6 V7 V8
V1 0.81 1.00 0.71 0.00 0.00 0.71 0.71 0.71
V2 0.72 0.64 0.71 0.00 0.00 0.71 0.71 0.71
V3 0.54 0.48 0.72 0.71 -0.71 1.00 1.00 1.00
V4 0.00 0.00 0.48 0.64 -1.00 0.71 0.71 0.71
V5 0.00 0.00 -0.42 -0.56 0.49 -0.71 -0.71 -0.71
V6 0.38 0.34 0.51 0.34 -0.30 0.36 1.00 1.00
V7 0.32 0.28 0.42 0.28 -0.25 0.30 0.25 1.00
V8 0.25 0.23 0.34 0.23 -0.20 0.24 0.20 0.16

However, defining reliability as the correlation between parallel tests still requires finding a
parallel test. But how do we know that two tests are parallel? For just knowing the correlation
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between two tests, without knowing the true scores or their variance (and if we did, we
would not bother with reliability), we are faced with three knowns (two variances and one
covariance) but ten unknowns (four variances and six covariances). That is, the observed
correlation, rp�1 p�2

represents the two known variances s2
p�1

and s2
p�2

and their covariance sp�1 p�2
.

The model to account for these three knowns reflects the variances of true and error scores
for p�1 and p�2 as well as the six covariances between these four terms. In this case of two
tests, by defining them to be parallel with uncorrelated errors, the number of unknowns drop
to three (for the true scores variances of p�1 and p�2 are set equal, as are the error variances,
and all covariances with error are set to zero) and the (equal) reliability of each test may be
found.

Unfortunately, according to this concept of parallel tests, the possibility of one test being
far better than the other is ignored. Parallel tests need to be parallel by construction or
assumption and the assumption of parallelism may not be tested. With the use of more tests,
however, the number of assumptions can be relaxed (for three tests) and actually tested (for
four or more tests).

7.1.2 Tau equivalent and congeneric tests

With three tests, the number of assumptions may be reduced, and if the tests are tau equiva-
lent (individuals differ from each other in their true scores but each person has the same true
score on each test) or essentially tau equivalent (tests differ in their true score means but not
true score variance) then each test has the same covariance with true score), reliability for
each of the three tests may be found Novick and Lewis (1967). Tau equivalence or at least es-
sential tau equivalence is a basic (if unrealized) assumption of internal consistency estimates
of reliability (see 7.2.3). Using the notation of Table 7.2, for τ equivalence, λ1 = λ2 = λ3, but
the σ2

i need not be the same.
With four tests, to find the reliability of each test, we need only assume that the tests all

measure the same construct (to be “congeneric”), although possibly with different true score
saturations (λ1...λ4) and error score variances (Lord and Novick, 1968). The set of observed
variables and unknown parameters for each of four tests are shown in Table 7.2. When four
variables are all measures (of perhaps different quality) of one common factor, the variables
are said to be congeneric. The parameters may be estimated by exploratory or confirmatory
factor analysis. The reliabilities are the communalities of each variable (the squared factor
loadings) or 1- the uniqueness for each variable (Table 7.3). With three tests, the parameters
can be estimated, but the model is said to be fully saturated, in that there are no extra
degrees of freedom (six parameters are estimated by six observed variances and covariances.
With four tests, there are two degrees of freedom (eight parameters are estimated from 10
observed variances and covariances).

There are multiple ways of finding the parameters of a set of congeneric tests. Table 7.3
shows the results of an exploratory factor analysis using the factanal function. In Chapter 10
this same model is fit using a structural equation model by the sem package. Given the
loadings ( λi) on the single latent factor, the reliability of each test is 1 - the uniqueness (or
error variance) for that test.

rxx = 1−u2 = λ 2
i

.
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Table 7.2 Two parallel tests have two variances and one covariance. These allow us to estimate λ1 = λ2
and σ2

e1
= σ2

e2
and the true score variance. The parameters of τ equivalent tests can be estimated if

λ1 = λ2 = λ3. For four congeneric tests, all parameters are free to vary.

V1 V2 V3 V4 V1 V2 V3 V4
V1 s2

1 λ1σ2
t +σ2

e1
V2 s12 s2

2 λ1λ2σ2
t λ2σ2

t +σ2
e2

V3 s13 s23 s2
3 λ1λ3σ2

t λ2λ3σ2
t λ3σ2

t +σ2
e3

V4 s14 s24 s34 s2
4 λ1λ4σ2

t λ2λ3σ2
t λ3λ4σ2

t λ4σ2
t +σ2

e4

Table 7.3 The congeneric model is a one factor model of the observed covariance or correlation matrix.
The test reliabilities will be 1- the uniquenesses of each test. The correlation matrix was generated from
a factor model with loadings of .9, .8, .7, and .6. Not surprisingly, a factor model correctly estimates
these parameters. If this analysis is redone with sample values for three variables, the one factor model
still fits perfectly (with 0 df), but the one factor model will not necessarily fit perfectly for four variables.
The reliability of each test is then ρii = λ 2

i = 1−u2
i . Thus, the reliabilities are .81, .64, .49, and .36 for

V1 . . .V4 respectively. Although the factanal function reports the uniquenesses (u2), the fa function in
the psych package reports h2 = 1−u2 as well.

> f <- c(.9,.8,.7,.6)
> r <- sim.structural(f)
> r

Call: sim.structural(fx = f)

$model (Population correlation matrix)
V1 V2 V3 V4

V1 1.00 0.72 0.63 0.54
V2 0.72 1.00 0.56 0.48
V3 0.63 0.56 1.00 0.42
V4 0.54 0.48 0.42 1.00

$reliability (population reliability)
[1] 0.81 0.64 0.49 0.36

> factanal(covmat=r$model,factors=1)

Call:
factanal(factors = 1, covmat = r$model)

Uniquenesses:
V1 V2 V3 V4

0.19 0.36 0.51 0.64

Loadings:
Factor1

V1 0.9
V2 0.8
V3 0.7
V4 0.6

Factor1
SS loadings 2.300
Proportion Var 0.575

The degrees of freedom for the model is 2 and the fit was 0
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Four congeneric tests

V1 V2 V3 V4

F1

0.9 0.8 0.7 0.6

Fig. 7.3 Fitting four congeneric measures by one factor. There are four observed variances and six
observed covariances. There are eight unknowns to estimate. This model was fit by a one factor ex-
ploratory factor model, although a one factor confirmatory model would work as well. The confirmatory
solution using the sem package is discussed in Chapter 10. The graph was done using the fa.diagram
function.

7.2 Reliability and internal structure

Unfortunately, with rare exceptions, we normally are faced with just one test, not two, three
or four. How then to estimate the reliability of that one test? Defined as the correlation
between a test and a test just like it, reliability would seem to require a second test. The
traditional solution when faced with just one test is to consider the internal structure of that
test. Letting reliability be the ratio of true score variance to test score variance (Equation 7.1),
or alternatively, 1 - the ratio of error variance to true score variance, the problem becomes
one of estimating the amount of error variance in the test. There are a number of solutions
to this problem that involve examining the internal structure of the test. These range from
considering the correlation between two random parts of the test to examining the structure
of the items themselves.

7.2.1 Split half reliability

If a test is split into two random halves, then the correlation between these two halves can
be used to estimate the split half reliability of the total test. That is, two tests, X, and a test
just like it, X

�, with covariance, Cxx� can be represented as
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ΣXX � =




Vx

... Cxx�

. . . . . . . . . .

Cxx�
... Vx�



 (7.10)

and letting Vx = 1Vx1
� and CXX

� = 1CXX �1� the correlation between the two tests will be

ρ =
Cxx�√
VxVx�

But the variance of a test is simply the sum of the true covariances and the error variances:

Vx = 1Vx1
� = 1Ct1

�+1Ve1
� =Vt +Ve

and the structure of the two tests seen in Equation 7.10 becomes

ΣXX � =




VX = Vt +Ve

... Cxx� = Vt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt = Cxx�
... Vt� +Ve� = VX �





and because Vt = Vt � and Ve = Ve� the correlation between each half, (their reliability) is

ρ =
CXX �

VX
=

Vt

VX
= 1− Ve

Vt
.

The split half solution estimates reliability based upon the correlation of two random split
halves of a test and the implied correlation with another test also made up of two random
splits:

ΣXX � =





Vx1

... Cx1x2
Cx1x�

1

... Cx1x�
2

. . . . . . . . . . . . . . . . . . . . . . . .

Cx1x2

... Vx2
Cx2x�

1

... Cx2x�
1

Cx1x�
1

... Cx2x�
1

Vx�
1

... Cx�
1
x�

2

Cx1x�
2

... Cx2x�
2

Cx�
1
x�

2

... Vx�
2





Because the splits are done at random and the second test is parallel with the first test, the
expected covariances between splits are all equal to the true score variance of one split (Vt1

),
and the variance of a split is the sum of true score and error variances:
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ΣXX � =





Vt1
+Ve1

... Vt1
Vt1

... Vt1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt1

... Vt1
+Ve1

Vt1

... Vt1

Vt1

... Vt1
Vt�

1
+Ve�

1

... Vt�
1

Vt1

... Vt1
Vt�

1

... Vt�
1
+Ve�

1





The correlation between a test made of up two halves with intercorrelation (r1 =Vt1/Vx1) with
another such test is

rxx� =
4Vt1�

(4Vt1 +2Ve1)(4Vt1 +2Ve1)
=

4Vt1
2Vt1 +2Vx1

=
4r1

2r1 +2

and thus

rxx� =
2r1

1+ r1
(7.11)

This way of estimating the correlation of a test with a parallel test based upon the correlation
of two split halves correcting for the fact they were half tests rather than full tests (the split
half reliability)is a special case (n=2) of the the more general Spearman-Brown correction
(Brown, 1910; Spearman, 1910).

rxx =
nr1

1+(n−1)r1
. (7.12)

It is important to remember that when finding the split half reliability that the observed
correlation between the two halves needs to be adjusted by the Spearman-Brown prophecy
formula (Equation 7.12) which for n = 2 is is just Equation 7.11.

7.2.2 Domain sampling

Other techniques to estimate the reliability of a single test are based on the domain sampling
model in which tests are seen as being made up of items randomly sampled from a domain
of items. Analogous to the notion of estimating characteristics of a population of people
by taking a sample of people is the idea of sampling items from a universe of items. (Lord
(1955), made the distinction between “Type 1” sampling of people, “Type 2” sampling of
items and “Type12” sampling of persons and items). Consider a test meant to assess English
vocabulary. A person’s vocabulary could be defined as the number of words in an unabridged
dictionary that he or she recognizes. But since the total set of possible words can exceed
500,000, it is clearly not feasible to ask someone all of these words. Rather, consider a test of
k words sampled from the larger domain of n words. What is the correlation of this test with
the domain? That is, what is the correlation across subjects of test scores with their domain
scores.?
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7.2.2.1 Correlation of an item with a domain

First consider the correlation of a single (randomly chosen) item with the domain. Let the
domain score for an individual be Di and the score on a particular item, j, be Xi j. For ease
of calculation, convert both of these to deviation scores. di = Di − D̄ and xi j = Xi j − X̄ j. Then

rx jd =
covx jd�

σ2
x j

σ2
d

.

Now, because the domain is just the sum of all the items, the domain variance σ2
d is just the

sum of all the item variances and all the item covariances

σ2
d =

n

∑
j=1

n

∑
k=1

covx jk =
n

∑
j=1

σ2
x j
+

n

∑
j=1

∑
k �= j

covx jk .

Then letting c̄ =
∑ j=n

j=1 ∑k �= j covx jk
n(n−1) be the average covariance and v̄ =

∑ j=n
j=1 σ2

x j
n the average item

variance, the correlation of a randomly chosen item with the domain is

rx jd =
v̄+(n−1)c̄�

v̄(nv̄+n(n−1)c̄)
=

v̄+(n−1)c̄�
nv̄(v̄+(n−1)c̄))

.

Squaring this to find the squared correlation with the domain and factoring out the common
elements leads to

r2
x jd =

(v̄+(n−1)c̄)
nv̄

.

and then taking the limit as the size of the domain gets large is

lim
n→∞

r2
x jd =

c̄
v̄
. (7.13)

That is, the squared correlation of an average item with the domain is the ratio of the
average interitem covariance to the average item variance. Compare the correlation of a test
with true score (Eq 7.5) with the correlation of an item to the domain score (Eq 7.13).
Although identical in form, the former makes assumptions about true score and error, the
latter merely describes the domain as a large set of similar items.

7.2.2.2 Correlation of a test with the domain

A similar analysis can be done for a test of length k with a large domain of n items. A k-item
test will have total variance, Vk, equal to the sum of the k item variances and the k(k-1) item
covariances:

Vk =
k

∑
i=1

vi +
k

∑
i=1

k

∑
j �=i

ci j = kv̄+ k(k−1)c̄.

The correlation with the domain will be

rkd =
covkd√

VkVd
=

kv̄+ k(n−1)c̄�
(kv̄+ k(k−1)c̄)(nv̄+n(n−1)c̄)

=
k(v̄+(n−1)c̄)�

nk(v̄+(k−1)c̄)(v̄+(n−1)c̄)
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Then the squared correlation of a k item test with the n item domain is

r2
kd =

k(v̄+(n−1)c̄)
n(v̄+(k−1)c̄)

and the limit as n gets very large becomes

lim
n→∞

r2
kd =

kc̄
v̄+(k−1)c̄

. (7.14)

This is an important conclusion: the squared correlation of a k item test with a very large
domain will be a function of the number of items in the test (k) and the average covariance
of the items within the test (and by assumption, the domain). Compare Eq 7.12 to Eq 7.14.
The first, the Spearman-Brown prophecy formula estimates the reliability of a n-part test
based upon the average correlation between the n parts. The second, the squared correlation
of a test with the domain, estimates the fraction of test variance that is domain variance
based upon the average item variance, the average item covariance, and the number of items.
For standardized items, v̄ = 1 and c̄ = r̄ the two equations are identical.

7.2.3 The internal structure of a test. Part 1: coefficient α

Although defined in terms of the correlation of a test with a test just like it, reliability can
be estimated by the characteristics of the items within the test. The desire for an easy to use
“magic bullet” based upon the domain sampling model has led to a number of solutions for
estimating the reliability of a test based upon characteristics of the covariances of the items.
All of these estimates are based upon classical test theory and assume that the covariances
between items represents true covariance, but that the variances of the items reflect an
unknown sum of true and unique variance. From the variance of a composite (Eq 5.1), it is
known that the variance of a total test, σ2

x made up of a sum of individual items, xi is

σ2
x = ∑

i�= j
σxix j +∑σ2

xi
. (7.15)

After earlier work introduced various shortcuts (Kuder and Richardson, 1937) that did not
require finding the covariances, Guttman (1945), in an attempt to formalize the estimation of
reliability, proposed six lower bounds for reliability, ρxx, that took advantage of the internal
structure of the test

ρxx =
σ2

t
σ2

x
=

σ2
x −σ2

e
σ2

x
.

Each one successively modifies the way that the error variance of the items are estimated.
Unfortunately, although many psychometricians deplore its use, one of these estimates, λ3
(Guttman, 1945), also known as coefficient alpha (Cronbach, 1951), is by far and away the
most common estimate of reliability. The appeal of α is both that it is easy to compute, is
easy to understand, and is available in all statistical programs (including the psych package
in R). To understand the appeal of α, as well as the reasons not to rely solely on it, it is
necessary to consider a number of alternatives.
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Although splitting a test into two and calculating the reliability based upon the correlation
between the two halves corrected by the Spearman-Brown formula was one way of estimating
reliability, the result would depend upon the particular split. When considering the number
of possible split halves of an k-item test ( k!

2( k
2 !)2 ), Kuder and Richardson (1937) introduced

a short cut formula for reliability in terms of the total test variance, σ2
x , and the average

item variance, pq of a true-false test where pi and qi represent the percentage passing and
failing any one item. The Kuder-Richardson 20 formula could be calculated without finding
the average covariance or correlation required by Eq 7.12 and Eq 7.14 by taking advantage
of the identity of Eq 7.15

rxx =
σ2

t
σ2

x
=

k
k−1

σ2
x − kpq

σ2
x

. (7.16)

Functionally, this is finding the total true score variance of an n item test as k2 times the
average covariance, σ2

t = k2c̄, and recognizing that the total test variance represents the sum of
the item covariances plus the sum of the item error variances σ2

x = k2c̄+kσ̄2
e . Taking the total

test variance, subtracting the sum of the item variances (k times the average variance) and
dividing by k(k−1) (the number of covariance terms) gives an average covariance. Multiplying
this by k2 gives the total true score variance which when divided by the total test variance
is the test reliability. The clear advantage of KR20 was that it could be calculated without
finding the inter-item covariances or correlations, but just the total test variance and the
average item variance.

An even easier shortcut was to estimate the average variance by finding the variance of the
average item (the 21st formula of Kuder and Richardson, 1937) now known as KR21 . That
is, by finding the percent passing the average item, p̄, it is possible to find the variance of
the average item, p̄q̄, which will be a positively biased estimate of the average item variance
and thus a negatively biased estimate of reliablity. (Unless all items have equal probabilities
of success, the variance of the average item will be greater than the average of the variance
of the items).

rxx =
σ2

t
σ2

x
=

k
k−1

σ2
x − kp̄q̄

σ2
x

.

Coefficient alpha (Cronbach, 1951) is a straight forward generalization of KR20 to the
case of non-dichotomous as well as dichotomous items. Letting σ2

i represent the variance of
itemi, and σ2

x the variance of the total total test, then the average covariance of an item with
any other item is

c̄ =
σ2

x −∑σ2
i

k(k−1)

and thus the ratio of the total covariance in the test to the total variance in the test is

α = rxx =
σ2

t
σ2

x
=

k2 σ2
x −∑σ2

i
k(k−1)

σ2
x

=
k

k−1
σ2

x −∑σ2
i

σ2
x

(7.17)

which is just KR20 but using the sum of the item variances rather than n times the average
variance and allows for non-dichotomous items.

An alternate way of finding coefficient alpha based upon finding the average covariance
between items is to consider the ratio of the total covariance of the test to the total variance
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α =
k2c̄

kv̄+ k(k−1)c̄
=

kc̄
v̄+(k−1)c̄

(7.18)

which for standardized items is just

α =
kr̄

1+(k−1)r̄
. (7.19)

In the preceding few pages, six important equations have been introduced. All six of these
equations reflect characteristics of the reliability of a test and how observed scores relate to
true score. Reliability, defined as the correlation between two parallel forms of a test, is the
same as the squared correlation of either test with true score and is the amount of true score
variance in the test. Reliability is an increasing function of the correlation between random
split halves of either test. Coefficient α, derived from Eq 7.19, is the same as the reliability as
estimated by the Spearman-Brown prophecy formula (Eq 7.12), but is derived from domain
sampling principles, and as is seen in Eq 7.18 is the same as the squared correlation of a
k-item test with the domain (Eq 7.14). As seen in Eq 7.17, coefficient α is the same as the
the reliability of test found for dichotomous items using formula KR20, Eq 7.16. That is, all
six of these equations, although derived in different ways by different people have identical
meanings.

As an example of finding coefficient α, consider the five neuroticism items from the bfi
data set. This data set contains 25 items organized in five sets of five items to measure each
of the so-called “Big Five” dimensions of personality (Agreeableness, Conscientiousness, Ex-
traversion, Neuroticism, and Openness). All five of these are scored in the same direction and
can be analyzed without reverse keying any particular item. The analysis in Table 7.7 reports
both the values of α based upon the covariances (raw) as well as the correlations (standard-
ized). In addition, Guttman’s coefficient λ6 (discussed below) of the reliability based upon
the squared multiple correlation (smc) for each items as well as the average intercorrelation
of the items are reported. The correlation of each item with the total scale is reported in two
forms, the first is just the raw correlation which reflects item overlap, the second corrects for
item overlap by replacing each item’s correlation with itself (1.0) with the estimated item
reliability based upon the smc.

7.2.4 The internal structure of a test. Part 2: Guttman’s lower
bounds of reliability

Although arguing that reliability was only meaningful in the case of test-retest, Guttman
(1945) may be credited with introducing a series of lower bounds for reliability, λ1 . . .λ6, each
based upon the item characteristics of a single test. These six have formed the base for most
of the subsequent estimates of reliability based upon the item characteristics of a single test.
Of the six, λ3 is most well known and was called coefficient alpha or α by Cronbach (1951).
All of these measures decompose the total test variance, Vx, into two parts, that associated
with error, Ve and what ever is left over, Vx −Ve. (although not using the term true score,
this is implied). Reliability is then just

rxx =
Vx −Ve

Vx
= 1− Ve

Vx
. (7.20)
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Table 7.4 Coefficient α may be found using the alpha function in psych. The analysis is done for 5
neuroticism items taken from the bfi data set.

> alpha(bfi[16:20])

Reliability analysis
Call: alpha(x = bfi[16:20])

raw_alpha std.alpha G6(smc) average_r mean sd
0.81 0.81 0.8 0.46 15 5.8

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

N1 0.75 0.75 0.70 0.42
N2 0.76 0.76 0.71 0.44
N3 0.75 0.76 0.74 0.44
N4 0.79 0.79 0.76 0.48
N5 0.81 0.81 0.79 0.51

Item statistics
n r r.cor mean sd

N1 990 0.81 0.78 2.8 1.5
N2 990 0.79 0.75 3.5 1.5
N3 997 0.79 0.72 3.2 1.5
N4 996 0.71 0.60 3.1 1.5
N5 992 0.67 0.52 2.9 1.6

The problem then becomes how to estimate the error variance, Ve.
Consider the case of a test made up of 12 items, all of which share 20% of their variance

with a general factor, but form three subgroups of (6, 4 and 2) items which share 30%, 40%
or 50% of their respective variance with some independent group factors. The remaining
item variance is specific or unique variance (Table 7.5, Figure 7.4). An example of this kind
of a test might be a measure of Neuroticism, with a broad general factor measuring general
distress, group factors representing anger, depression, and anxiety, and specific item variance.
For standardized items this means that the correlations between items in different groups
are .2, those within groups are .5, .6 or .7 for groups 1, 2 and 3 respectively. The total test
variance is thus

Vt = 122 ∗ .2+62 ∗ .3+42 ∗ .4+22 ∗ .5+6∗ .5+4∗ .4+2∗ .3 = 53.2

and the error variance Ve is

Ve = 6∗ .5+4∗ .4+2∗ .3 = 5.2

for a reliability of

rxx = 1− 5.2
53.2

= .90.

Using the data matrix formed in Table 7.5 and shown in Figure 7.4, we can see how various
estimates of reliability perform.

The first Guttman lowest bound, λ1 considers that all of an item variance is error and
that only the interitem covariances reflect true variability. Thus, λ1 subtracts the sum of the
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Table 7.5 A hypothetical 12 item test can be thought of as the sum of the general variances of all
items, group variances for some items, and specific variance for each item. (See Figure 7.4). An example
of this kind of a test might be a measure of Neuroticism, with a broad general factor, group factors
representing anger, depression, and anxiety, and specific item variance.

> general <- matrix(.2,12,12)
> group <- super.matrix( super.matrix(matrix(.3,6,6),matrix(.4,4,4)),matrix(.5,2,2))
> error <- diag(c(rep(.5,6),rep(.4,4),rep(.3,2)),12,12)
> Test <- general + group + error
> colnames(Test ) <- rownames(Test) <- paste("V",1:12,sep="")
> round(Test,2)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
V1 1.0 0.5 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2
V2 0.5 1.0 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2
V3 0.5 0.5 1.0 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2
V4 0.5 0.5 0.5 1.0 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2
V5 0.5 0.5 0.5 0.5 1.0 0.5 0.2 0.2 0.2 0.2 0.2 0.2
V6 0.5 0.5 0.5 0.5 0.5 1.0 0.2 0.2 0.2 0.2 0.2 0.2
V7 0.2 0.2 0.2 0.2 0.2 0.2 1.0 0.6 0.6 0.6 0.2 0.2
V8 0.2 0.2 0.2 0.2 0.2 0.2 0.6 1.0 0.6 0.6 0.2 0.2
V9 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.6 1.0 0.6 0.2 0.2
V10 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 1.0 0.2 0.2
V11 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.0 0.7
V12 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 1.0

> sum(Test)
[1] 53.2
> sum(general)
[1] 28.8
> sum(group)
[1] 19.2
> sum(error)
[1] 5.2

diagonal of the observed item covariance matrix from the total test variance:

λ1 = 1− tr(Vx)

Vx
=

Vx − tr(Vx)

Vx
. (7.21)

This leads to an estimate of

λ1 = 1− 12
53.2

=
41.2
53.2

= .774.

The second bound, λ2 replaces the diagonal with a function of the square root of the sums
of squares of the off diagonal elements. Let C2 = 1(V−diag(V))2

1
�, then

λ2 = λ1 +

�
n

n−1C2

Vx
=

Vx − tr(Vx)+
�

n
n−1C2

Vx
. (7.22)
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Fig. 7.4 The total variance of a test may be thought of as composed of a general factor, several group
factors, and specific item variance. The problem in estimating total reliability is to determine how much
of the total variance is due to specific or unique item variance. Shading represent the magnitude of
the correlation. All items are composed of 20% general factor variance, the first six items have a group
factor accounting for 30% of their variance, the next four items have a stronger group factor accounting
for 40% of their variance, and the last two items define a very powerful group factor, accounting for
50% of their variance. The items are standardized, and thus have total variance of 1.

Effectively, this is replacing the diagonal with n * the square root of the average squared off
diagonal element.

λ2 = .774+

�
12
11 16.32

53.2
= .85

Guttman’s 3rd lower bound, λ3, also modifies λ1 and estimates the true variance of each
item as the average covariance between items and is, of course, the same as Cronbach’s α.

λ3 = λ1 +

VX−tr(VX )
n(n−1)

VX
=

nλ1

n−1
=

n
n−1

�
1− tr(V)x

Vx

�
=

n
n−1

Vx − tr(Vx)

Vx
= α (7.23)
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This is just replacing the diagonal elements with the average off diagonal elements. λ2 ≥ λ3
with λ2 > λ3 if the covariances are not identical.

λ3 = α =
12
11

�
1− 12

53.2

�
=

12
11

(53.2−12)
53.2

= .84

As pointed out by Ten Berge and Zegers (1978), λ3 and λ2 are both corrections to λ1 and
this correction may be generalized as an infinite set of successive improvements.

µr =
1
Vx

�
po +(p1 +(p2 + . . .(pr−1 +(pr)

1/2)1/2 . . .)1/2)1/2�,r = 0,1,2, . . . (7.24)

where
ph = ∑

i �= j
σ2h

i j ,h = 0,1,2, . . .r−1

and
ph =

n
n−1

σ2h
i j ,h = r.

Clearly µ0 = λ3 = α and µ1 = λ2. µr ≥ µr−1 ≥ . . .µ1 ≥ µ0, although the series does not improve
much after the first two steps (Ten Berge and Zegers, 1978).

Guttman’s fourth lower bound, λ4 was originally proposed as any spit half reliability
(Guttman, 1945) but has been interpreted as the greatest split half reliability (Jackson and
Agunwamba, 1977). If X is split into two parts, Xa and Xb, with covariance cab then

λ4 = 2
�

1−
VXa +VXb

VX

�
=

4cab

Vx
=

4cab

VXa +VXb +2cabVXaVXb

. (7.25)

If the two parts are standardized, the covariance becomes a correlation, the two variances
are equal and λ4 is just the normal split half reliability, but in this case, of the most similar
splits. In the case of the example, there are several ways that lead to a “best split”, but any
scale made up 3 items from the first six, two from the second four and one from the last two
will correlate .82 with the corresponding other scale. Correcting this for test length using the
Spearman-Brown correction leads to

λ4 =
2∗ .82
1+ .82

= .90.

In the general case of splits with unequal variances, it is better to use Equation 7.25 rather
than 7.12.

λ5, Guttman’s fifth lower bound, replaces the diagonal values with twice the square root
of the maximum (across items) of the sums of squared interitem covariances

λ5 = λ1 +
2
�

C̄2

VX
. (7.26)

Although superior to λ1, λ5 underestimates the correction to the diagonal. A better estimate
would be analogous to the correction used in λ3:

λ5+ = λ1 +
n

n−1
2
�

C̄2

VX
. (7.27)
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Guttman’s final bound considers the amount of variance in each item that can be accounted
for the linear regression of all of the other items (the squared multiple correlation or smc),
or more precisely, the variance of the errors, e2

j , and is

λ6 = 1−
∑e2

j

Vx
= 1− ∑(1− r2

smc)

Vx
(7.28)

Although the smc used in finding Guttman’s λ6 is normally found by using just the other
items in the particular scale, in a multiple scale inventory, the concept can be generalized to
consider the smc based upon all the other items. In the psych package this is labeled as λ6+.
Using the smc function to find the smcs for each item and them summing them across all
items

λ6 = 1− 6.51
53.2

= .878.

Yet another estimate that has been proposed for the reliability of a principal component
(Ten Berge and Hofstee, 1999) unfortunately also uses λ1 as a symbol, but this time as the
magnitude of the the eigenvalue of the principal component

αpc =
n

n−1
(1− 1

λ1
). (7.29)

αpc =
12
11

�
1− 1

4.48

�
= .847.

The discussion of various lower bounds of reliability seemed finished when Jackson and
Agunwamba (1977) and Bentler and Woodward (1980) introduced their “greatest lower
bound”, or glb. Woodhouse and Jackson (1977) organized Guttman’s six bounds into a series
of partial orders, and provided an algorithm for estimating the glb of Jackson and Agun-
wamba (1977). An alternative algorithm was proposed by Bentler and Woodward (1980) and
discussed by Sijtsma (2008). Unfortunately, none of these authors considered ωt (see below),
which tends to exceed the glbs reported in the various discussions of the utility of the glb
(Revelle and Zinbarg, 2009).

The Guttman statistics as well as those discussed Ten Berge and Zegers (1978) by may
be found using the guttman function in psych.

7.2.5 The internal structure of a test. Part 3: coefficients α, β , ωh
and ωt

Two additional coefficients, ωh and ωt , that were not considered by either Guttman (1945) or
Cronbach (1951) were introduced by McDonald (1978, 1999). These two coefficients require
factor analysis to estimate, but are particularly useful measures of the structure of a test.
McDonald’s ωt is similar to Guttman’s λ6, but uses the estimates of uniqueness (u2

j) for each

item from factor analysis to find e2
j . This is based on a decomposition of the variance of a test

score, Vx, into four parts: that due to a general factor, g, that due to a set of group factors,
f, (factors common to some but not all of the items), specific factors, s unique to each item,
and e, random error. (Because specific variance can not be distinguished from random error
unless the test is given at least twice, McDonald (1999) combines these both into error).
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Letting
x = cg+Af+Ds+ e (7.30)

then the communality of item j, based upon general as well as group factors,

h2
j = c2

j +∑ f 2
i j (7.31)

and the unique variance for the item

u2
j = σ2

j (1−h2
j) (7.32)

may be used to estimate the test reliability. That is, if h2
j is the communality of item j, based

upon general as well as group factors, then for standardized items, e2
j = 1−h2

j and

ωt =
1cc

�
1
�+1AA

�
1
�

Vx
= 1−

∑(1−h2
j)

Vx
= 1− ∑u2

Vx
(7.33)

Because h2
j ≥ r2

smc, ωt ≥ λ6. For the example data set, the uniquenesses may be found by factor
analysis (Table 7.6) and their sum is 5.2 (compare with Figure 7.4). Thus,

ωt = 1− 5.2
53.2

= .90.

McDonald introduced another reliability coefficient, also labeled ω, based upon the satu-
ration of the general factor. It is important to distinguish here between the two ω coefficients
of McDonald (1978) and (McDonald, 1999, Equation 6.20a), ωt and ωh. While the former is
based upon the sum of squared loadings on all the factors, the latter is based upon the sum
of the squared loadings on the general factor, g. For a correlation matrix, R with general
factor g with loadings c

ωh =
1cc

�
1

Vx
=

(∑Λi)2

∑∑Ri j
. (7.34)

That is, ωh is the ratio of the sum of correlations reproduced by the general factor to the sum
of all correlations. It is the percentage of a correlation matrix associated with the general
factor. For the example,

ωh =
5.3665632

53.2
=

28.8
53.2

= .54.

As is true for the other estimates of reliability, because the variance associated with the
uniquenesses of each item becomes a smaller and smaller fraction of the test as the test be-
comes longer, ωt will increase as a function of the number of variables and tend asymptotically
towards 1.0. However, ωh will not, and rather will tend towards a limit of

ωh∞ =
1cc

�
1

1cc
�
1+1AA

�
1�
. (7.35)

ωh is particularly important when evaluating the importance and reliability of the general
factor of a test, while ωt is an estimate of the total reliable variance in a test. As was discussed
earlier (6.3.4) measures of cognitive ability have long been analyzed in terms of lower order
factors (group factors) as well as a higher order, general factor ?Horn and Cattell (1966,
1982). More recently, this approach has also been applied to the measurement of personality
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Table 7.6 The omega function does a factor analysis followed by an oblique rotation and extraction
of a general factor using the schmid-leiman transformation Schmid and Leiman (1957). The sum of
the uniquenesses is used to find ωt and the squared sum of the g loadings to find ωh).

> omega(Test)

Omega
Call: omega(m = Test)
Alpha: 0.84
G.6: 0.88
Omega Hierarchical: 0.54
Omega H asymptotic: 0.6
Omega Total 0.9

Schmid Leiman Factor loadings greater than 0.2
g F1* F2* F3* h2 u2

V1 0.45 0.55 0.5 0.5
V2 0.45 0.55 0.5 0.5
V3 0.45 0.55 0.5 0.5
V4 0.45 0.55 0.5 0.5
V5 0.45 0.55 0.5 0.5
V6 0.45 0.55 0.5 0.5
V7 0.45 0.63 0.6 0.4
V8 0.45 0.63 0.6 0.4
V9 0.45 0.63 0.6 0.4
V10 0.45 0.63 0.6 0.4
V11 0.45 0.71 0.7 0.3
V12 0.45 0.71 0.7 0.3

With eigenvalues of:
g F1* F2* F3*

2.4 1.8 1.6 1.0

general/max 1.33 max/min = 1.8
The degrees of freedom for the model is 33 and the fit was 0

Measures of factor score adequacy
g F1* F2* F3*

Correlation of scores with factors 0.74 0.77 0.81 0.81
Multiple R square of scores with factors 0.55 0.60 0.66 0.66
Minimum correlation of factor score estimates 0.10 0.20 0.31 0.33

traits such as anxiety which shows lower order factors as well as higher order one (Chen
et al., 2006; Zinbarg and Barlow, 1996; Zinbarg et al., 1997). For tests that are thought to
have a higher order structure, measures based upon just the average interitem correlation,
α or λ6, are not appropriate. Coefficients that reflect the structure such as ωh and ωt are
more appropriate. If a test is composed of relatively homogeneous items then α and λ6 will
provide very similar estimates to ωh and ωt . ωh,ωh∞ ,ωt ,α and λ6 may all be found using the
omega function (Table 7.6).

ωh is an estimate of the general factor saturation of a test based upon a factor analytic
model. An alternative estimate, coefficient β Revelle (1979), uses hierarchical cluster analysis
to find the two most unrelated split halves of the test and then uses the implied inter-group
itemcorrelation to estimate the total variance accounted for by a general factor. This is based
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Table 7.7 Four data sets with equal α reliability estimates but drastically different structures. Each
data set is assumed to represent two correlated clusters. The between cluster correlations are .45, .32,
.14, and 0. For all four data sets, α = .72. Because the within cluster factor loadings are identical within
each set, the two estimates of general factor saturation, β and ωh, are equal. They are .72, .48, .25, and
0 for sets S1, S2, S3 and S4 respectively. Figure 7.5 displays these matrices graphically using cor.plot.

S1 S2
V1 V2 V3 V4 V5 V6 V1 V2 V3 V4 V5 V6

V1 1.0 0.3 0.3 0.3 0.3 0.3 1.00 0.45 0.45 0.20 0.20 0.20
V2 0.3 1.0 0.3 0.3 0.3 0.3 0.45 1.00 0.45 0.20 0.20 0.20
V3 0.3 0.3 1.0 0.3 0.3 0.3 0.45 0.45 1.00 0.20 0.20 0.20
V4 0.3 0.3 0.3 1.0 0.3 0.3 0.20 0.20 0.20 1.00 0.45 0.45
V5 0.3 0.3 0.3 0.3 1.0 0.3 0.20 0.20 0.20 0.45 1.00 0.45
V6 0.3 0.3 0.3 0.3 0.3 1.0 0.20 0.20 0.20 0.45 0.45 1.00

S3 S4
V1 V2 V3 V4 V5 V6 V1 V2 V3 V4 V5 V6

V1 1.0 0.6 0.6 0.1 0.1 0.1 1.00 0.75 0.75 0.00 0.00 0.00
V2 0.6 1.0 0.6 0.1 0.1 0.1 0.75 1.00 0.75 0.00 0.00 0.00
V3 0.6 0.6 1.0 0.1 0.1 0.1 0.75 0.75 1.00 0.00 0.00 0.00
V4 0.1 0.1 0.1 1.0 0.6 0.6 0.00 0.00 0.00 1.00 0.75 0.75
V5 0.1 0.1 0.1 0.6 1.0 0.6 0.00 0.00 0.00 0.75 1.00 0.75
V6 0.1 0.1 0.1 0.6 0.6 1.0 0.00 0.00 0.00 0.75 0.75 1.00

upon the observation that the correlation between the two worst splits reflects the covariances
of items that have nothing in common other that what is common to all the items in the
test. For the example data set, the two most unrelated parts are formed from the first 10
items and the last two items. The correlation between these two splits is .3355 which implies
an average correlation of the items between these two halves of .20. These correlations reflect
the general factor saturation and when corrected for test length implies that the general
saturation of this 12 item test is 144* .2 = 28.8. The total test variance is 53.2 and thus

β =
12∗12∗ .2

53.2
= .54.

Although in the case of equal correlations within groups and identical correlations between
groups, ωh and β are identical, this is not the case for group factors with unequal general
factor loadings. Whether β or ωh will be greater depends upon the specific pattern of the
general factor loadings (Zinbarg et al., 2005).

7.3 A comparison of internal consistency estimates of reliability

If there are so many different measures of reliability, the question to ask is which reliability
estimate should be used, and why. Consider the four example data sets in Table 7.7 (shown
graphically in Figure 7.5). All four of these data sets (S1 . . .S4) have equal average correlations
(.3) and thus identical values of coefficient α (.72). However, by looking at the correlations,
it is clear that the items in S1 represent a single construct, with all items having equal
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Fig. 7.5 The correlation matrices of Table 7.7 may be represented graphically using the cor.plot func-
tion. Although all four matrices have equal α reliabilities (.72), they differ drastically in the saturation
of a general factor (omegah = β = .72, .48, .25 and .00.)

correlations of .3. The items in set S-4, on the other hand, form two distinct groups, even
though the average intercorrelation of all the items remains .3 and α remains .72. Some of
the other estimates of reliability discussed above, on the other hand, vary from sets S1 to S4
(Table 7.8). In particular, the two ways of estimating the general factor saturation, ωh and β
go from .72 when the test is unifactorial (S-1) to 0 when it contains two independent factors
(S-4). ωt , on the other hand, increases from .72 in the case of a unifactorial test (S-1) to .90
in the case of a test containing two independent factors (S-4).

To understand how Guttman’s bounds relate to each other and to ωh, ωt , and β , it is useful
to consider the “Test” data from Table 7.5 as well as the four sample correlation matrices
from Table 7.7 as well as three demonstrations of a higher order structure, one simulated and
two from the bifactor data set in the psych package (see Table 7.8). The simulated data set
(S.9) was created using the sim.hierarchical function to demonstrate a hierarchical factor
model as discussed by Jensen and Weng (1994) and shown earlier (see Table 6.13). The two
real data sets are the Thurstone example from McDonald (1999) of 9 cognitive variables used
to show a clear bifactor (hierarchical) structure. The second example of a bifactor structure
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Fig. 7.6 One simulated and three real data sets. The first is an example of hierarchical structure
created by the sim.hierachical function based upon an article by Jensen and Weng (1994). The
second and third data sets, Thurstone and Reise are from the bifactor data set and are nine cognitive
variables adapted by Bechtoldt (1961) from Thurstone and Thurstone (1941), the last is a set of 10
items thought to measure two different traits (Agreeableness and Conscientiousness) taken from the
bfi data set.

are 14 health related items from Reise et al. (2007). The last real example, the BFI, uses 10
items from the bfi dataset (examples of the “Big Five Inventory”) and is an example of two
distinct constructs incorrectly combined into one scale. The 10 items from the BFI represent
five items measuring “Agreeableness” and five measuring “Conscientiousness”. Normally seen
as separate traits, they are included as example of how a large α is not a sign of a single
dimension.

Comparing the S1 . . . S4 data sets, alpha is equal to all other measures and superior to
λ4 and λ6 if there is exactly one factor in the data (S1). But as the general factor becomes
less important, and the group factors more important (S2 ... S4), α does not change, but
the other Guttman coefficients do. λ6, based upon the smc as an estimate of item reliability,
underestimates the reliability for the completely homogeneous set, but exceeds α as the test
becomes more multifaceted.
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Table 7.8 Comparison of 13 estimates of reliability. Test is the data set from Table 7.5. The next four
data sets are S1-S4 from Table 7.7 and Figure 7.5. S.9 is a simulated hierarchical structure using the
sim.hierarchical function based upon Jensen and Weng (1994), T.9 is the 9 cognitive variables used
by McDonald (1999), R14 is 14 health related items from Reise et al. (2007), the BFI is an example of
two distinct constructs “incorrectly” combined into one scale. (See Figure 7.6). λ1 . . .λ6 are the Guttman
(1945) bounds found by the guttman function as are µ0 . . .µ3 from Ten Berge and Zegers (1978), ωh and
ωt are from McDonald (1999) and found by the omega function, β is from Revelle (1979) and found by
the ICLUST function. Because β and ωh reflect the general factor saturation they vary across the S-1 ...
S-4 data sets and are much lower than α or ωt for incorrectly specified scales such as the BFI.

Estimate Test S-1 S-2 S-3 S-4 S.9 T.9 R14 BFI
β (min) .54 .72 .48 .25 .00 .57 .76 .79 .40
ωh .54 .72 .48 .25 .00 .69 .74 .78 .36
ωh∞ .60 1.00 .62 .29 .00 .86 .79 .85 .47
λ1 .77 .60 .60 .60 .60 .68 .79 .85 .65
λ3(α,µ0) .84 .72 .72 .72 .72 .76 .89 .91 .72
αpc .85 .72 .72 .72 .72 .77 .89 .91 .73
λ2(µ1) .85 .72 .73 .75 .79 .77 .89 .91 .74
µ2 .86 .72 .73 .76 .80 .77 .90 .91 .74
µ3 .86 .72 .73 .76 .80 .77 .90 .91 .74
λ5 .82 .69 .70 .72 .74 .75 .87 .89 .71
λ6 (smc) .88 .68 .72 .78 .86 .76 .91 .92 .75
λ4 (max) .90 .72 .76 .83 .89 .76 .93 .93 .82
glb .90 .72 .76 .83 .89 .76 .93 .93 .82
ωt .90 .72 .78 .84 .90 .86 .93 .92 .77

In that reliability is used to correct for attenuation (equation 7.3), underestimating the
reliability will lead to an over estimate of the unattenuated correlation and overestimating the
reliability will lead to an under estimate of the unattenuated correlation. Choosing the proper
reliability coefficient is therefore very important and should be guided by careful thought and
strong theory. In the case in which our test is multidimensional and several of the dimensions
contribute to the prediction of the criterion of interest, α will underestimate the reliabilty,
and thus lead to an overcorrection, but unfortunately, so will most of the estimates. ωt will
lead to a more accurate correction. In the case in which the test is multidimensional but only
the test’s general factor contributes to the prediction of the criterion of interest, α will over
estimate the reliability associated with the general factor and lead to an undercorrection. ωh
would lead to a more accurate correction in this case.

7.4 Estimation of reliability

As initially introduced by Spearman, reliability was used to correct for the attenuation of
relationships due to error in measurement. The initial concept of reliability, rxx, was the
correlation with a parallel test. This correlation allowed for an estimate of the percent of
error variance in the test. Congeneric test theory elaborated this concept such that test
reliability was the test’s communality (the squared factor loading) on a latent factor common
to multiple measures of the construct. Further refinements in domain sampling theory led
to ways of estimating the percentage of reliable variance associated with the general factor
of the test, ωh, or the entire test, ωt . But all of these estimates are based upon the idea
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that there is one source of true variance to be estimated. An alternative approach recognizes
that scores have multiple sources of reliable variance and that for different questions we want
to generalize across different sources of variance. That is, do not say that a measure has a
reliability, but rather that it has different reliabilities, depending upon what aspects of the
test are being considered.

In addition to having true score variance, tests are seen as having additional sources of
variance, some of which are relevant and some of which are irrelevant when making decisions
using the test. The test variance thus needs to be decomposed into variance associated with
item, form, time, and source of information. To make the problem more complex, all of these
components can interact with each other and produce their own components of variance.
Thus, rather than use correlations as the index of reliability, generalizability theory introduced
by Cronbach et al. (1972) used an analysis of variance or ANOVA approach to decompose
the test variance. Only some of these sources of variance are relevant when making decisions
using the test.

Table 7.9 Reliability is the ability to generalize about individual differences across alternative sources
of variation. Generalizations within a domain of items use internal consistency estimates. If the items
are not necessarily internally consistent reliability can be estimated based upon the worst split half, β ,
the average split (corrected for test length) or the best split, λ4. Reliability across forms or across time
is just the Pearson correlation. Reliability across raters depends upon the particular rating design and
is one of the family of Intraclass correlations.

Generalization Type of reliability Name
over

Unspecified Parallel tests rxx
Items Internal consistency

general factor (g) ωh
> g < h2 α
all common (h2) ωt

Split halves random split half 2r12
1+r12

worst split half β
best split half λ4

Form Alternative form rxx
Time Test-retest rxx
Raters Single rater ICC2

Average rater ICC2k

7.4.1 Test-retest reliability: Stability across time

Perhaps the most simple example of the different components of variance associated with
reliability is to consider the reliabilities of a test of an emotional state with a test of a
personality or ability trait . For both tests, we would expect that items within each test given
at the same time should correlate with each other. That is, the tests should be internally
consistent. But if a test of mood state shows reliability over time (stability), then we question
whether it is in fact a test of mood. Similarly, a test of intellectual ability should be internally
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consistent at any one time, but should also show stability across time. More formally, consider
the score for a particular person, i, on a particular test, j, at a particular time, ok, with a
particular random error, ei jk.

Xi jk = ti j +ok + ei jk.

For two parallel tests at the same time, the time component drops out and the expected
score is just

Xi jk = ti j + ei jk = ti + ei

and reliability will be

rxx =
σ2

t
σ2

X
=

σ2
t

σ2
t +σ2

e
. (7.36)

But, if the tests are given at different times, there might be an effect of time (practice,
learning, maturation) as well as an interaction of true score by time (people respond to the
different occasions differently.) Thus, the variance of an observation (not specifying time)
will be

σ2
X = σ2

t +σ2
o +σ2

to +σ2
e .

The correlation of the test at time 1 with that at time 2 standardizes the observations at
both times and thus removes any mean change across time. However, the interaction of time
with true score remains and thus:

rxx =
σ2

t
σ2

X
=

σ2
t

σ2
t +σ2

to +σ2
e
. (7.37)

In that the test-restest correlation reflects an additional variance component in the denomi-
nator (the trait by time interaction), it can normally be expected to be less than the reliability
at one time. Two different examples of this effect emphasize the difference between measures
of emotional states versus cognitive traits. In a short term study of the effect of a movie
manipulation on mood and emotional state, tense arousal showed a momentary reliability
of .65 with a 30 minute temporal stability of .28 (Rafaeli and Revelle, 2006). Indeed, four
mood measures with an average internal consistency reliability of .84 (ranging from .65 to
.92) had an average temporal stability over 30 minutes of just .50 (ranging from .28 to .68).
Indeed, if a mood measure shows any stability across intervals as short as one or two days
it is probably no longer a measure of temporary mood! However, we would expect stability
in traits such as intellectual ability. In a longitudinal study with a 66 year interval, ability
test scores show an amazing amount of temporal stability of .66 with an estimated short term
test-retest reliability of .90 (Deary et al., 2004).

7.4.2 Intraclass correlations and the reliability of ratings across
judges

The components of variance approach associated with generalizability theory is particularly
appropriate when considering the reliability of multiple raters or judges. By forming appro-
priate ratios of variances, various intraclass correlation coefficients may be found (Shrout
and Fleiss, 1979). The term intraclass is used because judges are seen as indistinguishable
members of a “class”. That is, there is no logical way of distinguishing them.
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Consider the problem of a study using coders (judges) to assess some construct (e.g., the
amount of future orientation that each person reports in a set of essays, or the amount of
anxiety a judge rates in subject based upon a 30 second video clip). Suppose that there are
100 subjects to be rated but a very limited number of judges. The rating task is very difficult
and it is much too much work for any one person to judge all the subjects. Rather, some
judges will rate some essays and other judges will rate other essays. What is the amount of
reliable subject variance estimated by the set of available judges? To answer this question,
one can take a subset of the subjects and have all of the judges rate just those targets. From
the analysis of the components of variance in those ratings (the generalizability study), it is
possible to estimate the amount of reliable variance in the overall set of ratings. The ICC
function calculates intraclass correlations by taking advantage of the power of R to use the
output from one function as input to another function. That is, ICC calls the aov function
to do an analysis of variance and then just organizes the mean square estimates from that
function to calculate the appropriate intraclass correlations and their confidence intervals
(Shrout and Fleiss, 1979).

For example, six subjects are given some score by six different judges (Table 7.10 and
Figure 7.7. Judges 1 and 2 give identical ratings, Judges 3 and 4 agree with Judges 1 and 2
in the relative ratings, but disagree in terms of level (Judge 3) or variance (Judge 4). Finally,
Judges 5 and 6 differ from the first four judges in their rank orders and differ from each other
in terms of their mean and variance. ICC reports the variance between subjects (MSb), the
variance within subjects (MSw), the variances due to the judges (MS j), and the variance due
to the interaction of judge by subject (MSe). The variance within subjects is based upon the
pooled The reliability estimates from this generalizability analysis will depend upon how the
scores from the judges are to be used in the decision analysis.

The next three equations are adapted from Shrout and Fleiss (1979) who give In a very
thorough discussion of the ICC as it is used in ratings and discuss six different ICCs and
formulas for their confidence intervals. Another useful discussion is by McGraw and Wong
(1996) and an errata published six months later.

ICC(1,1): Each target is rated by a different judge and the judges are selected at random.
This is a one-way ANOVA fixed effects model where the judge effect is part of the error term
and is found by

ICC(1,1) =
MSb −MSw

MSb +(n j −1)MSw
.

ICC(1,1) is sensitive to differences in means and variances between raters and is a measure of
absolute agreement. The interaction of rater by judge is included in the error term. Compare
the results for Judges 1 and 2 versus 1 and 3. Although the variances are identical, because
the mean for Judge 3 is 5 points higher the Judge 1, ICC(1,1) for these two judges is actually
negative.
ICC(2,1): A random sample of k judges rate the targets. The measure is one of absolute
agreement in the ratings. Mean differences in judges as well as the judge by target interaction
will affect the scores. Defined as

ICC(2,1) =
MSb −MSe

MSb +(n j −1)MSe +n j(MS j −MSe)/n
.

Because ICC(2,1) has a smaller residual error term (MSe) it will usually, but not always be
greater than ICC(1,1) (but see the analysis for J1 and J5).
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Table 7.10 The Intraclass Correlation Coefficient (ICC) measures the correlation between multiple
observers when the observations are all of the same class. It is found by doing an analysis of variance
to identify the effects due to subjects, judges, and their interaction. These are combined to form the
appropriate ICC. There are at least six different ICCs, depending upon the type of generalization that
is to be made. See Table 7.11 for results taken from these data.

> Ratings

J1 J2 J3 J4 J5 J6
1 1 1 6 2 3 6
2 2 2 7 4 1 2
3 3 3 8 6 5 10
4 4 4 9 8 2 4
5 5 5 10 10 6 12
6 6 6 11 12 4 8

> describe(Ratings,ranges=FALSE,skew=FALSE)
var n mean sd se

J1 1 6 3.5 1.87 0.76
J2 2 6 3.5 1.87 0.76
J3 3 6 8.5 1.87 0.76
J4 4 6 7.0 3.74 1.53
J5 5 6 3.5 1.87 0.76
J6 6 6 7.0 3.74 1.53

> print(ICC(Ratings),all=TRUE)
$results

type ICC F df1 df2 p lower bound upper bound
Single_raters_absolute ICC1 0.32 3.84 5 30 0.01 0.04 0.79
Single_random_raters ICC2 0.37 10.37 5 25 0.00 0.09 0.80
Single_fixed_raters ICC3 0.61 10.37 5 25 0.00 0.28 0.91
Average_raters_absolute ICC1k 0.74 3.84 5 30 0.01 0.21 0.96
Average_random_raters ICC2k 0.78 10.37 5 25 0.00 0.38 0.96
Average_fixed_raters ICC3k 0.90 10.37 5 25 0.00 0.70 0.98

Number of subjects = 6 Number of Judges = 6

$summary
Df Sum Sq Mean Sq F value Pr(>F)

subs 5 141.667 28.333 10.366 1.801e-05 ***
ind 5 153.000 30.600 11.195 9.644e-06 ***
Residuals 25 68.333 2.733
---
Signif. codes: 0 Ô***~O 0.001 Ô**~O 0.01 Ô*~O 0.05 Ô.~O 0.1 Ô ~O 1

ICC(3,1): A fixed set of k judges rate each target. Mean differences between judges are
removed. There is no generalization to a larger population of judges.

ICC(3,1) =
MSb −MSe

MSb +(n j −1)MSe

By removing the mean for each judge, ICC(3,1) is sensitive to variance differences between
judges (e.g., Judges 4 and 6 have four times the variance of Judges 1...3 and 5).
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Fig. 7.7 When estimating the reliability of raters, it is important to consider what kind of reliability
is relevant. Although clearly the correlation between raters J1 ... J4 is 1 between all 4 raters, the raters
differ in their leniency as well as their variability. The Intraclass correlation considers different types
of reliability.

Table 7.11 Sources of variances and the Intraclass Correlation Coefficient.
(J1, J2) (J3, J4) (J5, J6) (J1, J3) (J1, J5) (J1 ... J3) (J1 ... J4) (J1 ... J6)

Variance estimates
MSb 7 15.75 15.75 7.0 5.2 10.50 21.88 28.33
MSw 0 2.58 7.58 12.5 1.5 8.33 7.12 7.38
MS j 0 6.75 36.75 75.0 0.0 50.00 38.38 30.60
MSe 0 1.75 1.75 0.0 1.8 0.00 .88 2.73

Intraclass correlations
ICC(1,1) 1.00 .72 .35 -.28 .55 .08 .34 .32
ICC(2,1) 1.00 .73 .48 .22 .53 .30 .42 .37
ICC(3,1) 1.00 .80 .80 1.00 .49 1.00 .86 .61
ICC(1,k) 1.00 .84 .52 -.79 .71 .21 .67 .74
ICC(2,k) 1.00 .85 .65 .36 .69 .56 .75 .78
ICC(3,k) 1.00 .89 .89 1.00 .65 1.00 .96 .90
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Then, for each of these three cases, if reliability is to be estimated for the average rating of
multiple judges? In that case, each target gets the the average of k ratings and the reliability
are increased by the Spearman Brown adjusted reliability.

7.4.3 Generalizability theory: reliability over facets

The intraclass correlation analysis of the reliability of ratings in terms of components of
variance associated with raters, targets, and their interactions, can be extended to other
domains. That is, the analysis of variance approach to the measurement of reliability focuses
on the relevant facets in an experimental design. If ratings are nested within teachers whom
are nested within schools, and are given at different times, then all of these terms and their
interactions are sources of variance in the ratings. First do an analysis of variance in the
generalizability study to identify the variance components. Then determine which variance
components are relevant for the application in the decision study in which one is trying to
use the measure (Cronbach et al., 1972). Similarly, the components of variance associated
with parts of a test can be analyzed in terms of the generalizability of the entire test.

7.4.4 Reliability of a composite test

If a test is made up of subtests with known reliability, it is possible to find the reliability
of the composite in terms of the known reliabilities and the observed correlations. Early
discussions of this by Cronbach et al. (1965) considered the composite reliability of a test
to be a function of the reliabilities of each subtest, ρxxi (for which Cronbach used αi), the
subtest variance, σ2

i , and the total test variance, σ2
X ,

αs = 1− Σ(1−ρxxi)σ2
i

σ2
X

. (7.38)

The example in Table 7.5 had three groups with reliabilities of .857, .857 and .823, total
variance of 53.2, and variance/covariances of

G1 G2 G3
G1 21.0 4.8 2.4
G2 4.8 11.2 1.6
G3 2.4 1.6 3.4

The composite α is therefore

1− (1− .857)21.0+(1− .857)11.2+(1− .823)3.4
53.2

= .90

which is the same value as found for ωt and is the correct value given the known structure of
this problem. However, the items in the example all have equal correlations within groups. For
the same reason that α underestimates reliability, αs will also underestimate the reliability if
the items within groups do not have identical correlations. αs is preferred to α for estimating
the reliability of a composite, but is still not as accurate as ωt . Although Cronbach et al.
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(1965) used αi as an estimate for the subtest reliability, ρxxi , it is possible to use a better
estimate of reliability for the subtests. ωt can, of course, be found using the omega function or
can be found by using a“phantom variable”approach (Raykov, 1997) in a structural equation
solution using sem (Chapter 10).

7.4.5 Reliability of a difference score

It is sometimes useful to create a score made up of the difference between two tests. Just as
the variance of a composite of X1 and X2 is the sum of the variances and twice the covariance of
X1 and X2 (Equation 7.39, so is the variance of a difference, except in this case the covariance
is negative. The reliability of this difference score, r∆∆ , may be found by the ratio of the
reliable variance to the total variance and is a function of the reliable variances for the two
components as well as their intercorrelation:

r∆∆ =
σ2

1 rxx1 +σ2
2 rxx2 −2σ2

1 σ2
2 r12

σ2
1 +σ2

2 −2σ2
1 σ2

2 r12
. (7.39)

This is equivalent to finding the reliability of a sum of two tests (Equation 7.38 but now
the tests are negatively rather than positively correlated. As the correlation between the two
tests increases, the reliability of their differences decreases.

Fig. 7.8 The reliability of composites or differences of two tests depends upon the reliability of the
tests as well as their intercorrelation. The reliability of the composite increases as the tests are more
correlated (left hand panel). However, the reliability of a difference decreases as the tests are more
correlated (right hand panel).

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reliability of a composite

Intercorrelation

R
el
ia
bi
lit
y

0.4
0.5
0.6
0.7
0.8
0.9

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reliability of a difference

Intercorrelation

R
el
ia
bi
lit
y

0.4
0.5
0.6
0.7
0.8
0.9



238 7 Classical Test Theory and the Measurement of Reliability

7.5 Using reliability to estimate true scores

Although developed to correct for attenuation of correlations due to poor measurement,
another important use of reliability is to estimate a person’s true or domain score given their
observed score. From Equation 7.40 it is clear that

t̂ = bt.xx =
σ2

t
σ2

x
x = ρ2

xtx = rxxx. (7.40)

That is, expected true scores will regress towards the mean observed score as a function
of 1 - rxx. This regression to the mean is the source of great confusion for many people
because it implies that the best estimate for a person’s retest score is closer to the mean of
the population than is the observed score. Real life examples of this are seen in sports and
finance where a baseball player who does well one year can be expected to do less well the
next year just as a financial advisor who does well one year will probably not do as well
the next year (Bernstein, 1996; Stigler, 1999). Perhaps the classic example is that of flight
instructors who observe that praising good performance results in decreases in performance
while punishing poor performance results in improved performance (Tversky and Kahneman,
1974).

Knowing the reliability also allows for confidence intervals around the estimated true score.
For the proportion of error variance in an estimate is just 1- rxx, and thus the standard error
of measurement is

σe = σx

�
r2

xt = σx
�

1− rxx (7.41)

Because the estimated true score is closer to the mean than the observed score, the confidence
intervals of true score will be assymetric around the observed score. Consider three observed
scores of +2, 0, and -2 and their estimated true scores and confidence intervals as a function
of the test reliability.

All of the approaches discussed in this chapter have considered the reliability of a measure
in terms of the variance of observed scores and the variance of latent scores. Although the
effect of items is considered in terms of how the items intercorrelate, items are assumed to
sampled at random from some universe of items. Reliability is a characteristic of the test
and of a sample of people. A test’s reliability will be increased if the true score variance is
increased, but this can be done in a somewhat artificial manner. Consider a class of first year
graduate students in psychometrics. An exam testing their knowledge will probably not be
very reliable in that the variance of the students’ knowledge is not very great. But if several
first year undergraduates who have not had statistics and several psychometricians are added
to the group of test takers, suddenly the reliability of the test is very high because the between
person variance has increased. But the precision for evaluating individual differences within
the set of graduate students has not changed. What is needed is a model of how an individual
student responds to an individual item rather than how a group of students responds to a
group of items (a test). In the next chapter we consider how these ideas can be expanded
to include a consideration of how individual items behave, and how it is possible to get an
estimate of the error associated with the measure for a single individual.
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Fig. 7.9 Confidence intervals vary with reliability, For observed scores of -2, 0, and 2, the estimated
true scores and confidence intervals vary by reliability. The confidence range is symmetric about the
estimated true score. Even with reliability = .90, the confidence intervals for a true score with an
observed score of 2 range from 1.18 to 2.42. (1.8−
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