your OS

Package 000 00 Building Blocks Dependencies

-> Part II

# An introduction to R Sponsored by The Association of Psychological Science and Society of Multivariate Experimental Psychology

### William Revelle, David M. Condon & Sara Weston Northwestern University Evanston, Illinois USA

https://personality-project.org/r/aps/aps-short.pdf https://personality-project.org/r/aps/aps.Rmd Partially supported by a grant from the National Science Foundation: SMA-1419324



INUVEDCITY



1/279

| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 000          | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |

## Outline

## Part I: What is R, where did it come from, why use it

- $\bullet\,$  Installing R and adding packages: the building blocks of R
- Part II: A brief introduction an overview
  - R is just a fancy (very fancy) calculator
  - Descriptive data analysis
  - Some inferential analysis

### Part III R is a powerful statistical system

- Data entry (detail and practice)
- Descriptive (again)
- Inferential (t and F with more practice)
- Regression
- Basic R commands

Part IV: Psychometrics

- Reliability and its discontents
- EFA, CFA, SEM

Part V: Help and More Help

• List of useful commands

Part VI: The psych package and more practice



Outline of Part I What is R? Where did it come from, why use it? **Misconceptions** Installing R on your computer and adding packages Installing for your operating system **R-Applications** Installing and using packages What are packages Installing packages **Building Blocks** Objects R is a language Package Dependencies Objects act on objects Package dependencies -> Part II



| What is R?                                   | Installing R         | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|----------------------------------------------|----------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| <b>000000000</b> 000000000000000000000000000 | 000                  | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Where did it com                             | ne from, why use it? | •       |          |                                         |                                         |            |

### R: Statistics for all us

- 1. What is it?
- 2. Why use it?
- 3. Common (mis)perceptions of R
- 4. Examples for psychologists
  - graphical displays
  - basic statistics
  - advanced statistics
- 5. List of major commands and packages
- 6. Some basic programming concepts in R
- 7. An overview of the *psych* package
- 8. Extended practice on your data sets



| What is R?                              | Installing R       | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 000                | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Where did it con                        | ne from, why use i | t?      |          |                                         |                                         |            |

### R: What is it?

- 1. R: An international collaboration
- 2. R: The open source public domain version of S+  $% \left( {{{\rm{S}}_{\rm{s}}}} \right)$
- 3. R: Written by statisticians (and some of us) for statisticians (and the rest of us)
- 4. R: Not just a statistics system, also an extensible language.
  - This means that as new statistics are developed they tend to appear in R far sooner than elsewhere.
  - R facilitates asking questions that have not already been asked.



| What is R?      | Installing R       | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------|--------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000       | 0000               | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Where did it co | me from, why use i | t?      |          |                                         |                                         |            |

### **Statistical Programs for Psychologists**

- General purpose programs
  - R
  - S+
  - SAS
  - SPSS
  - STATA
  - Systat
- Specialized programs
  - Mx
  - EQS
  - AMOS
  - LISREL
  - MPlus
  - Your favorite program



| What is R?      | Installing R       | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------|--------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000       | 0000               | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Where did it co | me from, why use i | t?      |          |                                         |                                         |            |

### **Statistical Programs for Psychologists**

- General purpose programs
  - R
  - \$+
  - \$A\$
  - \$P\$\$
  - \$TATA
  - \$y\$tat
- Specialized programs
  - Mx (OpenMx is part of R)
  - EQ\$
  - AMO\$
  - LI\$REL
  - MPlu\$
  - Your favorite program



| What is R?                              | Installing R       | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 000                | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Where did it com                        | e from, why use it | ?       |          |                                         |                                         |            |

### R: A way of thinking

- "R is the lingua franca of statistical research. Work in all other languages should be discouraged."
- "This is R. There is no if. Only how."
- "Overall, SAS is about 11 years behind R and S-Plus in statistical capabilities (last year it was about 10 years behind) in my estimation."
- Q: My institute has been heavily dependent on SAS for the past while, and SAS is starting to charge us a very deep amount for license renewal.... The team is [considering] switching to R, ... I am talking about the entire institute with considerable number of analysts using SAS their entire career.

... What kind of problems and challenges have you faced? A: "One of your challenges will be that with the increased productivity of the team you will have time for more intellectually challenging problems. That frustrates some people."



| What is R?       | Installing R       | your OS | Packages | Building Blocks | Dependencies | -> Part II |
|------------------|--------------------|---------|----------|-----------------|--------------|------------|
| 00000000000      | 000                | 0000    | 000      | 0000000000000   | 0000000      |            |
| 00               |                    |         | 00       | 000000          | 000000000    |            |
| Where did it con | ne from, why use i | t?      |          |                 |              |            |

### R is open source, how can you trust it?

- Q: "When you use it [R], since it is written by so many authors, how do you know that the results are trustable?"
- A: "The R engine [...] is pretty well uniformly excellent code but you have to take my word for that. Actually, you don't. The whole engine is open source so, if you wish, you can check every line of it. If people were out to push dodgy software, this is not the way they'd go about it."
- Q: Are R packages bug free?
- A: No. But bugs are fixed rapidly when identified.
- Q: How does function x work? May I adapt it for my functions.
- A: Look at the code. Borrow what you need.



| What is R?       | Installing R        | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|------------------|---------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000     | 000                 | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Where did it con | ne from, why use it | ?       |          |                                         |                                         |            |

### What is R?: Technically

- R is an open source implementation of S (The statistical language developed at Bell Labs). (S-Plus is a commercial implementation)
- R is a language and environment for statistical computing and graphics. R is available under GNU Copy-left
- R is a group project run by a core group of developers (with new releases semiannually). The current version of R is 3.5.0
- R is an integrated suite of software facilities for data manipulation, calculation and graphical display.

(Adapted from Robert Gentleman and the r-project.org web page)



| What is R?                              | Installing R | your OS | Packages | Building Blocks | Dependencies | -> Part II |  |
|-----------------------------------------|--------------|---------|----------|-----------------|--------------|------------|--|
| 000000000000000000000000000000000000000 | 000          | 0000    | 000      | 0000000000000   |              |            |  |
| 00                                      |              |         | 00       | 000000          | 000000000    |            |  |
| Where did it come from, why use it?     |              |         |          |                 |              |            |  |

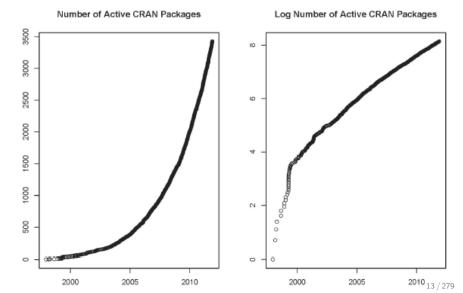
## R is an integrated suite of software facilities for data manipulation, calculation and graphical display. It is:

- 1. an effective data handling and storage facility,
- 2. a suite of operators for calculations on arrays, in particular matrices.
- 3. a large, coherent, integrated collection of intermediate tools for data analysis,
- 4. graphical facilities for data analysis and display either on-screen or on hardcopy, and
- 5. a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

"Many users think of R as a statistics system. We prefer to think of it as an environment within which statistical techniques are implemented. R can be extended (easily) via packages ... available through the CRAN family of Internet sites covering a very wide range of modern statistics." (Adapted from r-project.org web page) 11/279

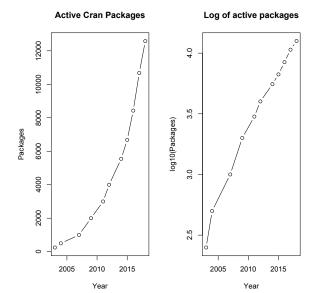


| What is R?       | Installing R        | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|------------------|---------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000     | 000                 | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Where did it com | ne from, why use it | t?      |          |                                         |                                         |            |


### R: A brief history

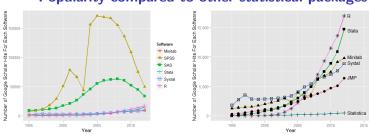
- 1991-93: Ross Dhaka and Robert Gentleman begin work on R project for Macs at U. Auckland (S for Macs).
- 1995: R available by ftp under the General Public License.
- 96-97: mailing list and R core group is formed.
- 2000: John Chambers, designer of S joins the Rcore (wins a prize for best software from ACM for S)
- 2001-2018: Core team continues to improve base package with a new release every 6 months (now more like yearly).
- Many others contribute "packages" to supplement the functionality for particular problems.
  - 2003-04-01: 250 packages
  - 2004-10-01: 500 packages
  - 2007-04-12: 1,000 packages
  - 2009-10-04: 2,000 packages
  - 2011-05-12: 3,000 packages
  - 2014-05-16: 5,547 packages (on CRAN) + 824 bioinformatic packages on BioConductor
  - 2015-05-20 6,678 packages (on CRAN) + 1024 bioinformatic packages + ?,000s on GitHub
  - 2016-03-31 8,427 packages (on CRAN) + 1,104 bioinformatic packages + ?,000s on GitHub
  - 2017-05-21 10,677 packages (on CRAN) + 1,383 bioinformatic packages + ?,000s on GitHub
  - 2018-05-20 12,583 packages (on CRAN) + 1,560 bioinformatic packages + ?,000s on GitHub




| What is R?       | Installing R        | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|------------------|---------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 00000000000      | 000                 | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Where did it con | ne from, why use it | t?      |          |                                         |                                         |            |

### Rapid and consistent growth in packages contributed to R




| What is R?       | Installing R       | your OS | Packages | Building Blocks | Dependencies | -> Part II |
|------------------|--------------------|---------|----------|-----------------|--------------|------------|
| 0000000000       | 000                | 0000    | 000      | 0000000000000   | 0000000      |            |
| 00               |                    |         | 00       | 000000          | 000000000    |            |
| Where did it com | e from, why use it | ?       |          |                 |              |            |

### Rapid and consistent growth in packages contributed to R





| What is R?          | Installing R    | your OS | Packages | Building Blocks                         | Dependencies | -> Pa |
|---------------------|-----------------|---------|----------|-----------------------------------------|--------------|-------|
| 0000000000000000    | 0               | 0000    | 000      | 000000000000000000000000000000000000000 |              |       |
| Where did it come t | from why use it | 2       | 00       | 000000                                  | 000000000    |       |



Popularity compared to other statistical packages

http://r4stats.com/articles/popularity/ considers various
measures of popularity

- 1. discussion groups
- 2. blogs
- 3. Google Scholar citations (> 117, K citations,  $\approx$  32K in 2017, 16K 2018)
- 4. Google Page rank
- 5. Number of downloads (see http://www.rpackages.io/packages or



| What is R?       | Installing R       | your OS | Packages | Building Blocks | Dependencies | -> Part II |
|------------------|--------------------|---------|----------|-----------------|--------------|------------|
| 000000000000     | 000                | 0000    | 000      | 0000000000000   |              |            |
| 00               |                    |         | 00       | 000000          | 000000000    |            |
| Where did it com | e from, why use it | ?       |          |                 |              |            |

### R as a way of facilitating replicable science

- 1. R is not just for statisticians, it is for all research oriented psychologists.
- 2. R scripts are published in psychology journals to show new methods:
  - Psychological Methods
  - Psychological Science
  - Journal of Research in Personality
- 3. R based data sets are now accompanying journal articles:
  - The *Journal of Research in Personality* now accepts R code and data sets.
  - JRP special issue in R,
- 4. By sharing our code and data the field can increase the possibility of doing replicable science.



| What is R?                              | Installing R        | your OS | Packages | Building Blocks                         | Dependencies                            | -> Pa |
|-----------------------------------------|---------------------|---------|----------|-----------------------------------------|-----------------------------------------|-------|
| 000000000000000000000000000000000000000 | 0000                | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |       |
| Where did it co                         | ome from, why use i | t?      |          |                                         |                                         |       |

### Reproducible Research: Sweave and KnitR

Sweave is a tool that allows to embed the R code for complete data analyses in LATEX documents. The purpose is to create dynamic reports, which can be updated automatically if data or analysis change. Instead of inserting a prefabricated graph or table into the report, the master document contains the R code necessary to obtain it. When run through R, all data analysis output (tables, graphs, etc.) is created on the fly and inserted into a final ATFXdocument. The report can be automatically updated if data or analysis change, which allows for truly reproducible research.

 $\label{eq:statistical reports using literate data analysis. I Supplementary material for journals can be written in Sweave/KnitR/ RMarkdown$ 



| What is R?                             | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 00000000000000000000000000000000000000 | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Misconceptions                         |              |         |          |                                         |                                         |            |

### Misconception: R is hard to use

- 1. R doesn't have a GUI (Graphical User Interface)
  - Partly true, many use syntax.
  - Partly not true, GUIs exist (e.g., R Commander, R-Studio).
  - Quasi GUIs for Mac and PCs make syntax writing easier.
- 2. R syntax is hard to use
  - Not really, unless you think an iPhone is hard to use.
  - Easier to give instructions of 1-4 lines of syntax rather than pictures of menu after menu to pull down.
  - Keep a copy of your syntax, modify it for the next analysis.
- 3. R is not user friendly: A personological description of R
  - R is Introverted: it will tell you what you want to know if you ask, but not if you don't ask.
  - R is Conscientious: it wants commands to be correct.
  - R is not Agreeable: its error messages are at best cryptic.
  - R is Stable: it does not break down under stress.
  - R is Open: new ideas about statistics are easily developed.



| What is R?     | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|----------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 00000000000    | 000          | 0000    | 000      | 000000000000000000000000000000000000000 | 0000000      |            |
| 0.             |              |         | 00       | 000000                                  | 000000000    |            |
| Misconceptions |              |         |          |                                         |              |            |

Misconceptions: R is hard to learn – some interesting facts

1. With a brief web based tutorial

http://personality-project.org/r, 2nd and 3rd year undergraduates in psychological methods and personality research courses are using R for descriptive and inferential statistics and producing publication quality graphics.

- 2. More and more psychology departments are using it for graduate and undergraduate instruction.
- 3. R is easy to learn, hard to master
  - R-help newsgroup is very supportive (usually)
  - Multiple web based and pdf tutorials see (e.g., http://www.r-project.org/)
  - Short courses using R for many applications. (Look at APS program). Go to March, 2017 APS Observer article by Sara Weston and Debbie Yee.

 Books and websites for SPSS and SAS users trying to learn R (e.g., http://r4stats.com/) by Bob Muenchen (look for link to free version).



#### What is R? Installing R 0000000000000 00

your OS

Package 000 00 Building Blocks Dependencies

-> Part II

### Go to the R.project.org

answers to frequently asked questions before you send an email.

The Comprehensive R Archive Network

### Download and Install R Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R: Download R for Linux · Download R for (Mac) OS X Download R for Windows R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above. Source Code for all Platforms Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do • The latest release (2018-04-23, Joy in Playing) R-3.5.0.tar.gz, read what's new in the latest version. Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release). · Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes before filing corresponding feature requests or bug reports. · Source code of older versions of R is available here. · Contributed extension packages Ouestions About R · If you have questions about R like how to download and install the software, or what the license terms are, please read our

#### What are R and CRAN?

R is 'GNU S', a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc. Please consult the R project homepage for further information.

CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R. Please use the CRAN mirror nearest to you to minimize network load.



CRAN Mirrors What's new? Task Views Search

About R R Homepage The R Journal

Software R Sources R Binaries Packages Other

Documentation Manuals FAQs Contributed your OS

**Building Blocks** 

### Go to the Comprehensive R Archive Network (CRAN)

| $\bullet \bullet \bullet \checkmark \Box$        | 🔒 oran.r-project.org Č                                                                                                                                                                                                                                                                                                              |               |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| iiii gov.track Altmetric it! Wikipedia DuckDuckG | So News Y Google Maps RSeek.org win-builder CRAN Package SAPA Project data Google Scholar Northwestern WebMail Apple Disney ESPN                                                                                                                                                                                                    | $\rightarrow$ |
|                                                  | The Comprehensive R Archive Network                                                                                                                                                                                                                                                                                                 |               |
|                                                  | Download and Install R                                                                                                                                                                                                                                                                                                              |               |
|                                                  | Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want<br>one of these versions of R:                                                                                                                                                                                 |               |
| CRAN<br>Mirrors                                  | Download R for Linux     Download R for (Mac) OS X                                                                                                                                                                                                                                                                                  |               |
| What's new?<br>Task Views                        | Download R for Windows                                                                                                                                                                                                                                                                                                              |               |
| Search                                           | R is part of many Linux distributions, you should check with your Linux package management system in addition to the<br>link above.                                                                                                                                                                                                 |               |
| About R<br>R Homepage                            | Source Code for all Platforms                                                                                                                                                                                                                                                                                                       |               |
| The R Journal<br>Software<br>R Sources           | Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source<br>code. The sources have to be compiled before you can use them. If you do not know what this means, you probably do not<br>want to do it!                                                                     |               |
| R Binaries<br>Packages                           | • The latest release (Friday 2017-04-21, You Stupid Darkness) R-3.4.0.tar.gz, read what's new in the latest version.                                                                                                                                                                                                                |               |
| Other                                            | <ul> <li>Sources of <u>R alpha and beta releases</u> (daily snapshots, created only in time periods before a planned release).</li> </ul>                                                                                                                                                                                           |               |
| Documentation<br>Manuals<br>FAO8                 | <ul> <li>Daily snapshots of current patched and development versions are <u>available here</u>. Please read about <u>new features and bug fixes</u> before filing corresponding feature requests or bug reports.</li> </ul>                                                                                                         |               |
| Contributed                                      | • Source code of older versions of R is available here.                                                                                                                                                                                                                                                                             |               |
|                                                  | Contributed extension packages                                                                                                                                                                                                                                                                                                      |               |
|                                                  | Questions About R                                                                                                                                                                                                                                                                                                                   |               |
|                                                  | <ul> <li>If you have questions about R like how to download and install the software, or what the license terms are, please read our <u>answers to frequently asked questions</u> before you send an email.</li> </ul>                                                                                                              |               |
|                                                  | What are R and CRAN?                                                                                                                                                                                                                                                                                                                |               |
| technic                                          | iNU S', a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and grap<br>ques: linear and nonlinear modelling, statistical lests, time series analysis, classification, clustering, etc. Please consult the <u>R project homepage</u> li<br>information. |               |
|                                                  | i is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R. Please use the nearest to you to minimize network load.                                                                                                                                          | <b>CRA</b>    |

What is R? Installing R 0000000000000 00 your OS

Packages 000 00 Building Blocks Dependencies

-> Part II

### Download and install the appropriate version – PC



CRAN Mirrors What's new? Task Views Search About R R Homepage The R Journal

Software

R Sources R Binaries

Packages Other

| base           | Binaries for base distribution. This is what you want to <u>install R for the first</u><br><u>time</u> .                                                                                                                    |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>contrib</u> | Binaries of contributed CRAN packages (for $R \ge 2.13 x$ ; managed by Uwe Ligges). There is also information on third party software available for CRAN Windows services and corresponding environment and make variables. |
| old contrib    | Binaries of contributed CRAN packages for outdated versions of R (for R < 2.13.x; managed by Uwe Ligges).                                                                                                                   |
| <u>Rtools</u>  | Tools to build R and R packages. This is what you want to build your own<br>packages on Windows, or to build R itself.                                                                                                      |

Please do not submit binaries to CRAN. Package developers might want to contact Uwe Ligges directly in case questions / suggestions related to Windows binaries.

R for Windows

You may also want to read the R FAQ and R for Windows FAQ.

Note: CRAN does some checks on these binaries for viruses, but cannot give guarantees. Use the normal precautions with downloaded executables.

| Documentation |
|---------------|
| Manuals       |
| FAQs          |
| Contributed   |

What is R? Installing R 0000000000000 00 your OS

Package 000 00 Building Blocks Dependencies

-> Part II

### Download and install the appropriate version – PC



CRAN Mirrors What's new? Task Views Search

About R <u>R Homepage</u> <u>The R Journal</u>

Software <u>R Sources</u> <u>R Binaries</u> <u>Packages</u> <u>Other</u>

Documentation Manuals FAQs Contributed R-3.5.0 for Windows (32/64 bit)

### Download R 3.5.0 for Windows (62 megabytes, 32/64 bit)

Installation and other instructions New features in this version

If you want to double-check that the package you have downloaded matches the package distributed by CRAN, you can compare the md5sum of the .exe to the fingerprint on the master server. You will need a version of md5sum for windows: both graphical and command line versions are available.

Frequently asked questions

- Does R run under my version of Windows?
- How do I update packages in my previous version of R?
- Should I run 32-bit or 64-bit R?

Please see the <u>R FAQ</u> for general information about R and the <u>R Windows FAQ</u> for Windows-specific information.

Other builds

- · Patches to this release are incorporated in the <u>r-patched snapshot build</u>.
- A build of the development version (which will eventually become the next major release of R) is available in the <u>r-devel snapshot build</u>.
- Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is <<u>CRAN MIRROR>/bin/windows/base/release.htm</u>.

your OS

### Download and install the appropriate version – Mac



CRAN Mirrors What's new? Task Views Search

About R **R** Homepage The R Journal

Software R Sources **R** Binaries Packages Other

Documentation Manuals FAQs Contributed

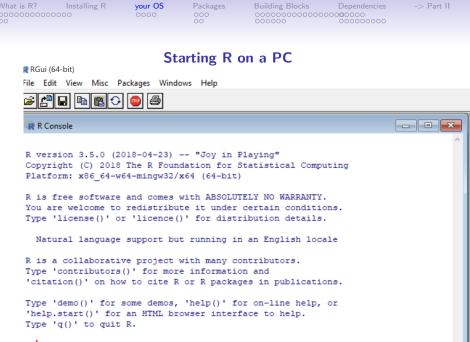
R for Mac OS X

This directory contains binaries for a base distribution and packages to run on Mac OS X (release 10.6 and above). Mac OS 8.6 to 9.2 (and Mac OS X 10.1) are no longer supported but you can find the last supported release of R for these systems (which is R 1.7.1) here. Releases for old Mac OS X systems (through Mac OS X 10.5) and PowerPC Macs can be found in the old directory.

Note: CRAN does not have Mac OS X systems and cannot check these binaries for viruses. Although we take precautions when assembling binaries, please use the normal precautions with downloaded executables.

As of 2016/03/01 package binaries for R versions older than 2.12.0 are only available from the CRAN archive so users of such versions should adjust the CRAN mirror setting accordingly.

R 3.5.0 "Joy in Playing" released on 2018/04/24


Important: since R 3.4.0 release we are now providing binaries for OS X 10.11 (El Capitan) and higher using non-Apple toolkit to provide support for OpenMP and C++17 standard features. To compile packages you may have to download tools from the tools directory and read the corresponding note below.

Please check the MD5 checksum of the downloaded image to ensure that it has not been tampered with or corrupted during the mirroring process. For example type md5 R-3.5.0.pkg in the Terminal application to print the MD5 checksum for the R-3.5.0.pkg image. On Mac OS X 10.7 and later you can also validate the signature using pkgutil --check-signature R-3.5.0.pkg

Lastest release:

R-3.5.0.pkg MD5-hash: 414029c9c9f706d3d04baa887ccffbc4 SHAL (ca. 74MB)

R 3.5.0 binary for OS X 10.11 (El Capitan) and higher, signed package. Contains R 3.5.0 framework, R.app GUI 1.70 in 64-bit hash: 6e90d38892bb366630ae30c223a898e8af84dff7 for Intel Macs, Tcl/Tk 8.6.6 X11 libraries and Texinfo 5.2. The latter two components are optional and can be ommitted when 24 / 279 abagaing "ayatam install", thay are only needed if you want to



### Start up R and get ready to play (most recent Mac version)

R version 3.5.0 (2018-04-23) -- "Joy in Playing" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86\_64-apple-darwin15.6.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

[R.app GUI 1.70 (7521) x86\_64-apple-darwin15.6.0] [Workspace restored from /Users/wr/.RData] [History restored from /Users/wr/.Rapp.history] Good morning Bill. Are you ready to have fun?



26 / 279

| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 00           | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |

### Check the version number for R $\geq$ 3.5.0) and for psych ( $\geq\!\!1.8.4$

| R code                                                                                                                                                                                               |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| sessionInfo()                                                                                                                                                                                        |      |
| R version 3.5.0 (2018-04-23)                                                                                                                                                                         |      |
| Platform: x86_64-apple-darwin15.6.0 (64-bit)                                                                                                                                                         |      |
| Running under: macOS High Sierra 10.13.4                                                                                                                                                             |      |
| Matrix products: default<br>BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib<br>LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib |      |
| locale:<br>[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8                                                                                                                         |      |
| attached base packages:<br>[1] stats graphics grDevices utils datasets methods base                                                                                                                  |      |
| other attached packages:<br>[1] psych_1.8.4                                                                                                                                                          |      |
| <pre>loaded via a namespace (and not attached): [1] compiler_3.5.0 tools_3.5.0 parallel_3.5.0 foreign_0.8-70 nlme_3.1-137 mnormt [7] grid_3.5.0 lattice_0.20-35 other attached packages:</pre>       | :_1. |
|                                                                                                                                                                                                      |      |



| What is R?            | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 0000000000            | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| <b>R-Applications</b> |              |         |          |                                         |                                         |            |

### Various ways to run R

- 1. UNIX (and \*NIX like) environments
  - Can be scripted for use on remote servers
  - Particularly fast if on remote processors with many cores
  - RStudio Server as "Integrated Development Environment" (IDE)

2. PC

- quasi GUI + text editor of choice
- RStudio as "Integrated Development Environment" (IDE) (recommended by Sara)
- 3. Mac
  - R.app + text editor of choice (preferred by Bill)
  - RStudio as "Integrated Development Environment" (IDE) (recommended by David)
  - allows for multiple cores for parallel processing
- 4. From the web
  - allows remote R (but R = 3.4 and psych = 1.7.8)
  - Rdocumentation is helpful for package searcjh



| What is R?            | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 0000000000            | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| <b>R-Applications</b> |              |         |          |                                         |                                         |            |

### R Studio is a useful "Integrated Development Environment" (IDE)

| •   📽 •   🔒 🔒   🔒                                       | <ul> <li>Go to file/function</li> </ul> |                         |                    |                       |          |                |                      |                    |                   |            | 🙁 Project: (N |
|---------------------------------------------------------|-----------------------------------------|-------------------------|--------------------|-----------------------|----------|----------------|----------------------|--------------------|-------------------|------------|---------------|
| Untitled 1* × 🐑 overview                                | Rnw* ×                                  |                         |                    |                       |          |                | Environment          | History            |                   |            |               |
| 🗇 🖒 📙 🖂 Source on Save                                  | 9 Z-                                    |                         |                    |                       | 📑 Run    | 🐏 💽 Source 🔹 📃 | 📑 🔂 🔂 🐨 🗠            | nport Dataset 🖌 🚽  | Clear C           |            | = 1           |
| 1 library(psych)                                        |                                         |                         |                    |                       |          |                | Global Enviro        | nment <del>+</del> |                   |            | (Q,           |
| 2 myData <- sat.act                                     |                                         |                         |                    |                       |          |                | Data                 |                    |                   |            |               |
| 3 pairs.panels(myData<br>4 describe(myData)             | )                                       |                         |                    |                       |          |                | Cleaned              | 700 ob             | s. of 6 variable  | s          |               |
| 5 cleaned <- scrub(my                                   | Data "ACT" min-                         | 5)                      |                    |                       |          |                | gender :             | int 2 2 2 1 1 :    | 2122              |            |               |
| 6 describe(cleaned)                                     | bucu, ner jann-                         |                         |                    |                       |          |                | education            | int 3 3 3 4 i      | 2 5 5 3 4 5       |            |               |
|                                                         |                                         |                         |                    |                       |          |                | age : int            | 19 23 20 27 3      | 3 26 30 19 23 40  |            |               |
|                                                         |                                         |                         |                    |                       |          |                | ACT : int            | 24 35 21 26 3      | 28 36 22 22 35    |            |               |
|                                                         |                                         |                         |                    |                       |          |                | SATV : in            | 500 600 480 5      | 550 600 640 610 5 | 20 400 730 |               |
|                                                         |                                         |                         |                    |                       |          |                | SATQ : in            | t 500 500 470 5    | 520 550 640 500 5 | 60 600 800 |               |
| 6:18 🚺 (Top Level) 🌣                                    |                                         |                         |                    |                       |          | R Script 🗘     | ⊖ myData             | 700 ot             | s. of 6 variable  | s          |               |
| Console ~/ 🔗                                            |                                         |                         |                    |                       |          |                | gender :             | int 2 2 2 1 1 :    | 12122             |            |               |
| CT 4 700 28.5                                           | 5 4.82 29                               | 28.84 4.                | 45 3 36            | 33 -0.66              | 0.53 0   | .18            |                      |                    | -                 |            |               |
| ATV 5 700 612.2                                         |                                         | 619.45 118.             |                    | 600 -0.64             | 0.33 4   |                |                      | Packages Help      |                   |            | -             |
| ATQ 6 687 610.2                                         |                                         | 617.25 118.             | 61 200 800         | 600 -0.59             | -0.02 4  | .41            | 🔶 🧼 🔑 Z              | oom 🛛 🚈 Export •   | 🍳 🥑 Clear All     |            |               |
| <pre>cleaned &lt;- scrub(myDat</pre>                    |                                         |                         |                    |                       |          |                | 1                    |                    |                   |            |               |
| <pre>rror in `[.data.frame`(     describe(myData)</pre> | <, , 1) : undef                         | ined columns            | selected           |                       |          |                |                      | 0 2 4              | 5 20              | 35         | 200 500 800   |
| vars n mea                                              | n sd median                             | trimmed m               | od min max         | ranae skew            | kurtosis | se             | gend                 |                    |                   |            |               |
| ender 1 700 1.6                                         |                                         |                         | 00 1 2             | 1 -0.61               |          |                |                      | 0.09               | -0.02 -0.0        | 04   -0.02 | -0.17 Ē ິ     |
| ducation 2 700 3.1                                      |                                         | 3.31 1.                 |                    | 5 -0.68               |          |                | 1                    | education          |                   |            | -             |
| ge 3 700 25.5                                           |                                         |                         | 93 13 65           | 52 1.64               | 2.42 0   |                | ~ <b>~</b>           |                    | 0.55 0.1          | 5 0.05     | 0.03          |
| T 4 700 28.5                                            |                                         | 28.84 4.<br>619.45 118. |                    | 33 -0.66<br>600 -0.64 |          |                |                      |                    |                   |            |               |
| ATV 5 700 612.2<br>ATO 6 687 610.2                      |                                         | 617.25 118.             |                    | 600 -0.59             |          |                |                      | اللينيا ا          | 0.1               | 1 -0.04    | -0.03 E       |
| cleaned <- scrub(myDat                                  |                                         |                         | 000                | 0.00                  | 5.02 4   |                |                      |                    |                   | -          |               |
| describe(cleaned)                                       |                                         |                         |                    |                       |          |                |                      | -1 11111           |                   | 0.56       | 0.59          |
| vars n mea                                              |                                         |                         |                    | range skew            |          |                |                      |                    |                   | CATL       |               |
| ender 1 700 1.6<br>ducation 2 700 3.1                   |                                         | 1.68 0.<br>3.31 1.      |                    | 1 -0.61<br>5 -0.68    |          |                |                      |                    |                   | 🛲 I 🎢      | 0.64          |
| aucation 2 700 3.1<br>ae 3 700 25.5                     |                                         |                         | 48 Ø 5<br>93 13 65 | 5 -0.68               | -0.07 0  |                | 8-                   |                    |                   |            |               |
| CT 4 699 28.5                                           |                                         |                         | 45 15 36           | 21 -0.50              |          |                | 8                    |                    |                   |            | SALO          |
| ATV 5 700 612.2                                         | 3 112.90 620                            | 619.45 118.             | 61 200 800         | 600 -0.64             | 0.33 4   | .27            | 8 <del>* • • •</del> |                    | م البينية         |            |               |
| ATO 6 687 610.2                                         | 2 115.64 620                            | 617.25 118.             |                    | 600 -0.59             | -0.02 4  |                | 10 1                 |                    | 20 40 60          | 200 500 8  |               |

| What | is | R?      | Installing | R |
|------|----|---------|------------|---|
| 0000 | 00 | 0000000 | 00         |   |

your OS F 00●0 0  -> Part II

### **R-Applications**

### R Studio may be run on a remote server

| gov.track Attmetric Iti Wikipedia DuckDuckGo News ~ Google Maps RSeek.org win-builder CRAN Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | e Scholar Northwestern WebMal | Annia Nicory ESDN Yahaal                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|-------------------------------------------------------------------------|
| R-Fiddle R-Fiddle - Chrome Web Store Server: Information Technology - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | RStudio                       | Sam Harris & Lawrence Krauss talk Nucle 40                              |
| No name in the state of the sta |                        |                               |                                                                         |
| File Edit Code View Plots Session Build Debug Profile Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                               | revelle 🕞 🧯                                                             |
| 🗾 🔍 + 🐒 🍲 + 🔒 🔒 🌧 Co to file/function 🛛 😳 + Addins +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                               | Project: (None)                                                         |
| Untitled 1 * × 📼 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Environment History    |                               | _                                                                       |
| 🔿 🔊 🔒 🖸 Source on Save   🔍 🎢 - 📄 👘 Source - 🗷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 🞯 🕞 🖙 Import Data      | aset + 🥑                      | Eist •                                                                  |
| 4 library(psych)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🍓 Global Environment - |                               | Q                                                                       |
| 5 ?mediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data                   |                               |                                                                         |
| 5 mediate(1,2,3,sobel,n.iter=50) #The example in Preacher and Hayes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R.kerch                | 7 obs. of 7 variables         |                                                                         |
| <pre>7 mod.k2 &lt;- mediate(y="0ccupAsp",x=c("Intelligence","Siblings","FatherEd","FatherOcc"),<br/>8 m= c(5:6),data=R,kerch.n.obs=767,n.iter=50)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sobel                  | 30 obs. of 3 variables        |                                                                         |
| 9 mediate.diagram(mod.k2.show.c=FALSE) #simpler output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Values                 |                               |                                                                         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 💿 mod. k               | List of 17                    |                                                                         |
| i4 (Top Level) 0 R Script 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                               |                                                                         |
| sole Terminal ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                               |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                               |                                                                         |
| 0.85 0.40 1.29 1.38e-01           (iriga - 0.80 0.81 2.59 3.15e-01           (iriga - 0.80 0.81 2.59 3.15e-02           verdez           0.81 0.81 2.89 3.08e-02           'effect astimates           Direction 2.80 3.7.57 0           verdez         0.23 0.81 7.57 0           verdez         0.23 0.83 7.57 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ŀ                      | -0.1 Fa                       | n model<br>blings<br>= 0.24<br>= 0.05<br>= 0.05<br>0.05<br>0.05<br>0.05 |

| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 000000000000000000000000000000000000000 | 000          | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000    |            |
| <b>R-Applications</b>                   |              |         |          |                                         |              |            |

### 

| drr.io  | Q Find an R package                                                                                                                      | R language docs                                                                                                          | Run R in your browser            | A R Notebooks                                     |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|
| me / Sr | lippets                                                                                                                                  |                                                                                                                          |                                  |                                                   |
|         | Snippets<br>Run any R code yo<br>packages preloade                                                                                       | ou like. There are over<br>ad.                                                                                           | r three thousand R               | Privacy information<br>Embed this on your website |
|         | library(psych)<br>omega(ability,4)                                                                                                       |                                                                                                                          |                                  |                                                   |
|         |                                                                                                                                          |                                                                                                                          |                                  |                                                   |
|         |                                                                                                                                          |                                                                                                                          |                                  |                                                   |
|         |                                                                                                                                          |                                                                                                                          |                                  |                                                   |
|         |                                                                                                                                          |                                                                                                                          |                                  |                                                   |
|         |                                                                                                                                          |                                                                                                                          | Run (Cmd-                        | Enter)                                            |
|         | Any scripts or data tha                                                                                                                  | it you put into this serv                                                                                                |                                  | Enter)                                            |
|         | Loading required                                                                                                                         | <b>it you put into this serv</b><br>d namespace: GPArota                                                                 | rice are public.                 | Enter)                                            |
|         | Loading required                                                                                                                         | I namespace: GPArota                                                                                                     | rice are public.                 | Enter)                                            |
|         | Loading required<br>Omega<br>Call: omega(m =                                                                                             | ability, nfactors =                                                                                                      | rice are public.                 | Enter)                                            |
|         | Loading required                                                                                                                         | I namespace: GPArota                                                                                                     | rice are public.                 | Enter)                                            |
|         | Loading required<br>Omega<br>Call: omega(m =<br>Alpha:                                                                                   | i namespace: GPArota<br>ability, nfactors =<br>0.83<br>0.84                                                              | rice are public.                 | Enter)                                            |
|         | Loading required<br>Omega<br>Call: omega(m =<br>Alpha:<br>G.6:<br>Omega Hierarchic<br>Omega H asymptot                                   | ability, nfactors =<br>0.83<br>0.84<br>cal: 0.66<br>cic: 0.77                                                            | rice are public.                 | Enter)                                            |
|         | Loading required<br>Omega<br>Call: omega(m =<br>Alpha:<br>G.6:<br>Omega Hierarchic                                                       | ability, nfactors =<br>0.83<br>0.84<br>cal: 0.66                                                                         | rice are public.                 | Enter)                                            |
|         | Loading required<br>Omega<br>Call: omega(m =<br>Alpha:<br>G.6:<br>Omega Hierarchic<br>Omega H asymptot<br>Omega Total                    | i namespace: GPArota<br>ability, nfactors =<br>0.83<br>0.84<br>cal: 0.66<br>cic: 0.77<br>0.86                            | ice are public.<br>ition<br>- 4) | Enter)                                            |
|         | Loading required<br>Omega<br>Call: omega(m =<br>Alpha:<br>G.6:<br>Omega Hierarchic<br>Omega H asymptot<br>Omega Total                    | d namespace: GPArota<br>ability, nfactors =<br>0.83<br>0.84<br>al: 0.66<br>tic: 0.77<br>0.86<br>actor loadings great     | ice are public.<br>ition<br>- 4) | Enter)                                            |
|         | Loading required<br>Omega<br>Call: omega(m =<br>Alpha:<br>G.6:<br>Omega Hierarchi<br>Omega H asymptot<br>Omega Total<br>Schmid Leiman Fa | d namespace: GPArota<br>ability, nfactors =<br>0.83<br>0.84<br>0.84<br>0.66<br>cic: 0.77<br>0.86<br>octor loadings great | ice are public.                  | Enter)                                            |



| What is R?                              | Installing R | your OS | Packages   | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|------------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 0000         | 0000    | <b>000</b> | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| What are packa                          | ges          |         |            |                                         |                                         |            |

### R is extensible: The use of "packages"

- 1. More than 12,583 packages are available for at CRAN (and growing daily. It was 10,677 last year and 8,427 two years ago).
- 2. Can search all packages that do a particular operation by using the sos package (probably disappearing soon).
  - install.packages("sos") #if you haven't already
  - library(sos) # make it active once you have it
    - findFn("X") #will search a web data base for all packages/functions that have "X"
    - findFn("principal components") #will return 2,318 matches from 180 packages and reports the top 400
    - findFn("Item Response Theory") # will return 394 matches in 93 packages
    - findFn("INDSCAL ") # will return 18 matches in 6 packages.
- install.packages("X") will install a particular package (add it to your R library (you need to do this just once)
- library(X) #will make the package X available to use if it has been installed (and thus in your library)



| What is R?     | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part |
|----------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|---------|
| 0000000000     | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |         |
| What are packa | ges          |         |          |                                         |                                         |         |

## A small subset of very useful packages

- General use
  - core R
  - MASS
  - lattice
  - Ime4 (core)
  - psych
  - Zelig
- Special use
  - ltm/eRm/mirt
  - sem
  - lavaan/OpenMx
  - GPArotation
  - mvtnorm
  - $\bullet$  > 15,180 known
  - + ?

- General applications
  - most descriptive and inferential stats
  - Modern Applied Statistics with S
  - Lattice or Trellis graphics
  - Linear mixed-effects models
  - Personality/psychometrics/general purpose
  - General purpose toolkit
- More specialized packages
  - Latent Trait Model (IRT)
  - SEM and CFA ( RAM path notation)
  - SEM and CFA (multiple groups )
  - Jennrich rotations
  - Multivariate distributions
  - Thousands of more packages on CRAN
  - Code on GitHub/ webpages/journal articles

| What is R? Installing F | R your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-------------------------|-----------|----------|-----------------------------------------|--------------|------------|
| 0000000000000           | 0000      | 000      | 000000000000000000000000000000000000000 | 000000000    |            |
| 00                      |           | 00       | 000000                                  | 000000000    |            |
| What are packages       |           |          |                                         |              |            |

## Even more very useful packages (see also Computer World list)

- General use
  - devtools
  - readxl
  - foreign
  - RMySQL
  - readr
  - rio
- Special use
  - plyr & dplyr
  - data.table
  - knitr
  - sweave
  - ggplot2
  - > 12,500
  - + ?

- General applications
  - Development tools from GitHub
  - input from excel
  - input from SPSS, , etc. (part of Core)
  - input from MySQL
  - fast input for very large csv files
  - simple to use integrated input/output
- More specialized packages
  - reshape from wide to long etc.
  - faster data handling for large data sets
  - integrate markdown documentation with R
  - integrate LATEXdocumentation with R
  - powerful grammar of graphics
  - Thousands of more packages on CRAN
  - Code on webpages/journal articles



| What is R?                              | Installing R | your OS | Packages | Building Blocks | Dependencies | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------|--------------|------------|
| 000000000000000000000000000000000000000 | 000          | 0000    | 000      | 0000000000000   |              |            |
| 00                                      |              |         | •0       | 000000          | 000000000    |            |
| Installing package                      | S            |         |          |                 |              |            |

## Ok, how do I get it: Getting started with R

- Download from R Cran (http://cran.r-project.org/)
  - Choose appropriate operating system and download compiled R
- Install R (current version is 3.5.0) (See a tutorial on how to install R and various packages at http://personality-project.org/r/psych)
- Start R
- Add useful packages (just need to do this once)
  - install.packages("ctv") #this downloads the task view package
  - library(ctv) #this activates the ctv package
  - install.views("Psychometrics") #among others
  - Take a 5 minute break
- Activate the package(s) you want to use today (e.g., *psych*)
  - library(psych) #necessary for most of today's examples
- Use R



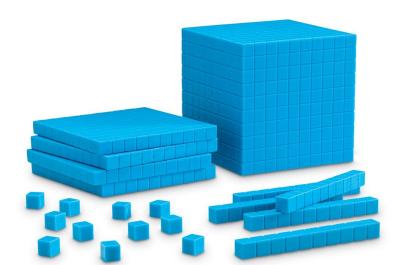
| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> P |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------|
| 000000000000000000000000000000000000000 | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |      |
| Installing packa                        | ages         |         |          |                                         |                                         |      |

### Annotated installation guide: don't type the >

- > install.packages("GPArotation")
- > install.packages("mnormt")

### #or

- > install.packages("ctv")
- > library(ctv)
- > install.views("Psychometrics")


- Just install one package (e.g., psych) You might have to choose a "mirror" site.
- as well as a few suggested packages that add functionality for factor rotation, multivariate normal distributions, etc.
- Install the task view installer package.
- Make it active
- If you want to install all the packages in the "Psychometrics" task view. <sup>36/279</sup>

What is R? Installing R 0000000000000 00

your OS

Packages 000 00  -> Part II

# **Building Blocks**





| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |

## **R** Basics

R is an object-oriented programming language.



| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |

# R is a language

- Think of R like having a conversation with a specific person.
- They (R) have their own language, and you need to learn how to speak it.
- R is not very forgiving of mistakes, so pay attention to grammar and punctuation.

R is an object-oriented programming language. What is an object? // Everything!



| What is R?                              | Installing R | your OS | Packages | Building Blocks      | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|----------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 000          | 0000    | 000      | • <b>00000000000</b> | 000000000000000000000000000000000000000 |            |
| Objects                                 |              |         |          |                      |                                         |            |

# Single-value objects

- The most basic object contains a single value. 4
- Objects can be numbers, strings, or logical values. 4

"female"

TRUE

- We can save objects to our environment by assigning them to names.
- Note, although better style is to use the "get" command, you can also use the = (which means replace) command.

```
happy <- 4 #read as happy gets 4, or
happy is given the value of 4
```

gender = "female"

#read as gender is given the value of 4 🕿

 The only way to create or change an object is to assign it to a name.

| What is R? Install | ing R your OS | Packages | Building Blocks | Dependencies                            | -> Part II |  |
|--------------------|---------------|----------|-----------------|-----------------------------------------|------------|--|
| 0000000000000 0000 |               | 000      | 0000000000      | 000000000000000000000000000000000000000 |            |  |
| 00                 |               | 00       | 000000          | 000000000                               |            |  |
| Objects            |               |          |                 |                                         |            |  |

# Single-value objects (aka in some languages as scalers)

You can call objects using their name. Writing the name of an object will print its value to your console.

happy

```
[1] 4
```

You can also use the name of an object as a substitute for its value.

happy + 8 [1] 12



| What is R? Installing R                 | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-----------------------------------------|---------|----------|-----------------------------------------|--------------|------------|
| 000000000000000000000000000000000000000 |         | 000      | 000000000000000000000000000000000000000 |              |            |
| 00                                      |         | 00       | 000000                                  | 000000000    |            |
| Objects                                 |         |          |                                         |              |            |

## Vectors

A vector is an ordered set of values. Some of us would call this an ordered n-tuplet.

emotions <- c(4, 7, happy, 7, 3, 8)

(We use the c for the *concatenate* operator). Important rules:

- Order matters
- Each element included in the vector is of the same class (numerical, logical, character) which will be the class of the object

```
class(emotions)
```

[1] "numeric"

```
class(genders)
```

[1] "character"



| What is R? Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-------------------------|---------|----------|-----------------------------------------|--------------|------------|
| 000000000000            | 0000    | 000      | 000000000000000000000000000000000000000 |              |            |
| 00                      |         | 00       | 000000                                  | 000000000    |            |
| Objects                 |         |          |                                         |              |            |

#### Vectors and character strings

A vector is an ordered set of values. Some of us would call this an ordered n-tuplet.

emotions <- c(4, 7, happy, 7, 3, 8)

(We use the c for the *concatenate* operator) or the cs for the *character string* operator.



| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Objects                                 |              |         |          |                                         |                                         |            |

#### **Order matters**

Values in a vector are given a specific position and they will always be printed in that position.

(Hence the term ordered n-tuplet.)

emotions
[1] 4 7 4 7 3 8



| What is R?<br>000000000000000000000000000000000000 | Installing R | your OS<br>0000 | Packages<br>000<br>00 | Building Blocks | Dependencies | -> Part II |
|----------------------------------------------------|--------------|-----------------|-----------------------|-----------------|--------------|------------|
| Objects                                            |              |                 |                       |                 |              |            |

#### Same class

You cannot mix numbers and strings and logical values in a single vector.

```
bad.vector = c(7, 9, "2")
#by typing the name, we are asking for its contents
bad.vector
the numerical values have become characters!
[1] "7" "9" "2"
```



| What is R?<br>000000000000000000000000000000000000 | Installing R | your OS<br>0000 | Packages<br>000<br>00 | Building Blocks | Dependencies | -> Part II |
|----------------------------------------------------|--------------|-----------------|-----------------------|-----------------|--------------|------------|
| Objects                                            |              |                 |                       |                 |              |            |

#### **Indexing vectors**

Indexing is when you want to refer to specific parts or values of a vector.

Usually we index with square brackets.

You can refer to the positions of the values by their number.

```
> emotions[1:3]
[1] 4 7 4
emotions[c(1,5)] #concatenate 1 and 5
[1] 4 3
```



| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |  |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|--------------|------------|--|
| 000000000000000000000000000000000000000 |              | 0000    | 000      | 000000000000000000000000000000000000000 |              |            |  |
| 00                                      |              |         | 00       | 000000                                  | 00000000     |            |  |
| Objects                                 |              |         |          |                                         |              |            |  |

# **Indexing vectors**

Indexing is when you want to refer to specific parts or values of a vector.

Usually we index with square brackets.

You can refer to the names of the values by their number, if they have names.



| What is R?<br>000000000000000000000000000000000000 | Installing R | your OS<br>0000 | Packages<br>000<br>00 | Building Blocks | Dependencies<br>00000000<br>000000000 | -> Part II |
|----------------------------------------------------|--------------|-----------------|-----------------------|-----------------|---------------------------------------|------------|
| Objects                                            |              |                 |                       |                 |                                       |            |

# **Indexing vectors**

Indexing is when you want to refer to specific parts or values of a vector.

Usually we index with square brackets.

You can use logical statements to select values that meet certain criteria.

emotions[emotions > 6] David Dan Pat 7 7 8



| What is R? | Installing R | your OS | Packages | Building Blocks | Dependencies                            | -> Part II |
|------------|--------------|---------|----------|-----------------|-----------------------------------------|------------|
| 00         | 000          | 0000    | 000      | 000000          | 000000000000000000000000000000000000000 |            |
| Objects    |              |         |          |                 |                                         |            |

# **Data frames**

Data frames are lists of vectors which are related to one another (Think "spreadsheets") Features:

- Data frames have two dimension: rows and columns.
- (Usually) Columns represent variables.
- Every value in a column is the same class (numeric, character, etc)
- (Usually) Rows represent observations (people, mice, time points, etc).
- Values in rows can be different classes.
- The length of each vector must be the same.



| What is R? I | nstalling R<br>O | your OS<br>0000 | Packages<br>000<br>00 | Building Blocks | Dependencies<br>000000<br>000000000 | -> Part II |
|--------------|------------------|-----------------|-----------------------|-----------------|-------------------------------------|------------|
| Objects      |                  |                 | 00                    | 000000          | 00000000                            |            |

#### **Data frames**

Because data frames are simply collections of vectors, you can create a data frame using vectors.

```
data.example = data.frame(GENDER = genders,
                           EMOTIONS = emotions)
+
 data.example
      GENDER EMOTIONS
Bill male
                    4
David male
                    7
Sara female
                   4
Dan male
                   7
                   3
Josh male
Pat. male
                    8
```



| What is R? Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-------------------------|---------|----------|-----------------------------------------|--------------|------------|
| 000000000000            | 0000    | 000      | 000000000000000000000000000000000000000 |              |            |
| 00                      |         | 00       | 000000                                  | 000000000    |            |
| Objects                 |         |          |                                         |              |            |

We can use the same methods to select specific parts of data frames. The trick is data frames have two dimensions, not one. So we have to separate selecting rows from selecting columns.

# Using numbers

#### Indexing a vector

emotions[1:3] [1] 4 7 4 Indexing a data frame

```
data.example[1:3, 1:2]
  GENDER EMOTIONS
1 male 4
2 male 7
3 female 4
```



| What is R?  | Installing R | your OS | Packages | Building Blocks | Dependencies | -> Part II |
|-------------|--------------|---------|----------|-----------------|--------------|------------|
| 00000000000 | 000          | 0000    | 000      | 000000000000    |              |            |
| 00          |              |         | 00       | 000000          | 000000000    |            |
| Objects     |              |         |          |                 |              |            |
|             |              |         |          |                 |              |            |

We can use the same methods to select specific parts of data frames. The trick is data frames have two dimensions, not one. So we have to separate selecting rows from selecting columns. But, we can specify that we want all of either a row or column by leaving it blank Indexing a data frame

> data.example[,1] #give me the entire first column (as a vector)
[1] male male female male male male
Levels: female male

BillmaleDavidmaleSarafemaleDanmaleJoshmalePatmale

Try it (example 2)



| What is R? Installing R | your OS | Packages | Building Blocks   | Dependencies | -> Part II |
|-------------------------|---------|----------|-------------------|--------------|------------|
|                         | 0000    | 000      | 00000000000000000 |              |            |
| 00                      |         | 00       | 000000            | 000000000    |            |
| Objects                 |         |          |                   |              |            |

We can use the same methods to select specific parts of data frames. The trick is data frames have two dimensions, not one. So we have to separate selecting rows from selecting columns.

#### Using names

#### Indexing a vector

emotions[c("Josh","Pat")]
Josh Pat
3 8

#### Indexing a data frame

data.example[ , "GENDER"] #refer to the column by name
[1] male male female male male male
Levels: female male



| What is R?  | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 00000000000 | 000          | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000    |            |
| Objects     |              |         |          |                                         |              |            |

We can use the same methods to select specific parts of data frames. The trick is data frames have two dimensions, not one. So we have to separate selecting rows from selecting columns.

# Using logical statements

#### Indexing a vector

emotions[emotions < 7] Bill Sara Josh 4 4 3

# Indexing a data frame

```
data.example[data.example$GENDER == "female", ]
        GENDER EMOTIONS
Sara female 4
```

We looked for equality by using the == operator (read as equals)



| What is R? Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-------------------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 0000000000000<br>00     | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Objects                 |         |          |                                         |                                         |            |

Data frames can also be indexed using the dollar sign \$.

```
data.example$EMOTIONS
[1] 4 7 4 7 3 8
```

This is read as "from the data frame called data.example, give me the variable called EMOTIONS."



| What is R?                              | Installing R | your OS | Packages | Building Blocks | Dependencies | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------|--------------|------------|
| 000000000000000000000000000000000000000 | 000          | 0000    | 000      | 00000000000     | 000000000    |            |
| 00                                      |              |         | 00       | 000000          | 00000000     |            |
| Objects                                 |              |         |          |                 |              |            |

# Other kinds of objects

#### Lists

- Like vectors, but each element can be *anything* (value, vector, data frame, another list)
- Output of analysis functions
- Can index using \$
- Can index by name
- or, can index by [] for the name and content of the vector or [[]] for the contents

Matrices

- Like data frames but every value has to be the same class (character, numeric, logical)
- Useful for matrix algebra (i.e., lots of correlation and regression analyses)
- Operations are faster on matrices than data frames (for large data sets)



| What is R?      | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-----------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 00000000000     | 000          | 0000    | 000      | 000000000000000000000000000000000000000 | 0000000      |            |
| 00              |              |         | 00       | •00000                                  | 000000000    |            |
| R is a language |              |         |          |                                         |              |            |

# R is a language

R is an object-oriented programming language.

- Think of R like having a conversation with a specific person.
- They (R) have their own language, and you need to learn how to speak it.
- R is not very forgiving of mistakes, so pay attention to grammar and punctuation.



| What is R? Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-------------------------|---------|----------|-----------------------------------------|--------------|------------|
| 0000000000000           | 0000    | 000      | 000000000000000000000000000000000000000 | 0000000000   |            |
| 00                      |         | 00       | 00000                                   | 000000000    |            |
| R is a language         |         |          |                                         |              |            |

# Translating R

catch(x = ball)



| What is R?      | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 0000000000      | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| R is a language |              |         |          |                                         |                                         |            |
|                 |              |         |          |                                         |                                         |            |

#### Nouns

Subject: R is the subject of every sentence.

Object: Objects are objects of the sentence!



| What is R?                              | Installing R | your OS | Packages | Building Blocks                        | Dependencies                  | -> Part II |
|-----------------------------------------|--------------|---------|----------|----------------------------------------|-------------------------------|------------|
| 000000000000000000000000000000000000000 | 000          | 0000    | 000      | 00000000000000000000000000000000000000 | 0000 <b>0</b> 000<br>00000000 |            |
| R is a language                         |              |         |          |                                        |                               |            |

#### Verbs

• Functions are the verbs of sentences.

catch(x = ball)

• Functions are always followed by parentheses.

```
mean(data.example$EMOTIONS)
[1] 5.5
```

 Functions can be nested. This is like a run-on sentence. round(mean(emotions))
 [1] 6

Find the mean of the values in emotion, then round that number.



| What is R?      | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-----------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 00000000000     | 000          |         | 000      | 000000000000000000000000000000000000000 |              |            |
| 00              |              |         | 00       | 000000                                  | 000000000    |            |
| R is a language |              |         |          |                                         |              |            |

### Adverbs and other modifiers

To be more specific or change the default way of doing something, specify arguments. These are like adverbs or clauses.

```
catch(x = ball, how = "smoothly",
    where = "beach",
    with = friends)
```

Arguments might be character values, numbers, more data, anything. The documentation (help) for a function will tell you what arguments are available to be changed and what values they can or should take.

```
help(t.test) # or
?t.test
```

t.test(x = groupA, y = groupB, paired = T, mu = 55

| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 000          | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| R is a language                         |              |         |          |                                         |                                         |            |

#### Punctuation

• Spaces – you can put as many spaces as you want between words and symbols, but not within them.

mean( data) #ok
me an( data) #not ok

 Parentheses – It's easy to forget one or put one in the wrong place when nesting.

round(x = mean(data, digits = 3) #this is wrong round(x = mean(data), digits = 3) #this is ok

Captialization – MATTERS

data != DATA != Data



| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Objects act on                          | objects      |         |          |                                         |                                         |            |

## The power of R: Objects can act upon objects

- 1. Every function returns an object.
  - This object can contain objects.
  - To see what is in an object use the str command to see the **str**ucture of an object.
- 2. Other functions can then act upon those objects to create objects
  - mean(), sd(), median() each return objects as values
  - describe() then packages those objects to return a general set of useful statistics.
- 3. It is this ability to use the output object from one function as the input to the next function that makes R so powerful.



| What is R?     | Installing R | your OS | Packages | Building Blocks                         | Dependencies                                 | -> Part II |
|----------------|--------------|---------|----------|-----------------------------------------|----------------------------------------------|------------|
| 0000000000     | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | <b>00000</b> 0000000000000000000000000000000 |            |
| Objects act on | objects      |         |          |                                         |                                              |            |

#### Functions act upon the output of other functions

| R code                                                                                  | ] |
|-----------------------------------------------------------------------------------------|---|
| m <- mean(sat.act\$SATV,na.rm=TRUE)                                                     |   |
| <pre>s &lt;- sd(sat.act\$SATQ,na.rm=TRUE) md &lt;- median(sat.act[,3],na.rm=TRUE)</pre> |   |
| describe(sat.act) #combines these prior three and more                                  |   |
| describe(sat.act) #combines these prior three functions and more                        | ] |

|           | vars | n   | mean   | sd     | median | trimmed | mad    | min | max | range | skew  | kurtosis | se   |
|-----------|------|-----|--------|--------|--------|---------|--------|-----|-----|-------|-------|----------|------|
| gender    | 1    | 700 | 1.65   | 0.48   | 2      | 1.68    | 0.00   | 1   | 2   | 1     | -0.61 | -1.62    | 0.02 |
| education | 2    | 700 | 3.16   | 1.43   | 3      | 3.31    | 1.48   | 0   | 5   | 5     | -0.68 | -0.07    | 0.05 |
| age       | 3    | 700 | 25.59  | 9.50   | 22     | 23.86   | 5.93   | 13  | 65  | 52    | 1.64  | 2.42     | 0.36 |
| ACT       | 4    | 700 | 28.55  | 4.82   | 29     | 28.84   | 4.45   | 3   | 36  | 33    | -0.66 | 0.53     | 0.18 |
| SATV      | 5    | 700 | 612.23 | 112.90 | 620    | 619.45  | 118.61 | 200 | 800 | 600   | -0.64 | 0.33     | 4.27 |
| SATQ      | 6    | 687 | 610.22 | 115.64 | 620    | 617.25  | 118.61 | 200 | 800 | 600   | -0.59 | -0.02    | 4.41 |



| What is R?       | Installing R | your OS | Packages | Building Blocks | Dependencies | -> Part II |
|------------------|--------------|---------|----------|-----------------|--------------|------------|
| 0000000000000000 | 0000         | 0000    | 000      | 0000000000000   | 00000000     |            |
| 00               |              |         | 00       | 000000          | 000000000    |            |
| Objects act on o | objects      |         |          |                 |              |            |

# Use str to see the structure of an object

d <- describe(sat.act) #form a new object names(d) #just the names of the objects str(d) #the detailed structure of those objects d #the objects organized in a pretty way for display

d <- describe(sat.act) #form a new object</pre> > names(d) #just the names of the objects [1] "vars" "n" "mean" "sd" "median" "trimmed" "mad" "min" [10] "range" "skew" "kurtosis" "se" > str(d) #the detailed structure of those objects 6 obs. of 13 variables: Classes ?psych?, ?describe? and 'data.frame': \$ vars : int 123456 \$ n 700 700 700 700 700 687 : num 1.65 3.16 25.59 28.55 612.23 ... \$ mean : num \$ sd : num 0.478 1.425 9.499 4.824 112.903 ... \$ median : num 2 3 22 29 620 620 \$ trimmed : num 1.68 3.31 23.86 28.84 619.45 ... 0 1.48 5.93 4.45 118.61 ... \$ mad : num \$ min 1 0 13 3 200 200 • n11m 2 5 65 36 800 800 \$ max : num : num 1 5 52 33 600 600 \$ range \$ skew : num -0.615 -0.681 1.643 -0.656 -0.644 ... \$ kurtosis: num -1.6247 -0.0749 2.4243 0.535 0.3252 ... : num 0.0181 0.0539 0.359 0.1823 4.2673 ... \$ se #the objects organized in a pretty way for display > d sd median trimmed mad min max range skew kurtosis vars n mean 1 700 -1.620.02gender 1.65 0.48 2 1.68 0.00 1 2 1 - 0.61education 2 700 3.16 1.43 3 3.31 1.48 0 5 5 -0.68 -0.07 0.05 3 700 25.59 9.50 22 23.86 5.93 13 65 52 1.64 2.42 0.36 age 300 4 700 20 EE 1 02 20 20 04 4 46 2 26 22 \_0 66 0 52 0 10

| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Objects act on                          | objects      |         |          |                                         |                                         |            |

#### Several ways to see the contents of an object

| R code                                                                  | 7    |
|-------------------------------------------------------------------------|------|
| headTail(sat.act) #shows the first and last<br>n rows of the data frame |      |
| quickView(sat.act) #opens a window showing the first and last r         | rowe |
| of the data frame (scrollable)                                          | 10#3 |
| view(sat.act) #opens a window to show all the rows and                  |      |
| columns of the data frame (scrollable)                                  |      |

|       | gender | education | age | ACT | SATV | SATQ |
|-------|--------|-----------|-----|-----|------|------|
| 29442 | 2      | 3         | 19  | 24  | 500  | 500  |
| 29457 | 2      | 3         | 23  | 35  | 600  | 500  |
| 29498 | 2      | 3         | 20  | 21  | 480  | 470  |
| 29503 | 1      | 4         | 27  | 26  | 550  | 520  |
|       |        |           |     |     |      |      |
| 39937 | 1      | 4         | 40  | 27  | 613  | 630  |
| 39951 | 2      | 3         | 24  | 31  | 700  | 630  |
| 39961 | 1      | 4         | 35  | 32  | 700  | 780  |
| 39985 | 1      | 5         | 25  | 25  | 600  | 600  |



| What | is | R?   | Installing | R |
|------|----|------|------------|---|
| 0000 |    | 0000 | 00000      |   |
| 00   |    |      |            |   |

your OS 0000

Package 000 Building Blocks Dependencies

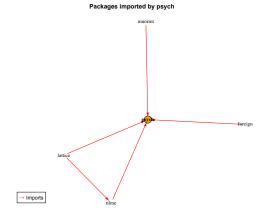
-> Part II

#### Objects act on objects

|    | row,names | gender | education | age | ACT | SATV | SATQ |
|----|-----------|--------|-----------|-----|-----|------|------|
| 1  | 29442     | 2      | 3         | 19  | 24  | 500  | 500  |
| 2  | 29457     | 2      | 3         | 23  | 35  | 600  | 500  |
| 3  | 29498     | 2      | 3         | 20  | 21  | 480  | 470  |
| 4  | 29503     | 1      | 4         | 27  | 26  | 550  | 520  |
| 5  | 29504     | 1      | 2         | 33  | 31  | 600  | 550  |
| 6  | 29518     | 1      | 5         | 26  | 28  | 640  | 640  |
| 7  | 29527     | 2      | 5         | 30  | 36  | 610  | 500  |
| 8  | 29529     | 1      | 3         | 19  | 22  | 520  | 560  |
| 9  | 39848     | 2      | 2         | 25  | 26  | 700  | 700  |
| 10 | 39890     | 2      | 3         | 25  | 27  | 640  | 660  |
| 11 | 39904     | 2      | 3         | 20  | 26  | 710  | 680  |
| 12 | 39915     | 1      | 3         | 25  | 30  | 500  | 500  |
| 13 | 39937     | 1      | 4         | 40  | 27  | 613  | 630  |
| 14 | 39951     | 2      | 3         | 24  | 31  | 700  | 630  |
| 15 | 39961     | 1      | 4         | 35  | 32  | 700  | 780  |
| 16 | 39985     | 1      | 5         | 25  | 25  | 600  | 600  |
| 17 |           |        |           |     |     |      |      |
| 18 |           |        |           |     |     |      |      |
| 19 |           |        |           |     |     |      |      |
| 20 |           |        |           |     |     |      |      |
| 21 |           |        |           |     |     |      |      |
| 22 |           |        |           |     |     |      |      |
| 23 |           |        |           |     |     |      |      |
| 24 |           |        |           |     |     |      |      |



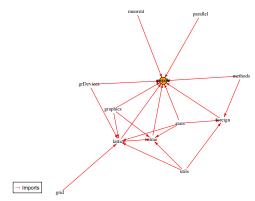
| What is R?     | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|----------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 0000000000     | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000    |            |
| Package depend | lencies      |         |          |                                         |              |            |


#### Packages extend the power of R

- 1. Just as functions can take the output from another function, so can packages build upon other packages.
- 2. Core packages come with the R installation
  - *base*-R includes 1220 different functions and then also loads in 5-8 other core packages:
  - e.g., *stats* includes 447 functions (commands) that do most of those basic statistics not done by base;
  - *foreign* handles different input and output formats from "foreign" languages (e.g., SPSS)
- 3. The Comprehensive R Archive Network (CRAN) is the repository for the other 12,560 packages that people have contributed
- 4. Most of these packages depend, in turn, on other packages. They all depend upon core-R.



| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 000000000000000000000000000000000000000 |              | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000    |            |
| Package depend                          | dencies      |         |          |                                         |              |            |

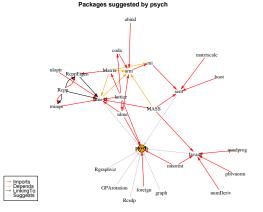

# Dependencies of the psych package





| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 |              | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Package depend                          | lencies      |         |          |                                         |                                         |            |

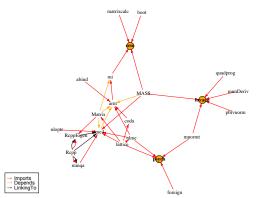
#### Dependencies of the psych package including base R




Packages imported by psych (including Base R)



| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 |              | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Package depend                          | encies       |         |          |                                         |                                         |            |


# Packages can "suggest" other useful packages which in turn "require" other packages

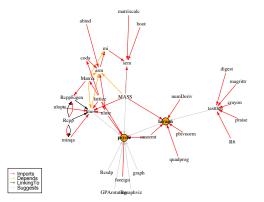




| What is R?        | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|-------------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 0000000000000 000 |              |         | 000      | 000000000000000000000000000000000000000 |              |            |
| 00                |              |         | 00       | 000000                                  | 000000000    |            |
| Package depende   | encies       |         |          |                                         |              |            |

#### psych, lavaan and sem require other useful packages

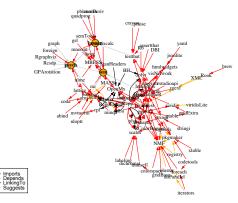



#### Packages required by psych, lavaan and sem



| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|--------------|
| 000000000000000000000000000000000000000 | 00000        | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000    |
| Package depen                           | dencies      |         |          |                                         |              |

#### psych and lavaan suggest other useful packages


#### Packages suggested by psych and lavaan

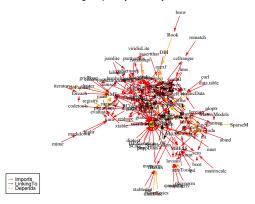




| What is R?     | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|----------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 0000000000     | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Package depend | dencies      |         |          |                                         |                                         |            |

#### psych, lavaan and sem suggest other useful packages

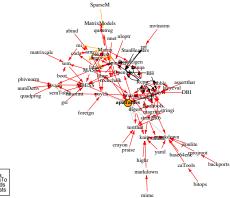



#### Packages suggested by psych, lavaan and sem



| What is R?                              | Installing R | your OS | Packages | Building Blocks                         | Dependencies                            | -> Part II |
|-----------------------------------------|--------------|---------|----------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |            |
| Package depen                           | dencies      |         |          |                                         |                                         |            |

# Some packages require many others to be helpful wrapper packages (e.g. userfriendlyscience)


Packages required by userfriendlyscience





| What is R?     | Installing R | your OS | Packages | Building Blocks                         | Dependencies | -> Part II |
|----------------|--------------|---------|----------|-----------------------------------------|--------------|------------|
| 0000000000     | 0000         | 0000    | 000      | 000000000000000000000000000000000000000 | 00000000     |            |
| Package depend | lencies      |         | 00       | 000000                                  | 00000000     |            |

#### apatables require many others to be a helpful wrapper



#### Packages suggested by apaTables





your OS 0000 Packages

Building Blocks Dependencies

-> Part II

#### **Questions?**





Basic R 000 0000000000 Exploratory 00000000 000000 Regression

-> Part III

## Outline

## Part I: What is R, where did it come from, why use it

- Installing R and adding packages: the building blocks of R
- Part II: A brief introduction an overview
  - R is just a fancy (very fancy) calculator
  - Descriptive data analysis
  - Some inferential analysis

## Part III R is a powerful statistical system

- Data entry (detail and practice)
- Descriptive (again)
- Inferential (t and F with more practice)
- Regression
- Basic R commands

Part IV: Psychometrics

- Reliability and its discontents
- EFA, CFA, SEM

Part V: Help and More Help

List of useful commands

Part VI: The psych package and more practice



Part I <-

Basic R 000 0000000000 Exploratory 00000000 000000 Regression

-> Part III

#### **Outline of Part II**

- -> Part I: What is R
- Basic R: A brief example Basic R capabilities: Calculation, Statistical tables Basic Graphics
- A brief example of exploratory and confirmatory data analysis Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii) Inferential statistics

Multiple regression modeling and graphics

-> Part III: Basic statistics and graphics



Exploratory 00000000 000000 Regression

Basic R capabilities: Calculation, Statistical tables

# **Basic R commands – remember don't enter the** > R is just a fancy calculator. Add, subtract, sum, products, group

- > 2 + 2 #sum two numbers
- [1] 4 #show the output
- > 3^4 #3 raised to the 4th
- [1] 81 #that was easy
- > sum(1:10) #find the sum of the first 10 numbers

[1] 55 #the answer

> prod(c(1, 2, 3, 5, 7)) #the product of the concatenated (c) numbers

[1] 210 #Note how we combined product with concatenate

It is also a statistics table ( the normal distribution, the t, the F, the  $\chi^2$  distribution, the xyz distribution)

```
> pnorm(q = 1) #the probability of a normal with value of 1 sd
```

[1] 0.8413447 #

> pt(q = 2, df = 20) #what about the probability of a t-test value of [1] 0.9703672 #this is the upper tail Basic R 000 000000000 Exploratory 00000000 000000

Basic R capabilities: Calculation, Statistical tables

### R is a set of distributions. Don't buy a stats book with tables!

Table: To obtain the density, prefix with d, probability with p, quantiles with q and to generate random values with r. (e.g., the normal distribution may be chosen by using dnorm, pnorm, qnorm, or rnorm.) Each function can be modified with various parameters.

| Distribution        | base name | P 1      | P 2       | P 3   | example application                  |
|---------------------|-----------|----------|-----------|-------|--------------------------------------|
| Normal              | norm      | mean     | sigma     |       | Most data                            |
|                     |           |          | 0         |       |                                      |
| Multivariate normal | mvnorm    | mean     | r         | sigma | Most data                            |
| Log Normal          | Inorm     | log mean | log sigma |       | income or reaction time              |
| Uniform             | unif      | min      | max       |       | rectangular distributions            |
| Binomial            | binom     | size     | prob      |       | Bernuilli trials (e.g. coin flips)   |
| Student's t         | t         | df       |           | nc    | Finding significance of a t-test     |
| Multivariate t      | mvt       | df       | corr      | nc    | Multivariate applications            |
| Fisher's F          | f         | df1      | df2       | nc    | Testing for significance of F test   |
| $\chi^2$            | chisq     | df       |           | nc    | Testing for significance of $\chi^2$ |
| Exponential         | exp       | rate     |           |       | Exponential decay                    |
| Gamma               | gamma     | shape    | rate      | scale | distribution theoryh                 |
| Hypergeometric      | hyper     | m        | n         | k     |                                      |
| Logistic            | logis     | location | scale     |       | Item Response Theory                 |
| Poisson             | pois      | lambda   |           |       | Count data                           |
| Weibull             | weibull   | shape    | scale     |       | Reaction time distributions          |



Exploratory 00000000 000000

Basic R capabilities: Calculation, Statistical tables

#### An example of using r, p, and q for a distributions

| R code                                                                |
|-----------------------------------------------------------------------|
| set.seed(42) #set the random seed to get the same sequence            |
| <pre>x &lt;- rnorm(5) #find 5 randomly distributed normals</pre>      |
| round(x,2) #show them, rounded to 2 decimals                          |
| <pre>round(pnorm(x),2) #show their probabilities to 2 decimals</pre>  |
| <pre>round(qnorm(pnorm(x)),2) #find the quantiles of the normal</pre> |

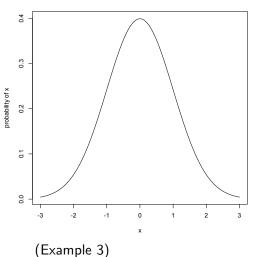
#### Produces this output

> set.seed(42) #set the random seed to get the same sequence > x <- rnorm(5) #find 5 randomly distributed normals > round(x,2) #show them, rounded to 2 decimals [1] 1.37 -0.56 0.36 0.63 0.40 > round(pnorm(x),2) #show their probabilities to 2 decimals [1] 0.91 0.29 0.64 0.74 0.66 > round(qnorm(pnorm(x)),2) #find the quantiles of the normal [1] 1.37 -0.56 0.36 0.63 0.40

See (Example 2)



Part I <-


Basic R 000 000000000 Exploratory 00000000 000000 Regression

-> Part III

#### **Basic Graphics**

#### R can draw distributions

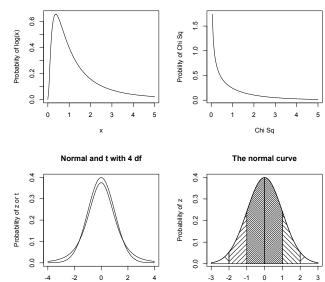




We do this by using the curve function to which we pass the values of the dnorm function. curve(dnormal(x),-3,3, ylab="probability of x",main="A normal curve")



Basic R ○○○ ○●○○○○○○○○ Exploratory 00000000 000000 Regression


-> Part III

**Basic Graphics** 

#### R can draw more interesting distributions

Log normal

Chi Square distribution





84 / 279

```
Basic R
                      000000000
Basic Graphics
                            R is also a graphics calculator
                                               R code
      op <- par(mfrow=c(2,2))
                                      #set up a 2 x 2 graph
      curve (dlnorm(x),0,5,ylab='Probabiity of log(x)', main='Log normal')
      curve(dchisg(x,1),0,5,vlab='Probility of Chi Sg',xlab='Chi Sg',main='Chi Sguare distribution
      curve(dnorm(x), -4,4, vlab='Probability of z or t', xlab='z or t', main='Normal and t with 4 df'
      curve(dt(x,4),add=TRUE)
      #somewhat more complicated
      #first draw the normal curve
      curve(dnorm(x),-3,3,xlab="",ylab="Probability of z") #the range of x
      title (main="The normal curve", outer=FALSE) #the title
      #add the cross hatching by using polygons
      xvals <- seg(-3,-2,length=100) #From -3 to 2 with 100 points</pre>
      dvals <- dnorm(xvals)
      polygon(c(xvals, rev(xvals)), c(rep(0,100), rev(dvals)), density=2, angle=-45)
      xvals <- seg(-2,-1,length=100)
      dvals <- dnorm(xvals)
      polygon(c(xvals, rev(xvals)), c(rep(0,100), rev(dvals)), density=14, angle=45)
      xvals <- seg(-1,-0,length=100)
      dvals <- dnorm(xvals)
      polygon(c(xvals, rev(xvals)), c(rep(0, 100), rev(dvals)), density=34, angle=-45)
      xvals <- seq(2,3,length=100)</pre>
      dvals <- dnorm(xvals)
      polygon(c(xvals, rev(xvals)), c(rep(0,100), rev(dvals)), density=2, angle=45)
      xvals <- seg(1,2,length=100)</pre>
      dvals <- dnorm(xvals)
      polygon(c(xvals, rev(xvals)), c(rep(0,100), rev(dvals)), density=14, angle=-45)
      xvals <- seq(0,1,length=100)</pre>
      dvals <- dnorm(xvals)
      polygon(c(xvals, rev(xvals)), c(rep(0,100), rev(dvals)), density=34, angle=45)
      op <- par(mfrow=c(1,1)) #back to a normal 1 x 1 graph
```

85 / 279

Part I <-

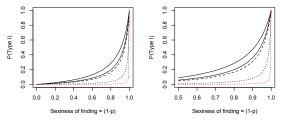
Basic R 000 000●000000 Exploratory 00000000 000000 -> Part III

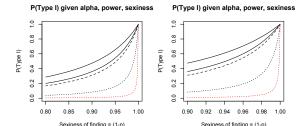
**Basic Graphics** 

## R can help teach with 100s of example data sets.

- > data()
- > data(package="psych")
  #see the names of the 5<u>6</u>

- > data(Titanic)
- > ? Titanic


- > data(cushny)
- > ? cushny
- > data(UCBAdmissions)
- > ? UCBAdmissions


- 1. This opens up a separate text window and lists all of the data sets in the currently loaded packages.
  - Show the data sets available in a particular package (e.g., psych).
- Gets the particular data set with its help file (e.g., the survival rates on the Titanic cross classified by age, gender and class).
- 4. Another original data set used by "student" (Gossett) for the t-test.
- 5. The UC Berkeley example of "sex discrimination" as a Simpson paradox





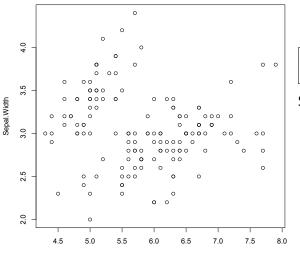
R can show current statistical concepts: Type I Errors: It is not the power, it is the prior likelihood dashed/dotted lines reflect alpha = .05, .01, .001 with power = 1



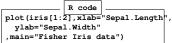


- 1. Extreme claims require extreme probabilities
- 2. Given that a finding is "significant", what is the likelihood that it is a Type I error?
- 3. Depends upon the prior likelihood (the 'sexiness') the claim.




87 / 279

| Pa | art | < | - |
|----|-----|---|---|
|----|-----|---|---|


Basic R 000 00000●0000 Exploratory 00000000 000000

**Basic Graphics** 

#### A simple scatter plot using plot with Fisher's Iris data set.

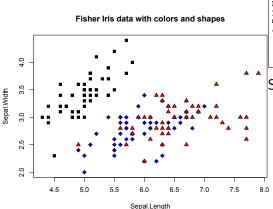


#### Fisher Iris data



#### Set parameters

- 1. xlab for x axis label
- 2. ylab for y axis label
- 3. main for title
- 4. (Example 4)




| Part I | <- |
|--------|----|
|--------|----|

Basic R 000 000000●000 Exploratory 00000000 000000

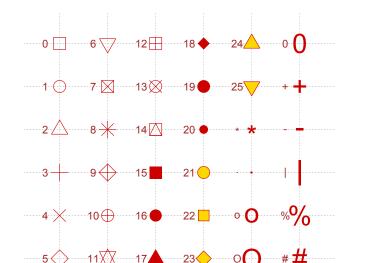
**Basic Graphics** 

#### A simple scatter plot using plot with some colors and shapes



R code plot(iris[1:2],xlab="Sepal.Length", ylab="Sepal.Width", main="Fisher Iris data with colors and shapes", bg=c("black", "blue", "red")[iris[,"Species"]], pch=2l+ as.numeric(iris[,5]))

## Set parameters


- 1. bg for background colors of symbols
- 2. pch chooses the plot character
- 3. Note how these depend upon iris[,5] which is the species



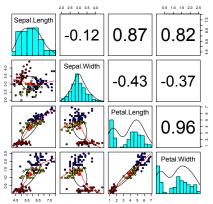


#### Show the various graphic options for plot character (pch)

plot symbols : points (... pch = \*, cex = 3)






90 / 279

Part I <-

Basic R 000 00000000●0 Exploratory 00000000 000000 Regressio

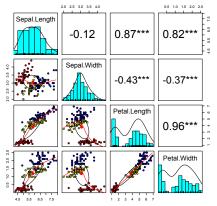
**Basic Graphics** 

## A scatter plot matrix plot with loess regressions using pairs.panels



#### Fisher Iris data by Species

- 1. Correlations above the diagonal
- 2. Diagonal shows histograms and densities
- scatter plots below the diagonal with correlation ellipse
- 4. locally smoothed (loess) regressions for each pair
- 5. optional color coding of grouping variables.


pairs.panels(iris[1:4],bg=c("red","yellow","blue")
[iris\$Species],pch=21,main="Fisher Iris data by
Species")



| Part I <-      | Basic R          | Exploratory | Regression | -> Part III |
|----------------|------------------|-------------|------------|-------------|
|                | 000<br>000000000 | 0000000     |            |             |
| Basic Graphics |                  |             |            |             |

#### A scatter plot matrix plot with loess regressions using pairs.panels

Fisher Iris data by Species



# Show "significance" using magic asterisks

pairs.panels(iris[1:4],bg=c("red","yellow","blue")
[iris\$Species],pch=21,main="Fisher Iris data by
Species",stars=TRUE)



Basic R 000 0000000000 Exploratory •0000000 000000 Regression

-> Part III

Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii)

#### A brief example with real data - example 5

- 1. Get the data
- 2. Descriptive statistics
  - Graphic
  - Numerical
- 3. Inferential statistics using the linear model
  - regressions
- 4. More graphic displays



Basic R 000 0000000000 Exploratory

Regression

-> Part III

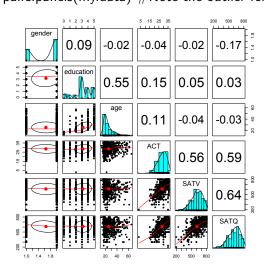
Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii)

#### Get the data and describe it

- 1. First read the data, either from a built in data set, a local file, a remote file, or from the clipboard.
- 2. Describe the data using the describe function from psych

```
my.data <- sat.act #an example data file that is part of psych
#or
#my.data <-read.file() #look for it on your hard drive
#or
file.name <-"http://personality-project.org/r/aps/sat.act.txt"
#now read it either locally or remotely
my.data <- read.file(file.name)
#or if you have copied the data to the clipboard
# my.data <- read.clipboard() #you can read it from there
describe(my.data) #report basic descriptive statistics
```

|           | var | n   | mean   | sd     | median | trimmed | mad    | min | max | range | skew  | kurtosis | se                  |
|-----------|-----|-----|--------|--------|--------|---------|--------|-----|-----|-------|-------|----------|---------------------|
| gender    | 1   | 700 | 1.65   | 0.48   | 2      | 1.68    | 0.00   | 1   | 2   | 1     | -0.61 | -1.62    | 0.02                |
| education | 2   | 700 | 3.16   | 1.43   | 3      | 3.31    | 1.48   | 0   | 5   | 5     | -0.68 | -0.06    | 0.05                |
| age       | 3   | 700 | 25.59  | 9.50   | 22     | 23.86   | 5.93   | 13  | 65  | 52    | 1.64  |          |                     |
| ACT       | 4   | 700 | 28.55  | 4.82   | 29     | 28.84   | 4.45   | 3   | 36  | 33    | -0.66 | 0.56     | 0.18<br>4.2<br>4.41 |
| SATV      | 5   | 700 | 612.23 | 112.90 | 620    | 619.45  | 118.61 | 200 | 800 | 600   | -0.64 | 0.35     | 4.27                |
| SATQ      | 6   | 687 | 610.22 | 115.64 | 620    | 617.25  | 118.61 | 200 | 800 | 600   | -0.59 | 0.00     | 4.41                |


Basic R 000 0000000000 Exploratory

Regression

-> Part III

Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii)

## **Graphic display of data using** pairs.panels pairs.panels(my.data) #Note the outlier for ACT





Basic R 000 0000000000 Exploratory

Regression

-> Part III

Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii)

# Clean up the data using scrub. Use ?scrub for help on the parameters.

We noticed an outlier in the ACT data in the previous graph (you always graph your data, don't you).

We also noticed that the minimum value for ACT was unlikely (of course, you always describe your data).

So we change any case below <u>4 on the ACT</u> to be missing (NA).

 R code

 cleaned <- scrub(my.data,"ACT",min=4)</td>

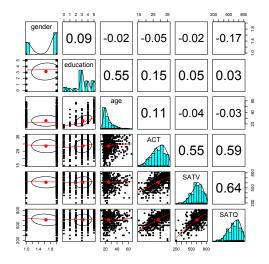
 #which variable, what value to fix

 describe(cleaned)

 #look at the data again

 pairs.panels(cleaned)

|           | var | n   | mean   | sd     | median | trimmed | mad    | min | max | range | skew  | kurtosis | se   |
|-----------|-----|-----|--------|--------|--------|---------|--------|-----|-----|-------|-------|----------|------|
| gender    | 1   | 700 | 1.65   | 0.48   | 2      | 1.68    | 0.00   | 1   | 2   | 1     | -0.61 | -1.62    | 0.02 |
| education | 2   | 700 | 3.16   | 1.43   | 3      | 3.31    | 1.48   | 0   | 5   | 5     | -0.68 | -0.06    | 0.05 |
| age       | 3   | 700 | 25.59  | 9.50   | 22     | 23.86   | 5.93   | 13  | 65  | 52    | 1.64  | 2.47     | 0.36 |
| ACT       | 4   | 699 | 28.58  | 4.73   | 29     | 28.85   | 4.45   | 15  | 36  | 21    | -0.50 |          |      |
| SATV      | 5   | 700 | 612.23 | 112.90 | 620    | 619.45  | 118.61 | 200 | 800 | 600   | -0.64 | 0.35     | 4.27 |
| SATQ      | 6   | 687 | 610.22 | 115.64 | 620    | 617.25  | 118.61 | 200 | 800 | 600   | -0.59 | 0.00     | 4.27 |


Basic R 000 0000000000 Exploratory

Regression

-> Part III

Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii)

#### Graphic display of cleaned data using pairs.panels





Basic R 000 0000000000 Exploratory

Regression

-> Part III

Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii)

#### Find the pairwise correlations, round to 2 decimals

This also shows how two functions can be nested. We are rounding the output of the cor function.

R code

#specify all the parameters being passed round(cor(x=sat.act,use="pairwise"),digits=2) #the short way to specify the rounding parameter round(cor(cleaned,use="pairwise"),2)

|           | gender | education | age   | ACT   | SATV  | SATQ  |
|-----------|--------|-----------|-------|-------|-------|-------|
| gender    | 1.00   | 0.09      | -0.02 | -0.05 | -0.02 | -0.17 |
| education | 0.09   | 1.00      | 0.55  | 0.15  | 0.05  | 0.03  |
| age       | -0.02  | 0.55      | 1.00  | 0.11  | -0.04 | -0.03 |
| ACT       | -0.05  | 0.15      | 0.11  | 1.00  | 0.55  | 0.59  |
| SATV      | -0.02  | 0.05      | -0.04 | 0.55  | 1.00  | 0.64  |
| SATQ      | -0.17  | 0.03      | -0.03 | 0.59  | 0.64  | 1.00  |



Basic R 000 0000000000 Exploratory

Regression

-> Part III

Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii)

## Display it differently using the lowerCor function

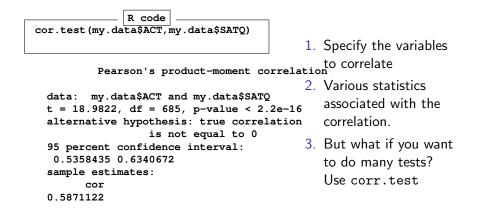
Operations that are done a lot may be made into your own functions. Thus, lowerCor finds the pairwise correlations, rounds to 2 decimals, displays the lower half of the correlation matrix, and then abbreviates the column labels to make them line up nicely

R code

lowerCor(cleaned)

|           | gendr | edctn | age   | ACT  | SATV | SATQ |
|-----------|-------|-------|-------|------|------|------|
| gender    | 1.00  |       |       |      |      |      |
| education | 0.09  | 1.00  |       |      |      |      |
| age       | -0.02 | 0.55  | 1.00  |      |      |      |
| ACT       | -0.05 | 0.15  | 0.11  | 1.00 |      |      |
| SATV      | -0.02 | 0.05  | -0.04 | 0.55 | 1.00 |      |
| SATO      | -0.17 | 0.03  | -0.03 | 0.59 | 0.64 | 1.00 |




Basic R 000 0000000000 Exploratory

Regression

-> Part III

Data preparation, descriptive statistics, data cleaning, correlation plots: (Examples part ii)

Testing the significance of one correlation using cor.test.





Part I <-

Basic R 000 0000000000 Exploratory

Regression

-> Part III

Inferential statistics

# Test many correlations for significance using corr.test

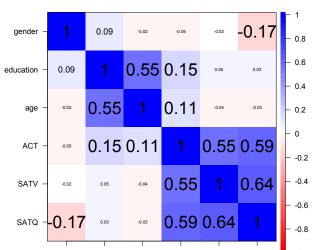
corr.test (cleaned)

| all:corr.test(x = cleaned)<br>Correlation matrix |          |            |                  |              |  |  |  |  |
|--------------------------------------------------|----------|------------|------------------|--------------|--|--|--|--|
| COLLETACIO                                       |          |            |                  |              |  |  |  |  |
|                                                  | -        |            | age ACT SAT      | -            |  |  |  |  |
| gender                                           | 1.00     | 0.09       | -0.02 -0.05 -0.0 | 2 -0.17      |  |  |  |  |
| education                                        | 0.09     | 1.00       | 0.55 0.15 0.0    | 5 0.03       |  |  |  |  |
| age                                              | -0.02    | 0.55       | 1.00 0.11 -0.0   | 4 -0.03      |  |  |  |  |
| ACT                                              | -0.05    | 0.15       | 0.11 1.00 0.5    | 5 0.59       |  |  |  |  |
| SATV                                             | -0.02    | 0.05       | -0.04 0.55 1.0   | 0 0.64       |  |  |  |  |
| SATQ                                             | -0.17    | 0.03       | -0.03 0.59 0.6   | 4 1.00       |  |  |  |  |
| Sample Siz                                       | ze       |            |                  |              |  |  |  |  |
|                                                  | gender   | education  | age ACT SATV SAT | 2            |  |  |  |  |
| gender                                           | 700      | 700        | 700 699 700 68   | 7            |  |  |  |  |
| •••                                              |          |            |                  |              |  |  |  |  |
| SATQ                                             | 687      | 687        | 687 686 687 68   | 7            |  |  |  |  |
| Probabilit                                       | ty value | s (Entries | above the diago  | nal are      |  |  |  |  |
|                                                  |          | a          | djusted for mult | iple tests.) |  |  |  |  |
|                                                  | gender   | education  | age ACT SATV S   | <b>ATQ</b>   |  |  |  |  |
| gender                                           | 0.00     | 0.17       | 1.00 1.00 1      | 0            |  |  |  |  |
| education                                        | 0.02     | 0.00       | 0.00 0.00 1      | 1            |  |  |  |  |
| age                                              | 0.58     | 0.00       | 0.00 0.03 1      | 1            |  |  |  |  |
| ACT                                              | 0.21     | 0.00       | 0.00 0.00 0      | 0            |  |  |  |  |



101 / 279

Part I <-


Basic R 000 0000000000 Exploratory

Regression

Inferential statistics

### The SAT.ACT correlations. Confidence values from resampling

ci <- cor.ci(cleaned,main='Heat map of sat.act')



#### Heat map of sat.act correlations



102 / 279


Basic R 000 0000000000 Exploratory

Regression

Inferential statistics

### The SAT.ACT bootstrapped confidence intervals of correlation

cor.plot.upperLowerCi(ci,main="Heat map of sat.act")



#### confidence values of the sat.act data



Basic R 000 0000000000 Exploratory

Regression

Inferential statistics

# Are education and gender independent? $\chi^2$ Test of association

T <- with(my.data,table(gender,education))</pre>

| > T     |           |      |      |       |      |      | 1. First create a table of associations                              |
|---------|-----------|------|------|-------|------|------|----------------------------------------------------------------------|
| e       |           | tion |      |       |      |      | <b>D</b>                                                             |
| gender  | 0         | 1    | 2    | 3     | 4    | 5    | <ul> <li>Do this on our</li> <li>data (mu data)</li> </ul>           |
| 1       | 27        | 20   | 23   | 80    | 51   | 46   | data (my.data)<br>• Use the "with"                                   |
| 2       | 30        | 25   | 21   | 195   | 87   | 95   | command to<br>specify the data<br>set                                |
| > chisq |           |      | 's ( | Chi-s | quar | ed t | 2. Show the table<br>$\stackrel{\text{est}}{3.}$ Apply $\chi^2$ test |
|         | T<br>ed = | 16.  | 0851 | l, df | = 5  | , p- | value = 0.006605                                                     |

104 / 279

| Part I | <- |
|--------|----|
|--------|----|

Basic R 000 0000000000 Exploratory

Regression

-> Part III

Inferential statistics

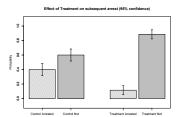
## Finding $\chi^2$ from a table of data

| <ul> <li>Consider the effect of a treatment on later arrest (From</li> </ul> |                 |                             |      |  |  |  |  |
|------------------------------------------------------------------------------|-----------------|-----------------------------|------|--|--|--|--|
| Ashley Kendall, 20                                                           | )16)            |                             |      |  |  |  |  |
| Condition Arre                                                               | sted Not Arr    | rrested                     |      |  |  |  |  |
| Control                                                                      | 14              | 21                          |      |  |  |  |  |
| Treatment                                                                    | 3               | _ 23                        |      |  |  |  |  |
|                                                                              | R code          |                             |      |  |  |  |  |
| ak.df <- data.frame(Co                                                       | • • •           |                             |      |  |  |  |  |
| rownames(ak.df) <- c("Arrested", "Not Arrested")                             |                 |                             |      |  |  |  |  |
| ak.df #show the data :                                                       | frame           |                             |      |  |  |  |  |
| chisq.test(ak.df) #Te                                                        | est it using th | the Yates continuity correc | tion |  |  |  |  |

```
> ak.df #show the data frame
Control Treated
Arrested 14 3
Not Arrested 21 23
> chisq.test(ak.df) #Test it using the Yates continuity correction
Pearson's Chi-squared test with Yates' continuity correction
data: ak.df
X-squared = 4.6791, df = 1, p-value = 0.03053
```

Part I <-

Basic R 000 0000000000 Exploratory


Regression

Inferential statistics

#### Graph the tabled data showing confidence intervals of proportions

R code

| ak.df <- data.frame(Control=c(14,21),Treated =c(3,23))                     |     |
|----------------------------------------------------------------------------|-----|
| <pre>ak.p &lt;- t(t(ak.df)/colSums(ak.df)) #convert to probabilities</pre> |     |
| <pre>standard.error &lt;- sqrt(ak.p[1,] * ak.p[2,]/colSums(ak.df))</pre>   |     |
| <pre>stats &lt;- data.frame(mean=as.vector(ak.p),</pre>                    |     |
| <pre>se=rep(standard.error,each=2))</pre>                                  |     |
| <pre>rownames(stats) &lt;- c("Control Arrested", "Control Not",</pre>      |     |
| "Treatment Arrested", "Treatment Not")                                     |     |
| error.bars(stats=stats,bars=TRUE,space=c(.1,.1,1,.1),                      |     |
| density=c(20,-10,20,-10),ylab="Probability",                               |     |
| <pre>xlab="Control vs Treatment",</pre>                                    |     |
| main ="Effect of Treatment on subsequent arrest (95% confidence            | )") |



round(stats,2)

|                    | mean | se   |
|--------------------|------|------|
| Control Arrested   | 0.40 | 0.08 |
| Control Not        | 0.60 | 0.08 |
| Treatment Arrested | 0.12 | 0.06 |
| Treatment Not      | 0.88 | 0.06 |



| Part I <- |
|-----------|
|-----------|

Basic R 000 0000000000 Exploratory 00000000 000000 Regression

-> Part III

#### Multiple regression and the general linear model

- 1. Use the sat.act data example
- 2. Do the linear model
- 3. Summarize the results

R code

mod1 <- lm(SATV ~ education + gender + SATQ, data=my.data)
summary(mod1,digits=2)</pre>

Call:

```
lm(formula = SATV ~ education + gender + SATQ, data = my.data)
Residuals:
```

Min 10 Median 30 Max -372.91 -49.08 2.30 53.68 251.93 Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 180.87348 23.41019 7.726 3.96e-14 \*\*\* education 1.24043 2.32361 0.534 0.59363 gender 20.69271 6.99651 2.958 0.00321 \*\* SATQ 0.64489 0.02891 22.309 < 2e-16 \*\*\* Signif. codes: 0 ô\*\*\*Õ 0.001 ô\*\*Õ 0.01 ô\*Õ 0.05 ô.Õ 0.1 ô Õ 1 Residual standard error: 86.24 on 683 degrees of freedom

(13 observations deleted due to missingness) Multiple R-squared: 0.4231, Adjusted R-squared: 0.4205 Interpretation 167 on 3 and 683 PE p-value: < 2 20-16 Basic R 000 0000000000 Exploratory 00000000 000000

### Zero center the data before examining interactions

In order to examine interactions using multiple regression, we must first "zero center" the data. This may be done using the scale function. By default, scale will standardize the variables. So to keep the original metric, we <u>make the</u> scaling parameter FALSE.

| csat <- data.fra | ame(scale(my.da | ata,scale=FALSE)) |
|------------------|-----------------|-------------------|
|                  |                 | standardized data |

|           | vars | n   | mean | sd     | median | trimmed | mad    | min     | max    |
|-----------|------|-----|------|--------|--------|---------|--------|---------|--------|
| gender    | 1    | 700 | 0    | 0.48   | 0.35   | 0.04    | 0.00   | -0.65   | 0.3    |
| education | 2    | 700 | 0    | 1.43   | -0.16  | 0.14    | 1.48   | -3.16   | 1.84   |
| age       | 3    | 700 | 0    | 9.50   | -3.59  | -1.73   | 5.93   | -12.59  | 39.4:  |
| ACT       | 4    | 700 | 0    | 4.82   | 0.45   | 0.30    | 4.45   | -25.55  | 7.4    |
| SATV      | 5    | 700 | 0    | 112.90 | 7.77   | 7.22    | 118.61 | -412.23 | 187.7  |
| SATQ      | 6    | 687 | 0    | 115.64 | 9.78   | 7.04    | 118.61 | -410.22 | 189.78 |

Note that we need to take the output of scale (which comes back as a matrix) and make it into a data.frame if we want to use the linear model on it.



| Part I | <- |
|--------|----|
|--------|----|

Basic R 000 0000000000 Exploratory 00000000 000000 Regression

-> Part III

# Zero center the data before examining interactions

csat <- data.frame(scale(my.data,scale=FALSE))
mod2 <- lm(SATV ~ education \* gender \* SATQ,data=csat)
summary(mod2)</pre>

Call: all.  $lm(formula = SATV \sim education * gender * SATO, data = csat)$ Residuals: Min 10 Median 30 Max -372.53 -48.76 3.33 51.24 238.50 Coefficients: Estimate Std. Error t value Pr(>|t|) 0.773576 0.234 0.81500 (Intercept) 3.304938 education 2.517314 2.337889 1.077 0.28198 gender 18.485906 6.964694 2.654 0.00814 \*\* SATO 0.620527 0.028925 21.453 < 2e-16 \*\*\* education:gender 1.249926 4.759374 0.263 0.79292 education:SATO -0.101444 0.020100 -5.047 5.77e-07 \*\*\* gender:SATO 0.007339 0.060850 0.121 0.90404 0.870 0.38481 education:gender:SATQ 0.035822 0.041192 \_\_\_ Signif. codes: 0 ?\*\*\*? 0.001 ?\*\*? 0.01 ?\*? 0.05 ?.? 0.1 ? ? 1 Residual standard error: 84,69 on 679 degrees of freedom (13 observations deleted due to missingness) Multiple R-squared: 0.4469, Adjusted R-squared: 0.4412 F-statistic: 78.37 on 7 and 679 DF, p-value: < 2.2e-16



```
Part I <-
```

Basic R 000 0000000000 Exploratory 00000000 000000 Regression

-> Part III

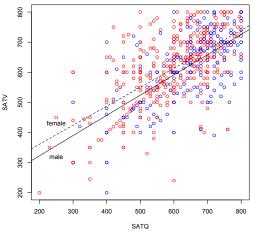
#### Compare model 1 and model 2 using anova

Test the difference between the two linear models

anova (mod1, mod2)

```
Analysis of Variance Table
Analysis of Variance Table
Model 1: SATV ~ education + gender + SATQ
Model 2: SATV ~ education * gender * SATQ
Res.Df RSS Df Sum of Sq F Pr(>F)
1 683 5079984
2 679 4870243 4 209742 7.3104 9.115e-06 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
```




Part I <-

Basic R 000 0000000000 Exploratory 00000000 000000 Regression

-> Part III

#### Show the regression lines by gender

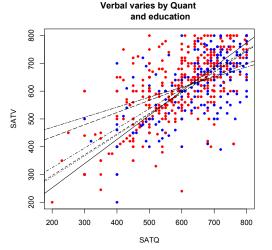
Verbal varies by Quant and gender



First plot all the data.

Then add the regression lines. Then put a title on the whole thing.

R code #first plot the data points with (my.data, plot (SATV~SATQ, col=c("blue", "red") [gender])) #add the regression lines by (my.data, my.data\$gender, function(x) abline (lm(SATV~SATQ,data=x), lty=c("solid", "dashed" )[x\$gender])) #add a title title("Verbal varies by Quant and gender") #label the lines text(250,320,"male") text(250,430,"female")


111/279

Part I <-

Basic R 000 0000000000 Exploratory 00000000 000000 Regression

-> Part III

#### Show the regression lines by education



Do this again, but for levels of education as the moderator with(my.data,plot(SATV~SATQ, colc("blue", "red")[gender], pch=20)) #plot character by(my.data,my.data\$education, function(x) abline (lm(SATV~SATQ,data=x), lty=c("solid", "dashed", "dotted", "dotdash", "longdash", "twodash")[(x\$education+1)])) title("Verbal varies by Quant and education")




| Part I | <- |
|--------|----|
|--------|----|

Basic R 000 0000000000 Exploratory 00000000 000000 Regression

-> Part III

# **Questions?**





113 / 279

| Part II <-                                                                                                                            | Basics<br>00000000000000                                                                                                                                                                       | Descriptives<br>000000<br>00                                                                                                                                                             | Inferential<br>000000<br>00000000000                                                                                                           | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|-----------|--|
|                                                                                                                                       |                                                                                                                                                                                                |                                                                                                                                                                                          |                                                                                                                                                |                                       |                                |           |  |
|                                                                                                                                       | <ul> <li>Installing</li> <li>Part II: A bri</li> <li>R is just</li> <li>Descripti</li> <li>Some inf</li> <li>Part III R is</li> <li>Data ent</li> <li>Descripti</li> <li>Inferentia</li> </ul> | g R and ad<br>ief introdu<br>a fancy (v<br>ive data ar<br>ferential ar<br>a powerfu<br>cry (detail<br>ive (again)<br>al (t and F<br>con (includi<br>commands<br>chometric<br>y and its c | ding packages<br>action – an o<br>very fancy) can<br>halysis<br>alysis<br>and statistical s<br>and practice)<br>with more pring mediation<br>s | lculator<br>system                    | ocks of R                      |           |  |
| <ul> <li>Part V: Help and More Help</li> <li>List of useful commands</li> <li>Part VI: The psych package and more practice</li> </ul> |                                                                                                                                                                                                |                                                                                                                                                                                          |                                                                                                                                                |                                       |                                |           |  |

114 / 279

Basic statistics and graphics 4 steps: read, explore, test, graph Basic descriptive statistics and graphics Graphic displays Correlations Inferential statistics The t-test **ANOVA** Linear Regression, Moderation and Mediation Regression from the raw data Regression from covariance/correlation matrices R structure Basic R **Objects and Functions** -> Part IV: Psychometrics



| Part II <-     | Basics               | Descriptives | Inferential           | Regression/Mediation | R structure | ->Part IV |
|----------------|----------------------|--------------|-----------------------|----------------------|-------------|-----------|
|                | •0000000000000       | 000000       | 000000<br>00000000000 | 0000                 | 0000000     |           |
| 4 steps: read, | explore, test, graph |              |                       |                      |             |           |

# Using R for psychological statistics: Basic statistics

- 1. Writing syntax
  - For a single line, just type it
  - Mistakes can be redone by using the up arrow key
  - For longer code, use a text editor (built into some GUIs)
- 2. Data entry
  - Using built in data sets for examples
  - Copying from another program
  - Reading a text or csv file
  - Importing from SPSS or SAS
  - Simulate it (using various simulation routines)
- 3. Descriptives
  - Graphical displays
  - Descriptive statistics
  - Correlation
- 4. Inferential
  - the t test
  - the F test
  - the linear model



| Part II <-     | Basics<br>○●○○○○○○○○○○○○ | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|--------------------------|------------------------------|--------------------------------------------------------|----------------------|--------------------------------|-----------|
| 4 steps: read, | explore, test, graph     |                              |                                                        |                      |                                |           |

#### Data entry overview

1. Using built in data sets for examples

- data() will list > 100 data sets in the datasets package as well as all sets in loaded packages.
- Most packages have associated data sets used as examples
- psych has > 50 example data sets
- 2. Copying from another program
  - use copy and paste into R using read.clipboard and its variations
- 3. Reading a text or csv file
  - read a local or remote file
- 4. Importing from SPSS or SAS
  - Use either the foreign, haven or rio packages
- 5. Simulate it (using various simulation routines)
- 6. Model it using simulations (e.g., cta (Revelle & Condon, 2015))



| Part II <-     | Basics<br>000000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|---------------------------|------------------------------|--------------------------------------------------------|----------------------|--------------------------------|-----------|
| 4 steps: read, | explore, test, graph      |                              |                                                        |                      |                                |           |

#### Examples of built in data sets from the psych package

> data(package="psych")

| ability<br>Bechtoldt | 16 multiple choice IQ items from the ICAR project (Condon & Revelle, 2014)<br>Seven data sets showing a bifactor solution |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|
|                      | (Bechtoldt, 1961; Holzinger & Swineford, 1937; Thurstone & Thurstone, 1941).                                              |
| Dwyer                | 8 cognitive variables used by Dwyer (1937) for an example.                                                                |
| Reise                | Seven data sets showing a bifactor solution (Reise, Morizot & Hays, 2007).                                                |
| affect               | Data sets of affect and arousal scores as a function of personality                                                       |
|                      | and movie conditions (Smillie, Cooper, Wilt & Revelle, 2012)                                                              |
| income               | US family income from US census 2008                                                                                      |
| bfi                  | 25 Personality items representing 5 factors (N=2800)                                                                      |
| blot                 | Bond's Logical Operations Test - BLOT (N=150) (Bond, 1995)                                                                |
| burt                 | 11 emotional variables from Burt (1915)                                                                                   |
| cities               | Distances between 11 US cities                                                                                            |
| epi.bfi              | 13 scales from the Eysenck Personality Inventory and Big 5 inventory                                                      |
| income               | US family income from US census 2008                                                                                      |
| msq                  | 75 mood items from the Motivational State Questionnaire for N=3896                                                        |
| neo                  | NEO correlation matrix from the NEOPI-R manual (Costa & McCrae, 1985)                                                     |
| sat.act              | 3 Measures of ability: SATV, SATQ, ACT (N=700)                                                                            |
| Thurstone            | Seven data sets showing a bifactor solution.                                                                              |
| veg (vegetables)     | Paired comparison of preferences for 9 vegetables (Guilford, 1954)                                                        |



# Reading data from another program –using the clipboard

- 1. Read the data in your favorite spreadsheet or text editor
- 2. Copy to the clipboard
- 3. Execute the appropriate read.clipboard function with or without various options specified

```
my.data <- read.clipboard() #assumes headers and tab or space del
my.data <- read.clipboard.csv() #assumes headers and comma delimi
my.data <- read.clipboard.tab() #assumes headers and tab delimited
(e.g., from Excel)
my.data <- read.clipboard.lower() #read in a matrix given the lo
my.data <- read.clipboard.upper() # or upper off diagonal
my.data <- read.clipboard.fwf() #read in data using a fixed form
(see read.fwf for instruct)
```

4. read.clipboard() has default values for the most common cases and these do not need to be specified. Consult ?read.clipboard for details. In particular, are headers provided for each column of input?



| Part II <-     | Basics<br>000000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>0000000000000000 | Regression/Mediation | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|---------------------------|------------------------------|-------------------------------------------|----------------------|--------------------------------|-----------|
| 4 steps: read, | explore, test, graph      |                              |                                           |                      |                                |           |

### Reading from a local or remote file

- 1. Perhaps the standard way of reading in data is using the read command.
  - · First must specify the location of the file
  - Can either type this in directly or use the file.choose function. This goes to your normal system file handler.
  - The file name/location can be a remote URL.
- 2. Two examples of reading data

```
file.name <- file.choose() #this opens a window to allow you find the file
#or
file.name="http://personality-project.org/r/datasets/R.appendix1.data"
my.data <- read.file(file.name)
#or
my.data = read.table(file.name,header=TRUE) #the conventional way
dim(my.data) #find the dimensionality of our data
describe(my.data) #describe it to check the means, ranges, etc.</pre>
```

```
> dim(my.data ) #what are the dimensions of what we read?
[1] 18 2
> describe(mv.data ) #do the data look right?
              n mean
                         sd median trimmed mad min max range skew kurtosis
            1 18 1.89 0.76
                                 2
Dosage*
                                      1.88 1.48
                                                  1
                                                      3
                                                            2 0.16
                                                                      -1.12 0.
            2 18 27 67 6 82
                                27
                                     27 50 8 15
                                                17
                                                     41
                                                           24 0 25
                                                                      -0 68 1 61
Alertness
```

| rt II <-                | Basics<br>00000●0000000                                                                 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>000000000000 | Regressio<br>0000<br>00000 | n/Mediation  | R structure<br>0000000<br>0000 | ->Part IV |
|-------------------------|-----------------------------------------------------------------------------------------|------------------------------|---------------------------------------|----------------------------|--------------|--------------------------------|-----------|
| teps: rea               | d, explore, test, graph                                                                 |                              |                                       |                            |              |                                |           |
|                         |                                                                                         |                              |                                       |                            |              |                                |           |
|                         | Put i                                                                                   | <u>t all</u> toge            | ther: read,                           | show,                      | describe     | е                              |           |
|                         |                                                                                         | code                         |                                       |                            |              |                                |           |
| data.<br>dim(d<br>data. | ilename="http://per<br>ex1<- read.file(dat<br>lata.ex1) #what are<br>ex1 #show the data | afilename)<br>the dimensi    | ons of what we                        |                            | pendixl.data | a"                             |           |
|                         | ail(data.ex1) #just<br>ibe(data.ex1) #desc                                              |                              |                                       |                            |              |                                |           |
|                         |                                                                                         |                              | -                                     | 1.                         | Read th      | e data fro                     | om a      |
| Dos                     | age Alertness                                                                           |                              | ,                                     |                            | remote       | file                           |           |
| 1                       | a 30                                                                                    |                              |                                       |                            |              |                                |           |
| 2                       | a 38                                                                                    |                              |                                       | 2.                         | Show al      | I the case                     | S         |
| (                       | rows deleted by har                                                                     | nd)                          |                                       |                            | (            |                                | •         |
| 17                      | c 20                                                                                    |                              |                                       |                            | (probler     | natic if th                    | ere       |
| 18                      | c 19                                                                                    |                              |                                       |                            | · ·          | 100s – 10                      |           |
| > head                  | Tail(data.ex1) #jus                                                                     | st the top an                | d bottom lines                        |                            | are are      | 1003 10                        | 003)      |
|                         | sage Alertness                                                                          | -                            |                                       | 3                          | lust che     | w the firs                     | +         |
| 1                       | a 30                                                                                    |                              |                                       | 5.                         | Just site    | Jw the ma                      |           |
| 2                       | a 38 'l                                                                                 | nead' rows                   |                                       |                            | and last     | : (4) lines                    |           |
| 3                       | a 35                                                                                    |                              |                                       |                            |              |                                |           |
| 4                       | a 41                                                                                    |                              |                                       | 4                          | Find de      | scrintive                      |           |
|                         |                                                                                         | vs automatica                | lly deleted)                          | 4.                         | i nu ue      | scriptive                      |           |
| 15<br>16                | c 17                                                                                    |                              |                                       |                            | statistic    | S                              |           |
| 16<br>17                | ·                                                                                       | ail' rows                    |                                       |                            | 21413110     | -                              |           |
| 18                      | c 19                                                                                    | III IOWS                     |                                       |                            |              |                                |           |
|                         | ribe(data.ex1) #des                                                                     | criptive sta                 | ts                                    |                            |              |                                |           |
|                         | vars n mean                                                                             |                              | rimmed mad min                        | max rang                   | e skew kurt  | osis se                        |           |
| Dosage                  |                                                                                         |                              | 1.88 1.48 1                           |                            |              | 1.35 0.18                      |           |
| Alertn                  | ess 2 18 27.67 (                                                                        | 5.82 27                      | 27.50 8.15 17                         | 41 2                       | 4 0.25 -     | 1.06 1.61                      | 121 / 279 |

| Part II <-     | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|--------------------------|------------------------------|--------------------------------------|---------------------------------------|--------------------------------|-----------|
| 4 steps: read, | explore, test, graph     |                              |                                      |                                       |                                |           |

#### However, some might want to Import SAS or SPSS files

The first thing to try is the read.file function. For more complicated data sets, there are several different packages that make importing SPSS, SAS, Systat, etc. files possible to do. read.file Function in psych to read .txt, .csv, .sav, .xpt, .r, ,.rda, .text (etc.)

- foreign Read data stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase. Comes installed with R. Somewhat complicated syntax.
  - haven Reads/writes SPSS and Stata files. Handles SPSS labels nicely (keeps the item labels, but converts the data to factors).
    - rio A general purpose package that requires installation of many of the other packages used for data import. Easiest to use, but overkill if just reading in one type of file. Basically a front end to many import/export packages. It determines which package to use based 122 / 279



| Part II <-     | Basics<br>0000000●00000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation | R structure | ->Part IV |
|----------------|-------------------------|------------------------------|--------------------------------------------------------|----------------------|-------------|-----------|
| 4 steps: read, | explore, test, graph    |                              |                                                        |                      |             |           |

#### Read a "foreign" file e.g., an SPSS sav file, using foreign package read.spss Reads a file stored by the SPSS save or export commands. (The defaults

lead to problems, make sure to specify that you want use.value.labels = FALSE, to.data.frame = TRUE)

file Character string: the name of the file or URL to read.

- use.value.labels Convert variables with value labels into R factors with those levels? Should be FALSE
  - to.data.frame return a data frame? Defaults to FALSE, probably should be TRUE in most cases.
- max.value.labels Only variables with value labels and at most this many unique values will be converted to factors if use.value.labels = TRUE.
- trim.factor.names Logical: trim trailing spaces from factor levels?
  - trim\_values logical: should values and value labels have trailing spaces ignored when matching for use.value.labels = *TRUE*?
  - use.missings logical: should information on user-defined missing values be used to set the corresponding values to NA?



| Part II <-     | Basics               | Descriptives | Inferential           | Regression/Mediation | R structure     | ->Part IV |
|----------------|----------------------|--------------|-----------------------|----------------------|-----------------|-----------|
|                | 00000000000000       | 000000       | 000000<br>00000000000 | 0000                 | 0000000<br>0000 |           |
| 4 steps: read, | explore, test, graph |              |                       |                      |                 |           |

#### An example of reading from an SPSS file using foreign

- > library(foreign)
- > datafilename <- "http://personality-project.org/r/datasets/finkel.sav"
  package active</pre>
- > headTail(eli,2,2)
- > describe(eli,skew=FALSE)

|     |                                                                                                                                                         |   |     |     |        |     |     |        |        |     |       |     |     |       | Э.   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-----|--------|-----|-----|--------|--------|-----|-------|-----|-----|-------|------|
|     | USEI                                                                                                                                                    | R | HAI | PPY | SOULMA | ATE | EN  | JOYDEX | UPSET  |     |       |     |     |       |      |
| 1   | "001                                                                                                                                                    | " |     | 4   |        | 7   |     | 7      | 1      |     |       |     |     |       |      |
| 2   | "003                                                                                                                                                    | " |     | 6   |        | 5   |     | 7      | C      |     |       |     |     |       |      |
|     | <na:< td=""><td>&gt;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.</td></na:<> | > |     |     |        |     |     |        |        |     |       |     |     |       | 4.   |
| 68  | "076                                                                                                                                                    | " |     | 7   |        | 7   |     | 7      | C      |     |       |     |     |       |      |
| 69  | "078                                                                                                                                                    | " |     | 2   |        | 7   |     | 7      | 1      |     |       |     |     |       |      |
| >   |                                                                                                                                                         |   |     |     |        |     |     |        |        |     |       |     |     |       |      |
|     |                                                                                                                                                         | ν | /ar | n   | mean   |     | sd  | mediar | n trim | med | mad   | min | max | range | SE   |
| USE | R*                                                                                                                                                      |   | 1   | 69  | 35.00  | 20. | .06 | 35     | 5 35   | .00 | 25.20 | 1   | 69  | 68    | 2.4Z |
| HAP | ΡY                                                                                                                                                      |   | 2   | 69  | 5.71   | 1.  | .04 | 6      | 5 5    | .82 | 0.00  | 2   | 7   | 5     | 0.13 |
| SOU | LMATE                                                                                                                                                   |   | 3   | 69  | 5.09   | 1.  | .80 | Ę      | 5 5    | .32 | 1.48  | 1   | 7   | 6     | 0.22 |
| ENJ | OYDEX                                                                                                                                                   |   | 4   | 68  | 6.47   | 1.  | .01 |        | 16     | .70 | 0.00  | 2   | 7   | 5     | 0.12 |
| UPS | ΕT                                                                                                                                                      |   | 5   | 69  | 0.41   | 0.  | .49 | (      | ) C    | .39 | 0.00  | 0   | 1   | 1     | 0.06 |

- package active 2. Specify the name (and location) of
  - the file to read Read from a SPS
- 3. Read from a SPSS file
- 4. Show the top and bottom 2 cases
  - Describe it to make sure it is right



#### An example of reading from an SPSS file using rio

> library(rio)

1. Make the rio > datafilename <- "http://personality-project.org/r/datasets/finkel.say"ackage active</pre> 2. Specify the name eli <- import(datafilename) #note that it figures out what to do > (and location) of > headTail(eli,2,2) #The first and last 2 > describe(eli,skew=FALSE) the file to read 3. Import from a USER HAPPY SOULMATE ENJOYDEX "001" 4 7 7 1 SPSS file "003" 6 7 0 <NA> . . . . . . 4. Show the top and "076" 7 7 7 0 1 69 "078" 2 7 bottom 2 cases

 $\sim$ sd median trimmed mad min max range var mean ige se 68 2.42. USER\* 1 69 35 00 20 06 35 35 00 25 20 69 1 HAPPY 2 69 5.71 1.04 6 5.82 0.00 7 5 0.13 3 69 5.09 1.80 5 5.32 1.48 1 7 6 0.22 SOULMATE ENJOYDEX 4 68 6 47 1 01 7 6 70 0.00 7 5 0 12 1 5 69 0 41 0 0 39 0.00 1 0.06 UPSET 0 49

R

Describe it to

make sure it is

right

| Part II     | <-                  | Basic<br>0000          | 5<br>0000000 | 000              | Description   | 00       | erential | 0000  | 0     | egression/Media<br>000<br>0000 | tion        | R structure                              | ->Part IV   |
|-------------|---------------------|------------------------|--------------|------------------|---------------|----------|----------|-------|-------|--------------------------------|-------------|------------------------------------------|-------------|
| 4 steps     | : read, e           | explore                | , test, gra  | aph              |               |          |          |       |       |                                |             |                                          |             |
|             |                     |                        |              |                  |               |          |          |       |       |                                |             |                                          |             |
|             | 4                   | An                     | exam         | ple o            | of rea        | ding     | from     | an    | SF    | PSS file ι                     | using       | , haven                                  |             |
|             | brary (<br>tafile   |                        |              | tp://p           | ersonal:      | ity-proj | ect.or   | g/r/c | latas |                                |             | ke the <i>hav</i><br>kage activ          |             |
| > e<br>> he | eli <-<br>eadTail   | read <u></u><br>l(eli, | _spss (d     | atafil<br>he fir | ename)        |          |          |       |       | 2.                             | Spe<br>(and | cify the na<br>l location<br>file to rea | ame<br>) of |
|             | USER H              |                        | SOULMA       | TE ENJ           | OYDEX UI<br>7 | SET      |          |       |       | 3.                             |             | ort from a<br>S file                     | 3           |
| -           | "003"               |                        | 5            | 5                | 7             | 0        |          |       |       | 1                              | Sha         | w the top                                | 2           |
| 3           | "004"               | (                      | 5            | 7                | 7             | 0        |          |       |       | 4.                             | 3110        | w the top                                | 5           |
|             | <na><br/>"076"</na> | ••                     | 7            | •••              |               |          |          |       |       |                                | and         | bottom 2                                 |             |
|             | "078"               |                        | /<br>>       | 7                | 7             | 1>       |          |       |       |                                |             |                                          |             |
| 05          |                     | ar i                   | -            | '                | '             | trimmed  | mad      | min   | max   | range se                       | case        | es                                       |             |
| USER        |                     |                        | 9 35.00      |                  | 35            |          | 25.20    | 1     | 69    | 68 2.42                        | -           |                                          |             |
| HAPP        | Y                   | 2 6                    | 9 5.71       | 1.04             | 6             | 5.82     | 0.00     | 2     | 7     | 5 0.1 <mark>3</mark> .         | Des         | cribe it to                              |             |
|             | MATE                | 3 69                   |              | 1.80             | 5             | 5.32     | 1.48     | 1     | 7     | 6 0.22                         | mak         | e sure it i                              | <b>c</b>    |
|             | YDEX                | 4 68                   |              | 1.01             | 7             | 6.70     | 0.00     | 2     | 7     | 5 0.12                         | mak         | le sure it i                             | 5           |
| UPSE        | T                   | 5 69                   | 9 0.41       | 0.49             | 0             | 0.39     | 0.00     | 0     | 1     | 1 0.06                         | righ        | t                                        |             |

126 / 279

| Part II <-     | Basics<br>0000000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000 | Regression/Mediation | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|----------------------------|------------------------------|--------------------------------------|----------------------|--------------------------------|-----------|
| 4 steps: read, | explore, test, graph       |                              |                                      |                      |                                |           |

#### read.file as a convenient solution to reading files

- 1. Combines file.choose and read.table
- 2. Also, based upon the suffix of the data, will choose the most likely way to read a SPSS, csv, text, rds or SAS export file.
- 3. Not as powerful as *foreign* or *rio* but easier.
- 4. Automatically reads SPSS .sav files as numeric values but can read them with the item information as well.

```
eli <- read.file(). #goes off and searches for a local file
datafilename <- "http://personality-project.org/r/datasets/finkel.sav"
eli <- read.file(datafilename). #uses that remote address to get it
ashley <- read.file() #a file from Ashley Kendall on my computer
kendall <- read.file(read.file(use.value.labels=TRUE) #keep the labels
ashley[1:3,8:17]
kendall[1:3,8:17]
```

| as | shley[1: | 3,8:17  | 7]    |        |       |       |      |        |       |        |         |            |            |
|----|----------|---------|-------|--------|-------|-------|------|--------|-------|--------|---------|------------|------------|
|    | HighNA   | LowPA   | LowNA | Active | Alert | Nervs | s Fr | ust Wo | rried | Irrit  | Stress  |            |            |
| 1  | 8        | 3       | 0     | 1      | 0     | 1     | L    | 2      | 0     | 3      | 2       |            |            |
| 2  | 6        | 1       | 0     | 0      | 2     | (     | כ    | 3      | 0     | 2      | 1       |            |            |
| 3  | 1        | 7       | 0     | 3      | 3     | 1     | L    | 0      | 0     | 0      | 0       |            |            |
| >  | kendall  | L[1:3,8 | 3:17] |        |       |       |      |        |       |        |         |            |            |
|    | HighNA   | LowPA   | LowNA | Act    | ive A | lert  |      | Nervs  |       | Frust  | Worried | Irrit      | Stress     |
| 1  | 8        | 3       | 0     | a lit  | tle   | 0     | a    | little | sor   | newhat | 0       | very much  | somewhat 💭 |
| 2  | 6        | 1       | 0     | not at | all   | 2 1   | not  | at all | ver   | y much | 0       | somewhat   | a little   |
| 3  | 1        | 7       | 0     | very n | nuch  | 3     | a    | little | not a | at all | 0       | not at all | not at all |
|    |          |         |       |        |       |       |      |        |       |        |         |            |            |

| Part II <-     | Basics<br>0000000000000● | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|--------------------------|------------------------------|--------------------------------------------|---------------------------------------|--------------------------------|-----------|
| 4 steps: read, | explore, test, graph     |                              |                                            |                                       |                                |           |

# Simulate data (Remember to always call them simulated!)

For many demonstration purposes, it is convenient to generate simulated data with a certain defined structure. The *psych* package has a number of built in simulation functions. Here are a few of them.

- 1. Simulate various item structures
  - sim.congeneric A one factor congeneric measure model sim.items A two factor structure with either simple structure or a circumplex structure.
    - sim.rasch Generate items for a one parameter IRT model. sim.irt Generate items for a one-four parameter IRT Model
- 2. Simulate various factor structures
  - sim.simplex Default is a four factor structure with a three time point simplex structure.

sim.hierarchical Default is 9 variables with three correlated factors.



| Part II <-     | Basics<br>00000000000000 | Descriptives<br>•00000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|--------------------------|------------------------------|--------------------------------------------------------|---------------------------------------|--------------------------------|-----------|
| Graphic displa | ys                       |                              |                                                        |                                       |                                |           |

#### Get the data and look at them

R code

Read in some data, look at the first and last few cases (using headTail), and then get basic descriptive statistics. For this example, we will use a built in <u>data set</u>.

headTail(epi.bfi)

|     | epiE | epiS | epiImp | epilie | epiNeur | bfagree | bfcon | bfext | bfneur | bfor |
|-----|------|------|--------|--------|---------|---------|-------|-------|--------|------|
| 1   | 18   | 10   | 7      | 3      | 9       | 138     | 96    | 141   | 51     | 1    |
| 2   | 16   | 8    | 5      | 1      | 12      | 101     | 99    | 107   | 116    | 1    |
| 3   | 6    | 1    | 3      | 2      | 5       | 143     | 118   | 38    | 68     |      |
| 4   | 12   | 6    | 4      | 3      | 15      | 104     | 106   | 64    | 114    | 1    |
|     |      |      |        |        |         |         |       |       |        |      |
| 228 | 12   | 7    | 4      | 3      | 15      | 155     | 129   | 127   | 88     | -    |
| 229 | 19   | 10   | 7      | 2      | 11      | 162     | 152   | 163   | 104    | 1    |
| 230 | 4    | 1    | 1      | 2      | 10      | 95      | 111   | 75    | 123    | 1    |
| 231 | 8    | 6    | 3      | 2      | 15      | 85      | 62    | 90    | 131    |      |

epi.bfi has 231 cases from two personality measures.

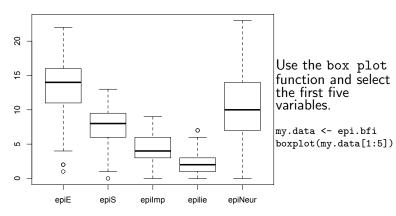


| Part II <-   | Basics        | Descriptives | Inferential | Regression/Mediation | R structure | ->Part IV |
|--------------|---------------|--------------|-------------|----------------------|-------------|-----------|
|              | 0000000000000 | 00000        | 000000      | 0000                 | 0000000     |           |
| Graphic disp | lavs          |              |             |                      |             |           |

#### Now find the descriptive statistics for this data set

R code

describe(epi.bfi)

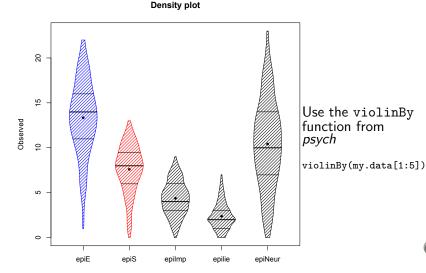

|          | var | n   | mean   | sd    | median | trimmed | mad   | min | max | range | skew  | kurtosis | se   |
|----------|-----|-----|--------|-------|--------|---------|-------|-----|-----|-------|-------|----------|------|
| epiE     | 1   | 231 | 13.33  | 4.14  | 14     | 13.49   | 4.45  | 1   | 22  | 21    | -0.33 | -0.01    | 0.27 |
| epiS     | 2   | 231 | 7.58   | 2.69  | 8      | 7.77    | 2.97  | 0   | 13  | 13    | -0.57 | 0.04     | 0.18 |
| epiImp   | 3   | 231 | 4.37   | 1.88  | 4      | 4.36    | 1.48  | 0   | 9   | 9     | 0.06  | -0.59    | 0.12 |
| epilie   | 4   | 231 | 2.38   | 1.50  | 2      | 2.27    | 1.48  | 0   | 7   | 7     | 0.66  | 0.30     | 0.10 |
| epiNeur  | 5   | 231 | 10.41  | 4.90  | 10     | 10.39   | 4.45  | 0   | 23  | 23    | 0.06  | -0.46    | 0.32 |
| bfagree  | 6   | 231 | 125.00 | 18.14 | 126    | 125.26  | 17.79 | 74  | 167 | 93    | -0.21 | -0.22    | 1.19 |
| bfcon    | 7   | 231 | 113.25 | 21.88 | 114    | 113.42  | 22.24 | 53  | 178 | 125   | -0.02 | 0.29     | 1.44 |
| bfext    | 8   | 231 | 102.18 | 26.45 | 104    | 102.99  | 22.24 | 8   | 168 | 160   | -0.41 | 0.58     | 1.74 |
| bfneur   | 9   | 231 | 87.97  | 23.34 | 90     | 87.70   | 23.72 | 34  | 152 | 118   | 0.07  | -0.51    | 1.54 |
| bfopen   | 10  | 231 | 123.43 | 20.51 | 125    | 123.78  | 20.76 | 73  | 173 | 100   | -0.16 | -0.11    | 1.35 |
| bdi      | 11  | 231 | 6.78   | 5.78  | 6      | 5.97    | 4.45  | 0   | 27  | 27    | 1.29  | 1.60     | 0.38 |
| traitanx | 12  | 231 | 39.01  | 9.52  | 38     | 38.36   | 8.90  | 22  | 71  | 49    | 0.67  | 0.54     | 0.63 |
| stateanx | 13  | 231 | 39.85  | 11.48 | 38     | 38.92   | 10.38 | 21  | 79  | 58    | 0.72  | 0.04     | 0.76 |





#### Boxplots are a convenient descriptive device

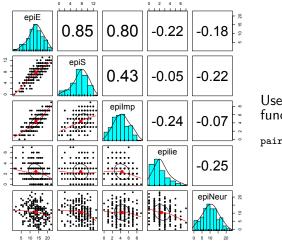
## Show the Tukey "boxplot" for the Eysenck Personality Inventory




**Boxplots of EPI scales** 






#### An alternative display is a 'violin' plot (available as violinBy)

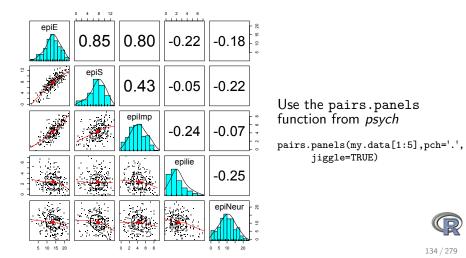


132 / 279

| Part II <-     | Basics<br>00000000000000 | Descriptives<br>0000€0<br>00 | Inferential<br>000000<br>00000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|--------------------------|------------------------------|--------------------------------------------|---------------------------------------|--------------------------------|-----------|
| Graphic displa | ys                       |                              |                                            |                                       |                                |           |

Plot the scatter plot matrix (SPLOM) of the first 5 variables using the pairs.panels function. Note that the plotting points overlap because of the polytomous nature of the data.




Use the pairs.panels function from *psych* 

pairs.panels(my.data[1:5])



| Part II <-     | Basics<br>00000000000000 | Descriptives<br>00000●<br>00 | Inferential<br>000000<br>00000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|----------------|--------------------------|------------------------------|--------------------------------------|---------------------------------------|--------------------------------|-----------|
| Graphic displa | ys                       |                              |                                      |                                       |                                |           |

Plot the scatter plot matrix (SPLOM) of the first 5 variables using the pairs.panels function but with smaller plot charactet (pch) and jittering the points in order to better show the distributions.



| Part II <-   | Basics<br>00000000000000 | Descriptives | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation | R structure<br>0000000<br>0000 | ->Part IV |
|--------------|--------------------------|--------------|--------------------------------------------------------|----------------------|--------------------------------|-----------|
| Correlations |                          |              |                                                        |                      |                                |           |

#### Find the correlations for this data set, round off to 2 decimal places.

Because we have some missing data, we use "pairwise complete" correlations. For the purists amongst us, it is irritating that the columns are not equally spaced.

|                      |     |   | R code _ |    |
|----------------------|-----|---|----------|----|
| round (cor (my.data, | use | = |          | 2) |

|          | epiE  | epiS  | epiImp | epilie | epiNeur | bfagree | bfcon | bfext | bfneur | bfopen | bdi   | traitanx | s |
|----------|-------|-------|--------|--------|---------|---------|-------|-------|--------|--------|-------|----------|---|
| epiE     | 1.00  | 0.85  | 0.80   | -0.22  | -0.18   | 0.18    | -0.11 | 0.54  | -0.09  | 0.14   | -0.16 | -0.23    |   |
| epiS     | 0.85  | 1.00  | 0.43   | -0.05  | -0.22   | 0.20    | 0.05  | 0.58  | -0.07  | 0.15   | -0.13 | -0.26    |   |
| epiImp   | 0.80  | 0.43  | 1.00   | -0.24  | -0.07   | 0.08    | -0.24 | 0.35  | -0.09  | 0.07   | -0.11 | -0.12    |   |
| epilie   | -0.22 | -0.05 | -0.24  | 1.00   | -0.25   | 0.17    | 0.23  | -0.04 | -0.22  | -0.03  | -0.20 | -0.23    |   |
| epiNeur  | -0.18 | -0.22 | -0.07  | -0.25  | 1.00    | -0.08   | -0.13 | -0.17 | 0.63   | 0.09   | 0.58  | 0.73     |   |
| bfagree  | 0.18  | 0.20  | 0.08   | 0.17   | -0.08   | 1.00    | 0.45  | 0.48  | -0.04  | 0.39   | -0.14 | -0.31    |   |
| bfcon    | -0.11 | 0.05  | -0.24  | 0.23   | -0.13   | 0.45    | 1.00  | 0.27  | 0.04   | 0.31   | -0.18 | -0.29    |   |
| bfext    | 0.54  | 0.58  | 0.35   | -0.04  | -0.17   | 0.48    | 0.27  | 1.00  | 0.04   | 0.46   | -0.14 | -0.39    |   |
| bfneur   | -0.09 | -0.07 | -0.09  | -0.22  | 0.63    | -0.04   | 0.04  | 0.04  | 1.00   | 0.29   | 0.47  | 0.59     |   |
| bfopen   | 0.14  | 0.15  | 0.07   | -0.03  | 0.09    | 0.39    | 0.31  | 0.46  | 0.29   | 1.00   | -0.08 | -0.11    |   |
| bdi      | -0.16 | -0.13 | -0.11  | -0.20  | 0.58    | -0.14   | -0.18 | -0.14 | 0.47   | -0.08  | 1.00  | 0.65     |   |
| traitanx | -0.23 | -0.26 | -0.12  | -0.23  | 0.73    | -0.31   | -0.29 | -0.39 | 0.59   | -0.11  | 0.65  | 1.00     |   |
| stateanx | -0.13 | -0.12 | -0.09  | -0.15  | 0.49    | -0.19   | -0.14 | -0.15 | 0.49   | -0.04  | 0.61  | 0.57     |   |





# Find the correlations for this data set, round off to 2 decimal places using lowerCor

This is just a wrapper for round(cor(x,use='pairwise'),2) that has been prettied up with lowerMat.

R code

lowerCor(my.data)

```
epiE
               epiS epImp epili epiNr bfagr bfcon bfext bfner bfopn bdi
                                                                             trtnx sttnx
epiE
          1.00
epiS
          0.85
                1.00
epiImp
          0.80
                0.43 1.00
epilie
         -0.22 - 0.05 - 0.24
                            1.00
epiNeur
         -0.18 - 0.22 - 0.07 - 0.25
                                   1.00
bfagree
          0.18 0.20 0.08
                            0.17 - 0.08
                                         1.00
bfcon
         -0.11 0.05 -0.24
                            0.23 -0.13
                                        0.45
                                               1.00
                0.58 0.35 - 0.04 - 0.17
                                               0.27
bfext
          0.54
                                         0.48
                                                     1.00
         -0.09 - 0.07 - 0.09 - 0.22
                                 0.63 -0.04
                                               0.04
                                                     0.04
bfneur
                                                           1.00
bfopen
          0.14 0.15 0.07 -0.03 0.09
                                        0.39
                                               0.31
                                                     0.46
                                                           0.29
                                                                1.00
         -0.16 - 0.13 - 0.11 - 0.20 0.58 - 0.14 - 0.18 - 0.14 0.47 - 0.08
bdi
                                                                        1.00
t_{raitanx} -0.23 -0.26 -0.12 -0.23 0.73 -0.31 -0.29 -0.39
                                                           0.59 -0.11
                                                                        0.65
                                                                              1.00
stateanx -0.13 -0.12 -0.09 -0.15 0.49 -0.19 -0.14 -0.15
                                                           0.49 - 0.04
                                                                        0.61
                                                                              0.57 1.00
```

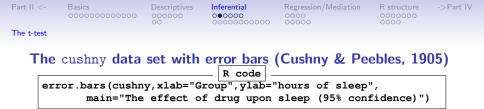


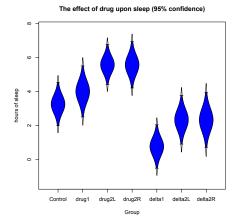
# Test the significance and use Holm correction for multiple tests

corr.test (my.data)

Call:corr.test(x = my.data) Correlation matrix epiE epiS epiImp epilie epiNeur bfagree bfcon bfext bfneur bfopen bdi traitanx s epiE 1.00 0.85 0.80 -0.22 -0.180.18 - 0.110.54 -0.090.14 - 0.16-0.23 epiS 0.85 1.00 0.43 -0.05 -0.220.20 0.05 0.58 -0.070.15 - 0.13-0.26epiImp 0.80 0.43 1.00 -0.24 -0.07 0.08 -0.24 0.35 -0.09 0.07 - 0.11-0.12 stateanx -0.13 -0.12 -0.09 -0.15 0.49 -0.19 - 0.14 - 0.150.49 -0.04 0.61 0.57 Sample Size epiE epiS epiImp epilie epiNeur bfagree bfcon bfext bfneur bfopen bdi traitanx state epiE 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 stateanx Probability values (Entries above the diagonal are adjusted for multiple tests.) epiE epiS epiImp epilie epiNeur bfagree bfcon bfext bfneur bfopen bdi traitanx stat 0.00 0.00 0.00 0.03 0.27 0.27 1.00 0.00 1.00 1.00 0.59 0.02 epiE 0.62 1.00 epiS 0.00 0.00 0.00 1.00 0.04 0.08 1.00 0.00 1.00 0.00 epiImp 0.00 0.00 0.00 0.01 1.00 1.00 0.01 0.00 1.00 1.00 1.00 1.00 epilie 0.00 0.43 0.00 0.00 0.01 0.32 0.03 1.00 0.03 1.00 0.08 0.02 epiNeur 0.01 0.00 0.26 0.00 0.00 1.00 1.00 0.33 0.00 1.00 0.00 0.00 bfagree 0.01 0.00 0.23 0.01 0.21 0.00 0.00 0.00 1.00 0.00 0.95 0.00 0.08 0.48 0.00 0.00 0.04 0.00 0.00 0.00 1.00 0.00 0.25 0.00 bfcon 1.00 bfext 0.00 0.00 0.00 0.50 0.01 0.00 0 00 0.00 0.00 0.99 0.00 bfneur 0.15 0.30 0.18 0.00 0.00 0.50 0.50 0.57 0.00 0.00 0.00 0.00 0.04 0.02 0.30 0.70 0.19 0.00 0.00 0.00 0.00 0.00 1.00 1.00 bfopen 0.00 bdi 0.02 0.04 0.11 0.00 0.03 0.01 0.03 0.00 0.25 0.00 0.00 traitanx 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 stateanx 0.05 0.07 0.18 0.02 0.00 0.00 0.04 0.02 0.00 0.52 0.00 01.370/279 >

| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>• 0 0 0 0 0<br>• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|--------------------------|------------------------------|-----------------------------------------------------------------------|---------------------------------------|--------------------------------|-----------|
| The t-test |                          |                              |                                                                       |                                       |                                |           |


t.test demonstration with Student's data using cushny dataset William Gossett, publishing under the name Student reported a small sample approximation (t) to the large sample z test. His first example was a data set on the different effect of optical isomers of hyoscyamine hydrobromide reported by Cushny & Peebles (1905). The sleep of 10 patients was measured without any drug and then following administration of D. and L isomers. The data from Cushny are available as the cushny data set.


| Variable | Cntrl | drug1 | drg2L | drg2R | delt1 | dlt2L | dlt2R |
|----------|-------|-------|-------|-------|-------|-------|-------|
| 1        | 0.60  | 1.3   | 2.50  | 2.10  | 0.70  | 1.90  | 1.50  |
| 2        | 3.00  | 1.4   | 3.80  | 4.40  | -1.60 | 0.80  | 1.40  |
| 3        | 4.70  | 4.5   | 5.80  | 4.70  | -0.20 | 1.10  | 0.00  |
| 4        | 5.50  | 4.3   | 5.60  | 4.80  | -1.20 | 0.10  | -0.70 |
| 5        | 6.20  | 6.1   | 6.10  | 6.70  | -0.10 | -0.10 | 0.50  |
| 6        | 3.20  | 6.6   | 7.60  | 8.30  | 3.40  | 4.40  | 5.10  |
| 7        | 2.50  | 6.2   | 8.00  | 8.20  | 3.70  | 5.50  | 5.70  |
| 8        | 2.80  | 3.6   | 4.40  | 4.30  | 0.80  | 1.60  | 1.50  |
| 9        | 1.10  | 1.1   | 5.70  | 5.80  | 0.00  | 4.60  | 4.70  |
| 10       | 2.90  | 4.9   | 6.30  | 6.40  | 2.00  | 3.40  | 3.50  |
| Mean     | 3.25  | 4.0   | 5.58  | 5.57  | 0.75  | 2.33  | 2.32  |
| Sd       | 1.78  | 2.1   | 1.66  | 1.91  | 1.79  | 2.00  | 2.27  |
|          |       |       | R co  | de    |       |       |       |

error.bars(cushny,xlab="Group",ylab="hours of sleep",

main="The effect of drug upon sleep (95% confidence)")







We can show these data graphically using the error.bars function. We pass labels to the x and y axis using the xlab and ylab parameters, and then supply an appropriate figure title.

We will use these data to show how to do t-tests as well as the generalization to Analysis of Variance.

| Part II <- | Basics<br>00000000000000                                                   | Descriptives<br>000000<br>00 | Inferential      | Regression/Mediation                                                | R structure | ->Part IV |
|------------|----------------------------------------------------------------------------|------------------------------|------------------|---------------------------------------------------------------------|-------------|-----------|
| The t-test |                                                                            | 00                           | 00000000000      | 00000                                                               | 0000        |           |
|            |                                                                            |                              |                  |                                                                     |             |           |
|            | Stud                                                                       | lent's t.t                   | est: As dor      | ne by Student                                                       |             |           |
| wi         | th (cushny, t.test (de<br>th (cushny, t.test (de<br>th (cushny, t.test (de | lta2L)) #c                   | ontrol versus di | g 1 difference score<br>rug2L difference sco<br>difference of diffe | res         |           |
|            | ith(cushny,t.test(d<br>One Sample t-t<br>a: delta1                         |                              | ntrol versus dru | ug 1 difference scor                                                | es          |           |
| t =        | 1.3257, df = 9, p-                                                         | value = 0.21                 | 76               |                                                                     |             |           |
|            | ernative hypothesis                                                        |                              | is not equal to  | 0                                                                   |             |           |
|            | percent confidence                                                         |                              |                  |                                                                     |             |           |
| -          | .5297804 2.0297804                                                         |                              |                  |                                                                     |             |           |
|            | ple estimates:<br>n of x                                                   |                              |                  |                                                                     |             |           |
| mea        | 0.75                                                                       |                              |                  |                                                                     |             |           |
| wit        | h (cushny, t.test (del                                                     | ta2L)) #co                   | ntrol versus dru | uq2L difference scor                                                | es          |           |
|            | One Sample t-t                                                             |                              |                  |                                                                     |             |           |
| dat        | a: delta2L                                                                 |                              |                  |                                                                     |             |           |
| t =        | 3.6799, df = 9, p-                                                         | value = $0.00$               | 5076             |                                                                     |             |           |
|            | ernative hypothesis                                                        |                              | is not equal to  | 0                                                                   |             |           |
|            | percent confidence                                                         | interval:                    |                  |                                                                     |             |           |
|            | 8976775 3.7623225                                                          |                              |                  |                                                                     |             |           |
|            | ple estimates:                                                             |                              |                  |                                                                     |             |           |
| mea        | n of x<br>2.33                                                             |                              |                  |                                                                     |             |           |
|            |                                                                            | altal dalta?                 |                  | #difference of diff                                                 |             |           |
| - w        | Paired t-test                                                              | eitai, deitaz                | L, parred-ikoL)) | #difference of diff                                                 | erences     |           |
| dat        | a: delta1 and delt                                                         | a 2⊺.                        |                  |                                                                     |             |           |
|            | -4.0621, df = 9, p                                                         |                              | 02833            |                                                                     |             |           |
|            | ernative hypothesis                                                        |                              |                  | is not equal to 0                                                   |             |           |
|            | percent confidence                                                         |                              |                  | · · •                                                               |             |           |
| -2         | .4598858 -0.7001142                                                        |                              |                  |                                                                     |             | 140 / 279 |

| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|--------------------------|------------------------------|--------------------------------------------------------|---------------------------------------|--------------------------------|-----------|
| The t-test |                          |                              |                                                        |                                       |                                |           |

#### Two ways of organizing the data: Wide versus long

We can take the wide format of the cushny data set and make it long.

|    |           |                                 |    | values | ind     |
|----|-----------|---------------------------------|----|--------|---------|
|    |           |                                 | 1  | 0.7    | delta1  |
| cu | shny[c("d | elta1","delta2L")]              | 2  | -1.6   | delta1  |
|    | deltal d  | elta2L                          | 3  | -0.2   | delta1  |
| 1  | 0.7       | 1.9                             | 4  | -1.2   | delta1  |
| 2  | -1.6      | 0.8                             | 5  | -0.1   | delta1  |
| 3  | -0.2      | 1.1                             | 6  | 3.4    | delta1  |
| 4  | -1.2      | 0.1                             | 7  | 3.7    | delta1  |
| 5  | -0.1      | -0.1                            | 8  | 0.8    | delta1  |
| 6  | 3.4       | 4.4                             | 9  | 0.0    | delta1  |
| 7  | 3.7       | 5.5                             | 10 | 2.0    | delta1  |
| 8  | 0.8       | 1.6                             | 11 | 1.9    | delta2L |
| 9  | 0.0       | 4.6                             | 12 | 0.8    | delta2L |
| 10 | 2.0       | 3.4                             | 13 | 1.1    | delta2L |
|    |           | R code                          | 14 | 0.1    | delta2L |
| 1  | ong.sle   | ep <-                           | 15 | -0.1   | delta2L |
| -  | -         | (cushny[c("delta1","delta2L")]) | 16 | 4.4    | delta2L |
|    |           |                                 | 17 | 5.5    | delta2L |
| 1  | ong.sle   | ep                              | 18 | 1.6    | delta2L |
|    |           |                                 | 19 | 4.6    | delta2L |
|    |           |                                 | 20 | 3.4    | delta2L |



| Part II <- | - Basics<br>0000000000000               | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation<br>0000<br>00000          | R structure ->                               | >Part IV |  |  |  |
|------------|-----------------------------------------|------------------------------|--------------------------------------------------------|------------------------------------------------|----------------------------------------------|----------|--|--|--|
| The t-tes  | t                                       |                              |                                                        |                                                |                                              |          |  |  |  |
|            |                                         |                              |                                                        |                                                |                                              |          |  |  |  |
| 10         | R code<br>ong.sleep <-<br>stack(cushny) | c("delta1"                   |                                                        | R code -<br>lues ~ ind,data                    | =long.sleep                                  | )        |  |  |  |
|            | "delta21                                | .")])                        | data: values                                           | Welch Two Sample t-test<br>data: values by ind |                                              |          |  |  |  |
|            |                                         |                              |                                                        | df = 17.776, p-value<br>ypothesis: true diff   |                                              | ic not   |  |  |  |
|            | ong.sleep<br>values ind                 |                              |                                                        | nfidence interval:                             | erence in means                              | IS NOL 6 |  |  |  |
| 1          | 0.7 delta1                              |                              | -3.3654832                                             |                                                |                                              |          |  |  |  |
| 2          | -1.6 deltal                             |                              | sample estima                                          |                                                |                                              |          |  |  |  |
| 3          | -0.2 deltal                             |                              | •                                                      | p deltal mean in gro                           | oup delta2L                                  |          |  |  |  |
| 4          | -1.2 deltal                             |                              |                                                        | 0.75                                           | 2.33                                         |          |  |  |  |
| 5          | -0.1 delta1                             |                              |                                                        |                                                |                                              |          |  |  |  |
| 6          | 3.4 delta1                              |                              | Dut the d                                              | ata waxa mairad                                |                                              |          |  |  |  |
| 7          | 3.7 delta1                              |                              | but, the a                                             | ata w <u>ere paire</u> d                       |                                              |          |  |  |  |
| 8          | 0.8 delta1                              |                              |                                                        | R code _                                       |                                              |          |  |  |  |
| 9          | 0.0 delta1                              |                              | t.test (va                                             | lues ~ ind,data                                | =long.sleep                                  |          |  |  |  |
| 10         | 2.0 delta1                              |                              |                                                        | paired=TRUE)                                   | , <b>,</b> , , , , , , , , , , , , , , , , , | ,        |  |  |  |
| 11         | 1.9 delta2L                             |                              |                                                        | parred-rROE)                                   |                                              |          |  |  |  |
| 12         | 0.8 delta2L                             |                              |                                                        |                                                |                                              |          |  |  |  |
| 13         | 1.1 delta2L                             |                              | data: values                                           | by ind                                         |                                              |          |  |  |  |
| 14         | 0.1 delta2L                             |                              |                                                        | df = 9, p-value = 0.                           | 002833                                       |          |  |  |  |
| 15         | -0.1 delta2L                            |                              |                                                        | ypothesis: true diff                           |                                              | is not e |  |  |  |
| 16         | 4.4 delta2L                             |                              |                                                        | nfidence interval:                             |                                              |          |  |  |  |
| 17         | 5.5 delta2L                             |                              | -2.4598858 -                                           |                                                |                                              |          |  |  |  |
| 18         | 1.6 delta2L                             |                              | sample estima                                          | tes:                                           |                                              |          |  |  |  |
| 19         | 4.6 delta2L                             |                              | mean of the d                                          | ifferences                                     |                                              |          |  |  |  |
| 20         | 3.4 delta2L                             |                              |                                                        | -1.58                                          |                                              | R        |  |  |  |

| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>00000●<br>000000000000000000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|--------------------------|------------------------------|---------------------------------------------------------|---------------------------------------|--------------------------------|-----------|
| The t-test |                          |                              |                                                         |                                       |                                |           |

#### t.test demonstration with Student's data (from the sleep dataset)

Sleep data set is just 2 columns of cushny sleep

 R code

 with(sleep,t.test(extra~group))

 with(sleep,t.test(extra~group,var.equal=TRUE))

Welch Two Sample t-test data: extra by group t = -1.8608, df = 17.776, p-value = 0.07939 <--- default value t = -1.8608, df = 18, p-value = 0.07919. <- equal variances alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -3.3654832 0.2054832 sample estimates: mean in group 1 mean in group 2 0.75 2.33

But the data were actually paired. Do it for a paired t-test

with(sleep,t.test(extra~group,paired=TRUE))

Paired t-test data: extra by group t = -4.0621, df = 9, p-value = 0.002833 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -2.4598858 - 0.7001142 sample estimates: mean of the differences -1.58

| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|--------------------------|------------------------------|--------------------------------------------------------|---------------------------------------|--------------------------------|-----------|
| ANOVA      |                          |                              |                                                        |                                       |                                |           |

## Analysis of Variance as special case of linear model

- 1. aov provides a wrapper to lm for fitting linear models to balanced or unbalanced experimental designs.
- The main difference from Im is in the way print, summary and so on handle the fit: this is expressed in the traditional language of the analysis of variance rather than that of linear models.
- 3. If the formula contains a single Error term, this is used to specify error strata, and appropriate models are fitted within each error stratum.
- 4. The formula can specify multiple responses.
- 5. aov is designed for balanced designs, and the results can be hard to interpret without balance: beware that missing values in the response(s) will likely lose the balance.
- If there are two or more error strata, the methods used are statistically inefficient without balance, and it may be better to use lme in package nlme.



| Part II <- | Basics                                  | Descriptives | Inferential          | Regression/Mediation | R structure | ->Pa |
|------------|-----------------------------------------|--------------|----------------------|----------------------|-------------|------|
|            | 000000000000000000000000000000000000000 | 000000       | 000000<br>0000000000 | 0000                 | 0000000     |      |
| ANOVA      |                                         |              |                      |                      |             |      |

aov of the sleep data set: compare with the t.test results

|   |     | R  | code |  |
|---|-----|----|------|--|
| > | sle | эp |      |  |

| extra group ID |      |      |  |  |  |  |  |
|----------------|------|------|--|--|--|--|--|
| 1              | 0.7  | 1 1  |  |  |  |  |  |
| 2              | -1.6 | 12   |  |  |  |  |  |
| 3              | -0.2 | 1 3  |  |  |  |  |  |
| 4              | -1.2 | 14   |  |  |  |  |  |
| 5              | -0.1 | 15   |  |  |  |  |  |
| 6              | 3.4  | 16   |  |  |  |  |  |
| 7              | 3.7  | 17   |  |  |  |  |  |
| 8              | 0.8  | 18   |  |  |  |  |  |
| 9              | 0.0  | 19   |  |  |  |  |  |
| 10             | 2.0  | 1 10 |  |  |  |  |  |
| 11             | 1.9  | 2 1  |  |  |  |  |  |
| 12             | 0.8  | 22   |  |  |  |  |  |
| 13             | 1.1  | 2 3  |  |  |  |  |  |
| 14             | 0.1  | 2 4  |  |  |  |  |  |
| 15             | -0.1 | 25   |  |  |  |  |  |
| 16             | 4.4  | 26   |  |  |  |  |  |
| 17             | 5.5  | 27   |  |  |  |  |  |
| 18             | 1.6  | 28   |  |  |  |  |  |
| 19             | 4.6  | 29   |  |  |  |  |  |
| 20             | 3.4  | 2 10 |  |  |  |  |  |
|                |      |      |  |  |  |  |  |

```
#independent subjects
summary(aov(extra ~ group, data=sleep))
> summary(aov(extra ~ group, data=sleep))
           Df Sum Sq Mean Sq F value Pr(>F)
           1 12.48 12.482 3.463 0.0792 .
group
Residuals
          18 64.89 3.605
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
t = -1.8608, df = 17.776, p-value = 0.07939. <--
t = -1.8608, df = 18, p-value = 0.07919. <- equal variances
                        R code
  #correlated subjects
summary(aov(extra~group + Error(ID), data=sleep))
> summary(aov(extra~group + Error(ID),data=sleep))
Error: ID
         Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 58.08 6.453
Error Within
         Df Sum Sg Mean Sg F value Pr(>F)
         1 12.482 12.482
                            16.5 0.00283 **
group
Residuals 9 6.808
                    0.756
___
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 2779
```

+ = -4.0621 df = 9 p-value = 0.002833 <---

R code

| Part II <- | Basics        | Descriptives | Inferential           | Regression/Mediation |
|------------|---------------|--------------|-----------------------|----------------------|
|            | 0000000000000 | 000000       | 000000<br>00000000000 | 0000                 |

R structure 0000000 0000 ->Part IV

#### **ANOVA**

#### aov: an example of chemicals upon the growth of peas.

npk #from Venables

|    | block | N | Ρ | к | yield |
|----|-------|---|---|---|-------|
| 1  | 1     | 0 | 1 | 1 | 49.5  |
| 2  | 1     | 1 | 1 | 0 | 62.8  |
| 3  | 1     | 0 | 0 | 0 | 46.8  |
| 4  | 1     | 1 | 0 | 1 | 57.0  |
| 5  | 2     | 1 | 0 | 0 | 59.8  |
| 6  | 2     | 1 | 1 | 1 | 58.5  |
| 7  | 2     | 0 | 0 | 1 | 55.5  |
| 8  | 2     | 0 | 1 | 0 | 56.0  |
| 9  | 3     | 0 | 1 | 0 | 62.8  |
| 10 | 3     | 1 | 1 | 1 | 55.8  |
| 11 | 3     | 1 | 0 | 0 | 69.5  |
| 12 | 3     | 0 | 0 | 1 | 55.0  |
| 13 | 4     | 1 | 0 | 0 | 62.0  |
| 14 | 4     | 1 | 1 | 1 | 48.8  |
| 15 | 4     | 0 | 0 | 1 | 45.5  |
| 16 | 4     | 0 | 1 | 0 | 44.2  |
| 17 | 5     | 1 | 1 | 0 | 52.0  |
| 18 | 5     | 0 | 0 | 0 | 51.5  |
| 19 | 5     | 1 | 0 | 1 | 49.8  |
| 20 | 5     | 0 | 1 | 1 | 48.8  |
| 21 | 6     | 1 | 0 | 1 | 57.2  |
| 22 | 6     | 1 | 1 | 0 | 59.0  |
| 23 | 6     | 0 | 1 | 1 | 53.2  |
| 24 | 6     | 0 | 0 | 0 | 56.0  |
|    |       |   |   |   |       |

Several models mod1 <- aov(yield ~ N, data=npk) mod2 <- aov(yield ~ N+P + N\*P, data=npk) mod3 <- aov(yield ~ N\*P\*K, data=npk) mod4 <- aov(yield ~ block + N\*P\*K, data=npk)

```
> summary(mod1)
            Df Sum Sq Mean Sq F value Pr(>F)
                189.3 189.28
                                6.061 0.0221 *
N
             1
            22
                687.1
                        31.23
Residuals
____
                0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Signif. codes:
> summary(mod4)
            Df Sum Sq Mean Sq F value Pr(>F)
                343.3
                        68.66
block
             5
                                4.447 0.01594 *
             1
                189.3 189.28 12.259 0.00437 **
N
             1
                  8.4
                         8.40
P
                               0.544 0.47490
                 95.2
                       95.20 6.166 0.02880 *
ĸ
             1
N:P
             1
                 21.3
                       21.28 1.378 0.26317
N·K
             1
                 33.1
                        33.13
                               2.146 0.16865
                  0.5
P:K
             1
                         0.48
                                0.031 0.86275
            12 185.3
                        15.44
Residuals
____
Signif. codes:
                0 ?***? 0.001 ?**? 0.01 ?*? 0.05
```

| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|--------------------------|------------------------------|--------------------------------------------------------|---------------------------------------|--------------------------------|-----------|
| ANOVA      |                          |                              |                                                        |                                       |                                |           |

#### Analysis of Variance: Another example

aov is designed for balanced designs, and the results can be hard to interpret without balance: beware that missing values in the response(s) will likely lose the balance.

datafilename="http://personality-project.org/r/datasets/R.appendix2.data" data.ex2=read.file(datafilename) #read the data into a data.frame data.ex2 #show the data

#### data.ex2

|    | Observation | Gender | Dosage | Alertness |                |       | F        | Code    |      |          |           |       |
|----|-------------|--------|--------|-----------|----------------|-------|----------|---------|------|----------|-----------|-------|
| 1  | 1           | m      | a      | 8         | #do the analy  | sis   | s of var | riance  |      |          |           |       |
| 2  | 2           | m      | a      | 12        | aov.ex2 = aov  | 7 (A] | lertness | s~Gende | r*De | osage, d | data=data | .ex2) |
| 3  | 3           | m      | a      | 13        | summary (aov.e | ex2)  | )        | #show   | the  | summa    | ry table  |       |
| 4  | 4           | m      | a      | 12        |                |       |          |         |      |          |           |       |
| 5  | 5           | m      | b      | 6         |                |       |          |         |      |          |           |       |
| 6  | 6           | m      | b      | 7         |                |       |          |         |      |          |           |       |
| 7  | 7           | m      | b      | 23        | Call:          |       |          |         |      |          |           |       |
| 8  | 8           | m      | b      | 14        |                |       |          |         |      |          |           |       |
| 9  | 9           | f      | a      | 15        | summary(aov.e  |       |          |         |      |          | ry table  |       |
| 10 | 10          | f      | a      | 12        |                | Df    | Sum Sq   |         | -    |          | • •       |       |
| 11 | 11          | f      | a      | 22        | Gender         | 1     |          |         |      | 2.952    |           |       |
| 12 | 12          | f      | a      | 14        | Dosage         | 1     | 5.06     |         |      | 0.195    |           |       |
| 13 | 13          | f      | b      | 15        | Gender:Dosage  |       |          |         | 6    | 0.002    | 0.962     |       |
| 14 | 14          | f      | b      | 12        | Residuals      | 12    | 311.25   | 25.9    | 4    |          |           |       |
| 15 | 15          | f      | b      | 18        |                |       |          |         |      |          |           |       |
| 16 | 16          | f      | b      | 22        |                |       |          |         |      |          |           |       |
|    |             |        |        |           |                |       |          |         |      |          |           |       |

| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|--------------------------|------------------------------|--------------------------------------|---------------------------------------|--------------------------------|-----------|
| ANOVA      |                          |                              |                                      |                                       |                                |           |

#### **Analysis of Variance**

Do the analysis of variances and the show the table of results.

```
#do the analysis of variance
aov.ex2 <- aov(Alertness ~ Gender * Dosage, data=data.ex2)
summary(aov.ex2)  #show the summary table
aov.ex2. #This shows the coefficients
>aov.ex2 <- aov(Alertness ~ Gender * Dosage, data=data.ex2)
> summary(aov.ex2)  #show the summary table
Df Sum Sg Mean Sg F value Pr (>F)
```

```
        Gender
        1
        76.56
        76.56
        2.952
        0.111

        Dosage
        1
        5.06
        5.06
        0.195
        0.666

        Gender:Dosage
        1
        0.06
        0.002
        0.962

        Residuals
        12
        311.25
        25.94
```

aov(formula = Alertness ~ Gender \* Dosage, data = data.ex2)

Terms:

|                 | Gender  | Dosage | Gender:Dosage | Residuals |
|-----------------|---------|--------|---------------|-----------|
| Sum of Squares  | 76.5625 | 5.0625 | 0.0625        | 311.2500  |
| Deg. of Freedom | 1       | 1      | 1             | 12        |

Residual standard error: 5.092887 Estimated effects may be unbalanced



| Part II <- | Basics<br>00000000000000    | Descriptives | Inferential  | Regression/Mediation | R structure | ->Part IV |
|------------|-----------------------------|--------------|--------------|----------------------|-------------|-----------|
| ANOVA      |                             | 00           | 00000000000  | 00000                | 0000        |           |
|            |                             |              |              |                      |             |           |
|            |                             | Show         | the results  | s table              |             |           |
|            |                             |              | R code       |                      |             |           |
| p          | rint(model.tabl             | .es (aov.ex  |              | ligits=3)            |             |           |
| [-         | ·                           |              |              |                      |             |           |
|            | > print (model              |              | ov.ex2,"mean | s"),digits=3)        |             |           |
|            | Tables of mea<br>Grand mean | ns           |              |                      |             |           |
|            | 14.0625                     |              |              |                      |             |           |
|            | 14.0025                     |              |              |                      |             |           |
|            | Gender                      |              |              |                      |             |           |
|            | Gender                      |              |              |                      |             |           |
|            | f m                         |              |              |                      |             |           |
|            | 16.25 11.88                 |              |              |                      |             |           |
|            | Dosage                      |              |              |                      |             |           |
|            | Dosage                      |              |              |                      |             |           |
|            | a b                         |              |              |                      |             |           |
|            | 13.50 14.62                 |              |              |                      |             |           |
|            | Gender:Dosag                | e            |              |                      |             |           |
|            | Dosage                      |              |              |                      |             |           |
|            |                             | b            |              |                      |             |           |
|            | f 15.75                     |              |              |                      |             | 140 / 070 |
|            | m 11.25                     | 12.50        |              |                      |             | 149 / 279 |

| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>○○○○○<br>○○○○○●○○○○ | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|--------------------------|------------------------------|------------------------------------|---------------------------------------|--------------------------------|-----------|
| ANOVA      |                          |                              |                                    |                                       |                                |           |

# Analysis of Variance: Within subjects

- 1. Somewhat more complicated because we need to convert "wide" data.frames to "long" or "narrow" data.frames.
- 2. This can be done by using the stack function. Some data sets are already in the long format.
- 3. A detailed discussion of how to work with repeated measures designs is at

http://personality-project.org/r/r.anova.html and at http://personality-project.org/r

- See also the tutorial by Jason French at http:// jason-french.com/tutorials/repeatedmeasures.html
- 5. Many within subject designs can be treated as multi-level designs. For a discussion of analyzing multilevel data (particularly for personality dynamics), see http://personality-project.org/revelle/ publications/rw.paid.17.final.pdf



| Part II <- | Basics<br>0000000000000 | Descriptives<br>000000<br>00 | <b>Inferential</b><br>○○○○○○<br>○○○○○○●○○○ | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|-------------------------|------------------------------|--------------------------------------------|---------------------------------------|--------------------------------|-----------|
| ANOVA      |                         |                              |                                            |                                       |                                |           |

### Analysis of variance within subjects: Getting and showing the data

|                              | R code  |           |            |             |        |
|------------------------------|---------|-----------|------------|-------------|--------|
| filename="http://personality | -projec | t.org/r/d | datasets/F | R.appendix5 | .data" |
| data.ex5=read.file(filename) | #rea    | d the dat | ta into a  | data.frame  |        |
| headTail(data.ex5,6,12)      | #show t | he data ( | (first 6,  | last 12)    |        |

|     | Obs | Subject   | Gender    | Dosage    | Task      | Valence   | Recall     |
|-----|-----|-----------|-----------|-----------|-----------|-----------|------------|
| 1   | 1   | A         | м         | A         | F         | Neg       | 8          |
| 2   | 2   | A         | м         | A         | F         | Neu       | 9          |
| 3   | 3   | A         | м         | A         | F         | Pos       | 5          |
| 4   | 4   | A         | м         | A         | с         | Neo       | <b>j</b> 7 |
| 5   | 5   | A         | м         | A         | С         | Neu       | 9          |
| 6   | 6   | A         | м         | A         | с         | Pos       | 10         |
|     |     | <na></na> | <na></na> | <na></na> | <na></na> | <na></na> |            |
| 97  | 97  | Q         | F         | С         | F         | Neg       | 18         |
| 98  | 98  | Q         | F         | С         | F         | Neu       | 17         |
| 99  | 99  | Q         | F         | С         | F         | Pos       | 18         |
| 100 | 100 | Q         | F         | С         | С         | Neg       | 17         |
| 101 | 101 | Q         | F         | С         | С         | Neu       | 19         |
| 102 | 102 | Q         | F         | С         | С         | Pos       | 19         |
| 103 | 103 | R         | F         | С         | F         | Neg       | 19         |
| 104 | 104 | R         | F         | С         | F         | Neu       | 17         |
| 105 | 105 | R         | F         | С         | F         | Pos       | 19         |
| 106 | 106 | R         | F         | С         | С         | Neg       | 22         |
| 107 | 107 | R         | F         | С         | С         | Neu       | 21         |
| 108 | 108 | R         | F         | с         | С         | Pos       | 20         |



| Part II <- | Basics<br>0000000000000 | Descriptives<br>000000<br>00 | Inferential<br>○○○○○<br>○○○○○○●○○ | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|-------------------------|------------------------------|-----------------------------------|---------------------------------------|--------------------------------|-----------|
| ANOVA      |                         |                              |                                   |                                       |                                |           |

#### Describe the data

R code

describe(data.ex5)

|          | vars | n   | mean  | sd    | median | trimmed | mad   | min | max | range | skew  | kurtosis | se   |
|----------|------|-----|-------|-------|--------|---------|-------|-----|-----|-------|-------|----------|------|
| Obs      | 1    | 108 | 54.50 | 31.32 | 54.5   | 54.50   | 40.03 | 1   | 108 | 107   | 0.00  | -1.23    | 3.01 |
| Subject* | 2    | 108 | 9.50  | 5.21  | 9.5    | 9.50    | 6.67  | 1   | 18  | 17    | 0.00  | -1.24    | 0.50 |
| Gender*  | 3    | 108 | 1.50  | 0.50  | 1.5    | 1.50    | 0.74  | 1   | 2   | 1     | 0.00  | -2.02    | 0.05 |
| Dosage*  | 4    | 108 | 2.00  | 0.82  | 2.0    | 2.00    | 1.48  | 1   | 3   | 2     | 0.00  | -1.53    | 0.08 |
| Task*    | 5    | 108 | 1.50  | 0.50  | 1.5    | 1.50    | 0.74  | 1   | 2   | 1     | 0.00  | -2.02    | 0.05 |
| Valence* | 6    | 108 | 2.00  | 0.82  | 2.0    | 2.00    | 1.48  | 1   | 3   | 2     | 0.00  | -1.53    | 0.08 |
| Recall   | 7    | 108 | 15.63 | 5.07  | 15.0   | 15.74   | 4.45  | 4   | 25  | 21    | -0.13 | -0.64    | 0.49 |

The \* signify that the entries are not numerical, but rather categorical or logical.



| Part II < | <- Basics<br>000000000                                  | Descriptives                                                           | Inferential<br>○○○○○○<br>○○○○○○○○○○○○●○          | Regression/Mediation                                                                  | R structure<br>0000000<br>0000 | ->Part IV |
|-----------|---------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|-----------|
| ANOVA     |                                                         |                                                                        |                                                  |                                                                                       |                                |           |
|           | filename="http://<br>data.ex5=read.tab<br>#do the anova | /personality-pro<br>ble(filename,hea<br>ecall~(Task*Vale<br>,data.ex5) | R code<br>ject.org/r/datase<br>der=TRUE) #read t | thin subjects<br>ets/R.appendix5.data<br>the data into a tabl<br>a)+Error(Subject/(Ta | e                              | •         |

Error: Subject Df Sum Sg Mean Sg F value Pr(>F) Gender 1 542.3 542.3 5.685 0.0345 \* 2 694.9 347.5 3.643 0.0580 . Dosage Gender:Dosage 2 70.8 35.4 0.371 0.6976 12 1144.6 95.4 Residuals \_\_\_\_ 0 ?\*\*\*? 0.001 ?\*\*? 0.01 ?\*? 0.05 ?.? 0.1 ? ? 1 Signif. codes: Error: Subject:Task Df Sum Sq Mean Sq F value Pr(>F) Task 1 96.33 96.33 39.862 3.87e-05 \*\*\* Task:Gender 1 1.33 1.33 0.552 0.472 Task:Dosage 2 8.17 4.08 1.690 0.226 Task:Gender:Dosage 2 3.17 1.58 0.655 0.537 Residuals 12 29.00 2.42 \_\_\_\_ 0 ?\*\*\*? 0.001 ?\*\*? 0.01 ?\*? 0.05 ?.? 0.1 ? ? 1 Signif. codes: + lots more



| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>○○○○○<br>○○○○○○○○○○○○● | Regression/Mediation<br>0000<br>00000 | R structure<br>0000000<br>0000 | ->Part IV |
|------------|--------------------------|------------------------------|---------------------------------------|---------------------------------------|--------------------------------|-----------|
| ANOVA      |                          |                              |                                       |                                       |                                |           |

## Analysis of variance within subjects output (continued)

| Error: Subject:Valence  |         |         |           |          |           |
|-------------------------|---------|---------|-----------|----------|-----------|
| D                       | f Sum : | Sq Mean | Sq F valu | e Pr(>F) | )         |
| Valence                 | 2 14.0  | 69 7.3  | 43 2.99   | 8 0.068  | з.        |
| Valence:Gender          | 2 3.9   | 91 1.9  | 54 0.79   | 8 0.461  | 9         |
| Valence:Dosage          | 4 20.3  | 26 5.0  | 65 2.06   | 8 0.116  | 6         |
| Valence:Gender:Dosage   | 4 1.0   | 0.2     | 59 0.10   | 6 0.9793 | 3         |
| Residuals 2             | 4 58.   | 78 2.4  | 49        |          |           |
|                         |         |         |           |          |           |
| Signif. codes: 0 ?***?  | 0.001   | ?**? 0. | 01 ?*? 0. | 05 ?.? ( | 0.1 ? ? 1 |
| Error: Subject:Task:Val | ence    |         |           |          |           |
|                         | Df      | Sum Sq  | Mean Sq F | value 1  | ?r(>F)    |
| Task:Valence            | 2       | 5.39    | 2.6944    | 1.320    | 0.286     |
| Task:Valence:Gender     | 2       | 2.17    | 1.0833    | 0.531    | 0.595     |
| Task:Valence:Dosage     | 4       | 2.78    | 0.6944    | 0.340    | 0.848     |
| Task:Valence:Gender:Dos | age 4   | 2.67    | 0.6667    | 0.327    | 0.857     |
| Residuals               | 24      | 49.00   | 2.0417    |          |           |





#### **Multiple regression**

- 1. Use the Garcia data set from *psych* (protest in Hayes (2013))
- 2. Do the linear model. (See the Garcia example)
- 3. Summarize the results

```
mod1 <- lm(respappr ~ prot2 + sexism, data=Garcia)
 summary (mod1)
Call:
lm(formula = respappr ~ prot2 + sexism, data = Garcia)
Residuals:
   Min
            10 Median
                            30
                                   Max
-3.5636 -0.8091 0.1281 0.9028 2.3069
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.69100
                       0.69826 5.286 5.33e-07 ***
prot2
            1.43715
                    0.22273 6.452 2.15e-09 ***
            0.03809 0.13284 0.287 0.775
sexism
_ _ _
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 1.177 on 126 degrees of freedom
```



155 / 279

| Part II <-     | Basics         | Descriptives | Inferential | Regression/Mediation | R structure | ->Part IV |
|----------------|----------------|--------------|-------------|----------------------|-------------|-----------|
|                | 0000000000000  | 000000       | 000000      | 0000                 | 0000000     |           |
|                |                | 00           | 00000000000 | 00000                | 0000        |           |
| Regression fro | m the raw data |              |             |                      |             |           |
|                |                |              |             |                      |             |           |

#### However, zero center the data before examining interactions

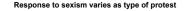
```
Garcia.centered<- data.frame(scale(Garcia, scale=FALSE))
mod2 <- lm( respappr ~ prot2 * sexism + sexism, data=Garcia.centered)
 summarv(mod2)
Call:
lm(formula = respappr ~ prot2 * sexism + sexism, data = Garcia.centere
Residuals:
   Min 10 Median 30 Max
-3.4984 -0.7540 0.0801 0.8301 3.1853
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01184 0.10085 -0.117 0.90671
prot2 1.45803 0.21670 6.728 5.52e-10 ***
sexism 0.02354 0.12927 0.182 0.85579
prot2:sexism 0.80998 0.28191 2.873 0.00478 **
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 1.144 on 125 degrees of freedom
```

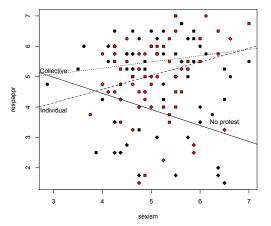
Multiple R-squared: 0.2962, Adjusted R-squared: 0.2793



#### Compare model 1 and model 2

```
Test the difference between the two linear models anova (mod1, mod2)
```


```
Analysis of Variance Table
Analysis of Variance Table
```


```
Model 1: respappr ~ prot2 + sexism
Model 2: respappr ~ prot2 * sexism + sexism
Res.Df RSS Df Sum of Sq F Pr(>F)
1 126 174.54
2 125 163.73 1 10.813 8.2551 0.004776 **
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.
```





#### Show the regression lines by protest





plot(respappr ~ sexism, pch = 23data=Garcia, main = "Response to by(Garcia,Garcia\$protest, function data =x),lty=c("solid","dashed" text(6.5,3.5,"No protest") text(3,3.9,"Individual") text(3,5.2,"Collective")

(See Examples: Garcia)





- 1. Although most regression examples use the raw data, it is also possible to do this from the correlation/covariance matrices.
- This is particularly useful for analyzing text book examples or data sets that come from synthetic covariance matrices (SAPA data).
- 3. Two functions do this
  - 3.1 setCor will find (and draw the paths) between a set of X variables and a set of Y variables from either the raw data or from a correlation matrix.
  - 3.2 mediate will show path diagrams in a way to highlight "mediated" (indirect) and direct effects. The significance of the indirect effect is found by bootstrapped confidence intervals
- 4. Both of these functions just use the standard matrix equation  $\beta xy = \mathbf{R}^{-1} r_{xy}$
- The two examples are taken from the PMI example in Hayes (2013) which is saved as the Tal\_Or dataset and used in the mediate help file.



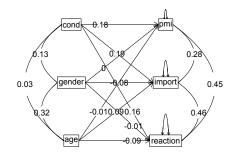
| Part II <-     | Basics                   | Descriptives | Inferential | Regression/Mediation | R structure | ->Part IV |
|----------------|--------------------------|--------------|-------------|----------------------|-------------|-----------|
|                | 0000000000000            | 000000       | 000000      | 0000                 | 0000000     |           |
| Regression fro | om covariance/correlatio | n matrices   |             |                      |             |           |

#### setCor finds regressions from covariances

| lowerMat(C.pmi) #show it |         |
|--------------------------|---------|
| setCor(2:4,c(1,5,6),data | =C.pmi) |

Multiple Regression from matrix input

Beta weights pmi import reaction > lowerCor(Tal Or) 0 18 0.19 0.16 cond cond pmi imprt rectn gendr age gender 0.00 -0.08 -0.01 cond 0.25 aσe -0 01 0 09 -0 09 pmi 0.12 1.75 import 0.16 0.65 3.02 Multiple R reaction 0.12 0.91 1.25 2.40 import reaction pmi gender 0.03 0.01 -0.02 -0.01 0.23 0 21 0 18 0 18 0.07 -0.04 0.74 -0.75 0.88 33.65 aσe multiple R2 import reaction pmi 0 033 0 043 0 033


(Specify n.obs if you want the standard errors , t, and probabilities of the estimates.)



| Part II <-    | Basics                                  | Descriptives | Inferential           | Regression/Mediation | R structure | ->Part IV |
|---------------|-----------------------------------------|--------------|-----------------------|----------------------|-------------|-----------|
|               | 000000000000000000000000000000000000000 | 000000       | 000000<br>00000000000 | 0000                 | 0000000     |           |
| Regression fr | rom covariance/correlatio               | n matrices   |                       |                      |             |           |

# **Regressions from a covariance matrix**

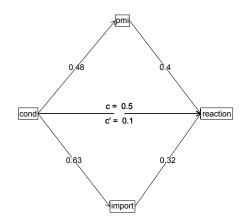
#### **Regression Models**





| Part II <-     | Basics                  | Descriptives | Inferential | Regression/Mediation | R structure | ->Part IV |
|----------------|-------------------------|--------------|-------------|----------------------|-------------|-----------|
|                | 0000000000000           | 000000       | 000000      | 0000                 | 0000000     |           |
| Regression fro | m covariance/correlatio | n matrices   |             |                      |             |           |

# A mediation example from Ta[Or (2010) included in Hayes (2013)


mediate(y="reaction", x = "cond", m=c("pmi", "import"), data=pmi, n.obs=123, n.iter=5000)

```
Call: mediate(v = "reaction", x = "cond", m = c("pmi", "import"), data = C.pmi,
   n.obs = 123, n.iter = 50)
The DV (Y) was reaction. The IV (X) was cond. The mediating variable(s) = pmi import.
                                                      S.E. = 0.28 t direct = 1.79
Total Direct effect(c) of cond on reaction = 0.5
                                                                                       with
Direct effect (c') of cond on reaction removing pmi import = 0.1 S.E. = 0.24 t dir
Indirect effect (ab) of cond on reaction through pmi import = 0.39
Mean bootstrapped indirect effect = 0.4 with standard error = 0.13 Lower CI = 0.19
                                                                                         Up
R2 \text{ of model} = 0.33
 To see the longer output, specify short = FALSE in the print statement
 Full output
 Total effect estimates (c)
    reaction
               se
                     +
                         Proh
         0.5 0.28 1.79 0.0766
cond
Direct effect estimates
                           (c')
      reaction
                 se
                       ÷
                             Proh
cond
          0.10 0.24 0.43 6.66e-01
          0.40 0.09 4.26 4.04e-05
pmi
import
          0.32 0.07 4.59 1.13e-05
 'a' effect estimates
      cond
             se
                   t
                       Prob
pmi
     0.48 0.24 2.02 0.0452
import 0.63 0.31 2.02 0.0452
 'b'
     effect estimates
      reaction
                 se
                       ÷
                             Proh
pmi
          0.40 0.09 4.26 4.04e-05
          0.32 0.07 4.59 1.13e-05
import
 'ab' effect estimates
    reaction boot sd lower upper
        0.39 0.4 0.13 0.19 0.63
                                                                                   162 / 279
cond
```

| Part II <-    | Basics                                  | Descriptives | Inferential           | Regression/Mediation | R structure | ->Part IV |
|---------------|-----------------------------------------|--------------|-----------------------|----------------------|-------------|-----------|
|               | 000000000000000000000000000000000000000 | 000000       | 000000<br>00000000000 | 0000                 | 0000000     |           |
| Regression fr | om covariance/correlatio                | n matrices   |                       |                      |             |           |

# A mediation example from Hayes (2013)

#### Mediation model





163 / 279

| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure | ->Part IV |
|------------|--------------------------|------------------------------|--------------------------------------------------------|---------------------------------------|-------------|-----------|
| Basic R    |                          |                              |                                                        |                                       |             |           |

# A brief technical interlude

- 1. Data structures
  - The basic: scalers, vectors, matrices
  - More advanced data frames and lists
  - Showing the data
- 2. Getting the length, dimensions and structure of a data structure
  - length(x), dim(x), str(x)
- 3. Objects and Functions
  - Functions act upon objects
  - Functions actually are objects themselves
  - Getting help for a function (?function) or ?? function
- 4. Vignettes for help on the entire package (available either as part of the help file, or as a web page supplement to the package).





#### The basic types of data structures

# 1. Scalers (characters, integers, reals, complex)

- > A <- 1 #Assign the value 1 to the object A
- > B <- 2 #Assign the value 2 to the object B

# 2. Vectors (of scalers, all of one type) have length

- > C <- month.name[1:5] #Assign the names of the first 5 months to
- > D <- 12:24 #assign the numbers 12 to 24 to D
- > length(D) #how many numbers are in D?

[1] 13

# 3. Matrices (all of one type) have dimensions

```
> E <- matrix(1:20, ncol = 4)
> dim(E) #number of rows and columns of E
[1] 5 4
```



| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure | ->Part IV |
|------------|--------------------------|------------------------------|------------------------------------------|---------------------------------------|-------------|-----------|
| Basic R    |                          |                              |                                          |                                       |             |           |

### Show values by entering the variable name

| > A #what is the value of A?                   |
|------------------------------------------------|
| [1] 1                                          |
| > B #and of B?                                 |
| [1] 2                                          |
| > C #and C                                     |
| [1] "January" "February" "March" "April" "May" |
| > D                                            |
| [1] 12 13 14 15 16 17 18 19 20 21 22 23 24     |
| > E                                            |
| [,1] [,2] [,3] [,4]                            |
| [1,] 1 6 11 16                                 |
| [2,] 2 7 12 17                                 |
| [3,] 3 8 13 18                                 |
| [4,] 4 9 14 19                                 |
| [5,] 5 10 15 20                                |





### More complicated (and useful) types: Data frames and Lists

1. Data frames are collections of vectors and may be of different type. They have two dimensions.

```
> E.df <- data.frame(names = C, values = c(31, 28, 31, 30, 31))
> dim(E.df)
```

```
[1] 5 2
```

2. Lists are collections of what ever you want. They have length, but do not have dimensions.

```
> F <- list(first = A, a.vector = C, a.matrix = E)
> length(F)
[1] 3
```



| Part II <- | Basics<br>0000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000 | Regression/Mediation<br>0000<br>00000 | R structure | ->Part IV |
|------------|-------------------------|------------------------------|--------------------------------------|---------------------------------------|-------------|-----------|
| Basic R    |                         |                              |                                      |                                       |             |           |

## Show values by entering the variable name

> E.df

| 2 Fel<br>3<br>4 | names<br>anuary<br>oruary<br>March<br>April<br>May |      | 31<br>28<br>31<br>30 |        |         |         |      |   |
|-----------------|----------------------------------------------------|------|----------------------|--------|---------|---------|------|---|
| > F             |                                                    |      |                      |        |         |         |      |   |
| \$fir:<br>[1] : |                                                    |      |                      |        |         |         |      |   |
|                 | ector<br>"Janua:                                   | ry"  | "Febi                | ruary" | "March" | "April" | "May | " |
| \$a.ma          | atrix                                              |      |                      |        |         |         |      |   |
|                 | [,1]                                               | [,2] | [,3]                 | [,4]   |         |         |      |   |
| [1,]            | 1                                                  | 6    | 11                   | 16     |         |         |      |   |
|                 | 2                                                  |      |                      |        |         |         |      |   |
|                 | 3                                                  |      |                      |        |         |         |      |   |
| [4,]            | 4                                                  | 9    | 14                   | 19     |         |         |      |   |
| [5,]            | 5                                                  | 10   | 15                   | 20     |         |         |      |   |



| Part II <- | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure ->Part IV<br>00000€0<br>0000 |
|------------|--------------------------|------------------------------|--------------------------------------------------------|---------------------------------------|------------------------------------------|
| Basic R    |                          |                              |                                                        |                                       |                                          |

#### 1. To show the structure of a list, use str

```
> str(F)
List of 3
$ first : num 1
$ a.vector: chr [1:5] "January" "February" "March" "April" ...
$ a.matrix: int [1:5, 1:4] 1 2 3 4 5 6 7 8 9 10 ...
```

- 2. To address an element of a list, call it by name or number, to get a row or column of a matrix specify the row, column or both.
  - > F[[2]]

[1] "January" "February" "March" "April"
> F[["a.matrix"]][, 2]
[1] 6 7 8 9 10
> F[["a.matrix"]][2, ]
[1] 2 7 12 17

| Part II <- | Basics<br>0000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>0000000000000000 | Regression/Mediation<br>0000<br>00000 | R structure<br>000000●<br>0000 | ->Part IV |
|------------|-------------------------|------------------------------|-------------------------------------------|---------------------------------------|--------------------------------|-----------|
| Basic R    |                         |                              |                                           |                                       |                                |           |

#### Addressing the elements of a data.frame or matrix

```
Setting row and column names using paste
```

```
> E < -matrix(1:20, ncol = 4)
> colnames(E) <- paste("C", 1:ncol(E), sep = "")</pre>
> rownames(E) <- paste("R", 1:nrow(E), sep = "")</pre>
> E
   C1 C2 C3 C4
R1 1 6 11 16
R2 2 7 12 17
R3 3 8 13 18
R4 4 9 14 19
R5 5 10 15 20
> E["R2", ]
C1 C2 C3 C4
2 7 12 17
> E[, 3:4]
   C3 C4
R1 11 16
R2 12 17
R3 13 18
R4 14 19
R5 15 20
```



| Part II <-    | Basics<br>00000000000000 | Descriptives<br>000000<br>00 | Inferential<br>000000<br>00000000000000000000000000000 | Regression/Mediation | R structure | ->Part IV |
|---------------|--------------------------|------------------------------|--------------------------------------------------------|----------------------|-------------|-----------|
| Objects and F | unctions                 |                              |                                                        |                      |             |           |

# **Objects and Functions**

- 1. R is a collection of Functions that act upon and return Objects
- 2. Although most functions can act on an object and return an object (a = f(b)), some are binary operators
  - primitive arithmetic functions +, -, \* , /, %\*%, ^
  - logical functions <, > ,==, !=
- 3. Some functions return "invisible" values
  - e.g., p <- print(x,digits=3) will print out x to 3 digits but also returns a value to p.
  - Similarly, s <- summary(some object) will return the value of the summary function.
- 4. But most useful functions act on an object and return a resulting object
  - This allows for extraordinary power because you can combine functions by making the output of one the input of the next.
  - The number of R functions is very large, for each package has introduced more functions, but for any one task, not many functions need to be learned. Keep a list of the ones you use.



| Part II <-    | Basics         | Descriptives | Inferential | Regression/Mediation | R structure | ->Part IV |
|---------------|----------------|--------------|-------------|----------------------|-------------|-----------|
|               | 00000000000000 | 000000       | 000000      | 0000                 | 0000000     |           |
|               |                | 00           | 00000000000 | 00000                | 0000        |           |
| Objects and F | unctions       |              |             |                      |             |           |

# Getting help

- 1. All functions have a help menu
  - help(the function) or just ? the function
  - Most function help pages have examples to show how to use the function
- 2. Many packages have "vignettes" that give overviews of all the functions in the package and are somewhat more readable than the help for a specific function.
  - The examples are longer, somewhat more readable. (e.g., the vignettea for *psych* is available either from the menu (Mac) or from http://cran.r-project.org/web/packages/psych/vignettes/overview.pdf
- To find a function in the entire R space, use findFn in the sos package.
- Online tutorials (e.g., http://Rpad.org for a list of important commands, http://personality-project.org/r) for a tutorial for psychologists.



5. Online and hard copy books

| Part II <-    | Basics        | Descriptives | Inferential | Regression/Mediation | R structure    | ->Part IV |
|---------------|---------------|--------------|-------------|----------------------|----------------|-----------|
|               | 0000000000000 | 000000       | 000000      | 0000                 | 000000<br>0000 |           |
| Objects and F | Functions     |              |             |                      |                |           |

# A few of the most useful data manipulations functions (adapted from Rpad-refcard). Use ? for details

| file.choose  | () find a file                      | dim              | (x) dimensions of $x$      |
|--------------|-------------------------------------|------------------|----------------------------|
|              | (new=TRUE) create a                 | str              | (x) Structure of an object |
|              | new file                            | list             | () create a list           |
| read.table   | (filename)                          | colnames         | (x) set or find column     |
| read.csv     | (filename) reads a                  |                  | names                      |
|              | comma separated file                | rownames         | (x) set or find row names  |
| read.delim   | (filename) reads a tab              | ncol(x), nrow(x) | number of row, columns     |
|              | delimited file                      | rbind            | () combine by rows         |
| С            | () combine arguments                | cbind            | () combine by columns      |
| from:to      | e.g., 4:8                           | is.na            | (x) also is.null(x), is    |
| seq          | (from,to, by)                       | na.omit          | (x) ignore missing data    |
| rep          | (x,times,each) repeat $\times$      | table            | (x)                        |
| gl           | (n,k,) generate factor              | merge            | (x,y)                      |
|              | levels                              | apply            | (x,rc,FUNCTION)            |
| matrix       | (x,nrow=,ncol= ) create<br>a matrix | ls               | () show workspace          |
| data frame   | () create a data frame              | rm               | () remove variables from   |
| uata.IIdille |                                     |                  | workspace 173 / 279        |

| Part II <- Basics<br>00000                                                                               | Descriptives                                                                                              | Inferential<br>000000<br>000000000000000             | Regression                                                                                                                                                  | n/Mediation R structure ->Part IV<br>0000000<br>000●                                |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Objects and Functions                                                                                    |                                                                                                           |                                                      |                                                                                                                                                             |                                                                                     |
| Mc<br>mean<br>is.na<br>na.omit<br>sum<br>rowSums<br>min<br>max<br>range<br>table<br>summary<br>sd<br>cor | (x)<br>(x) also is.null(x), is<br>(x) ignore missing c<br>(x)<br>(x) see also colSum<br>(x)<br>(x)<br>(x) | stical function<br>Selecter<br>data pai<br>s(x) erro | ns, Use<br>d function<br>describe<br>escribeBy<br>irs.panels<br>error.bars<br>or.bars.by<br>fa<br>principal<br>iclust<br>coreltems<br>outliple.cho<br>alpha |                                                                                     |
| Im                                                                                                       | <pre>(x) inverse of x (y~x) linear mode (y~x) ANOVA</pre>                                                 |                                                      | irt.fa                                                                                                                                                      | (x) Item response theory<br>through factor analysis<br>empirical scale construction |
|                                                                                                          |                                                                                                           |                                                      |                                                                                                                                                             |                                                                                     |

| Part III <- | $CTT \alpha \omega_h \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|-------------|--------------------------------|---------------|-----|------|
|             | 00                             | 000000        | 0   |      |
|             | 0000                           | 0             | 00  |      |
|             |                                |               |     |      |

# Outline

# Part I: What is R, where did it come from, why use it

- Installing R and adding packages: the building blocks of R
- Part II: A brief introduction an overview
  - R is just a fancy (very fancy) calculator
  - Descriptive data analysis
  - Some inferential analysis

# Part III R is a powerful statistical system

- Data entry (detail and practice)
- Descriptive (again)
- Inferential (t and F with more practice)
- Regression
- Basic R commands

Part IV: Psychometrics

- Reliability and its discontents
- EFA, CFA, SEM

Part V: Help and More Help

List of useful commands

Part VI: The psych package and more practice



| Part III | <- |
|----------|----|
|----------|----|

CTT α ω<sub>h</sub> α 00 0000 EFA, CFA, SEN 000000 0 IRT 0 00 -> V

# **Outline of Part IV: Psychometrics**

- -> Part III: Basic Statistics
- Classical Test Theory measures of reliability Split Half Reliability and  $\alpha$  Multiple Scales
- Multivariate Analysis and Structural Equation Modeling Exploratory Factor Analysis Confirmatory Factor Analysis and Structural Equation Modeling
- Item Response Theory Multiple programs IRT from factor analysis: the irt.fa function in psych
- -> Part V: More help



| Part | III <- |
|------|--------|
|      |        |

EFA, CFA, SEN 000000 0 IRT 0 00  $-> \vee$ 

# **Psychometrics**

1. Classical test theory measures of reliability

- Scoring tests
- Reliability (alpha, beta, omega)
- 2. Multivariate Analysis
  - Factor Analysis
  - Components analysis
  - Multidimensional scaling
  - Structural Equation Modeling
- 3. Item Response Theory
  - One parameter (Rasch) models
  - 2PL and 2PN models



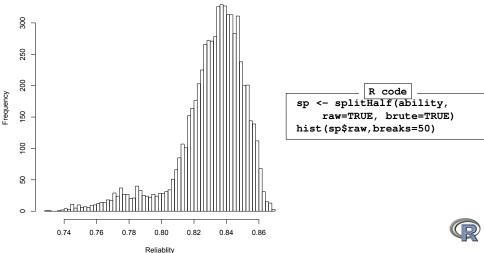
Part III <-

 $\begin{array}{c} \mathsf{CTT} \ \alpha \ \omega_h \ \omega_t \\ \circ \circ \\ \circ \circ \circ \circ \end{array}$ 

EFA, CFA, SEN 000000 0 IRT 0 00

# **Classical Test Theory estimates of reliability**

# 1. Alternative estimates of reliability


- alpha  $\alpha$  reliability of a single scale finds the average split half reliability. (some items may be reversed keyed).
- omega  $\omega_h$  reliability of a single scale estimates the general factor saturation of the test.
- guttman Find the 6 Guttman reliability estimates
- ${\tt splitHalf}$  Find the range of split half reliabilities
- 2. Scoring tests with multiple scales
  - scoreItems Score 1 ... n scales using a set of keys and finding the simple sum or average of items. Reversed items are indicated by -1



| Part III <-                  | CTT $\alpha \omega_h \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|------------------------------|--------------------------------|---------------|-----|------|
|                              | •0                             | 000000        | 0   |      |
|                              | 0000                           | 0             | 00  |      |
| Split Half Reliability and o | e                              |               |     |      |

#### 6,435 split half reliabilities of a 16 item ability test

#### Split half reliabilities of 16 ability measures



179 / 279

| Part III <-                         | $CTT \ \alpha \ \omega_h \ \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|-------------------------------------|--------------------------------------|---------------|-----|------|
|                                     | 0.                                   | 000000        | 0   |      |
|                                     | 0000                                 | 0             | 00  |      |
| Split Half Reliability and $\alpha$ |                                      |               |     |      |

# Finding coefficient $\alpha$ for a scale (see Revelle and Zinbarg, 2009, however, for why you should not)

R code

 $\mathbf{sd}$ 

alpha (ability) Reliability analysis

Call: alpha(x = ability) raw\_alpha std.alpha G6(smc) average\_r S/N ase mean 0 83 0 83 0 84 0.23 4.9 0.0086 0.51 0.25 95% confidence boundaries lower alpha upper 0 81 0 83 0 85 Reliability if an item is dropped: raw alpha std.alpha G6(smc) average r S/N alpha se reason 4 0 82 0 82 0 82 0 23 4 5 0 0093 reason.16 0.82 0.82 0.83 0.24 4.7 0.0091 rotate 6 0.82 0.82 0.82 0.23 4.5 0.0092 0 82 0 82 0 83 0 24 4 6 0 0091 rotate.8 Item statistics r r.cor r.drop mean sd n reason.4 1442 0.58 0.54 0.50 0.68 0.47 reason.16 1463 0.50 0.44 0.41 0.73 0.45 r... rotate.4 1460 0.58 0.56 0.48 0.22 0.42 rotate.6 1456 0.56 0.53 0.46 0.31 0.46 rotate 8 1460 0 51 0 47 0.41 0.19 0.39



| Part III <-                           | CTT $\alpha \omega_h \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|---------------------------------------|--------------------------------|---------------|-----|------|
|                                       | 00                             | 000000        | 0   |      |
|                                       | 0000                           | 0             | 00  |      |
| A A A A A A A A A A A A A A A A A A A |                                |               |     |      |

Multiple Scales

#### Using scoreItems to score 25 Big 5 items (see bfi example)

R code

keys.list <- list(Agree=c(-1,2:5), Conscientious=c(6:8,-9,-10), Extraversion=c(-11,-12,13:15), Neuroticism=c(16:20), Openness = c(21,-22,23,24,-25)) keys <- make.keys(bfi,keys.list) scores <- scoreItems(keys,bfi)</pre>

Call: score.items(kevs = kevs, items = bfi) (Unstandardized) Alpha: Agree Conscientious Extraversion Neuroticism Openness alpha 0.7 0.76 0.81 0.72 0.6 Average item correlation: Agree Conscientious Extraversion Neuroticism Openness average.r 0.32 0.34 0.39 0.46 0.23 Guttman 6\* reliability: Agree Conscientious Extraversion Neuroticism Openness Lambda 6 07 0 72 0 76 0 81 0 6 Scale intercorrelations corrected for attenuation raw correlations below the diagonal, alpha on the diagonal corrected correlations above the diagonal: Agree Conscientious Extraversion Neuroticism Openness 0.70 -0.245Agree 0.36 0.63 0.23 Conscientious 0.26 0 72 0 35 -0 305 0 30 Extraversion 0 46 0 26 0 76 -0.284 0.32 -0.18 -0.23 -0.220.812 -0.12Neuroticism Openness 0 15 0 19 0 22 -0 086 0 60



| P | ar | t | T | П | <- |
|---|----|---|---|---|----|
|   |    |   |   |   |    |

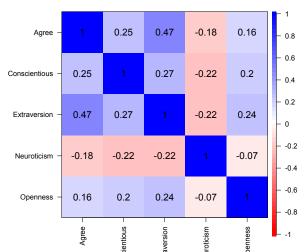
 $\begin{array}{c} \mathsf{CTT} \ \alpha \ \omega_h \ \omega_t \\ \circ \circ \\ \circ \bullet \circ \circ \end{array}$ 

EFA, CFA, SEM

IRT 0 00

**Multiple Scales** 

### score.items output, continued


| Item by s | cale c | orrelations:    |                |             |          |
|-----------|--------|-----------------|----------------|-------------|----------|
| correcte  | d for  | item overlap an | nd scale relia | ability     |          |
|           | Agree  | Conscientious   | Extraversion   | Neuroticism | Openness |
| A1        | -0.40  | -0.06           | -0.11          | 0.14        | -0.14    |
| A2        | 0.67   | 0.23            | 0.40           | -0.07       | 0.17     |
| A3        | 0.70   | 0.22            | 0.48           | -0.11       | 0.17     |
| A4        | 0.49   | 0.29            | 0.30           | -0.14       | 0.01     |
| A5        | 0.62   | 0.23            | 0.55           | -0.23       | 0.18     |
| C1        | 0.13   | 0.53            | 0.19           | -0.08       | 0.28     |
| C2        | 0.21   | 0.61            | 0.17           | 0.00        | 0.20     |
| C3        | 0.21   | 0.54            | 0.14           | -0.09       | 0.08     |
| C4        | -0.24  | -0.66           | -0.23          | 0.31        | -0.23    |
| С5        | -0.26  | -0.59           | -0.29          | 0.36        | -0.10    |
| E1        | -0.30  | -0.06           | -0.59          | 0.11        | -0.16    |
| E2        | -0.39  | -0.25           | -0.70          | 0.34        | -0.15    |
| E3        | 0.44   | 0.20            | 0.60           | -0.10       | 0.37     |
| E4        | 0.51   | 0.23            | 0.68           | -0.22       | 0.04     |
| E5        | 0.34   | 0.40            | 0.55           | -0.10       | 0.31     |
| N1        | -0.22  | -0.21           | -0.11          | 0.76        | -0.12    |
| N2        | -0.22  | -0.19           | -0.12          | 0.74        | -0.06    |
| N3        | -0.14  | -0.20           | -0.14          | 0.74        | -0.03    |
| N4        | -0.22  | -0.30           | -0.39          | 0.62        | -0.02    |
| N5        | -0.04  | -0.14           | -0.19          | 0.55        | -0.18    |
| 01        | 0.16   | 0.20            | 0.31           | -0.09       | 0.52     |
| 02        | -0.01  | -0.18           | -0.07          | 0.19        | -0.45    |
| 03        | 0.26   | 0.20            | 0.42           | -0.07       | 0.61     |
| 04        | 0.06   | -0.02           | -0.10          | 0.21        | 0.32     |
| 05        | -0.09  | -0.14           | -0.11          | 0.11        | -0.53    |
| gender    | 0.25   | 0.11            | 0.12           | 0.14        | -0.07    |
| education |        | 0.03            | 0.01           | -0.06       | 0.13     |
| age       | 0.22   | 0.14            | 0.07           | -0.13       | 0.10     |

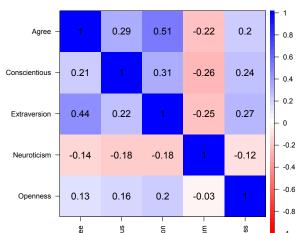


| Part III <-     | CTT $\alpha \omega_h \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|-----------------|--------------------------------|---------------|-----|------|
|                 | 00                             | 000000        | 0   |      |
| Multiple Scales |                                |               |     |      |

## Correlations of composite scores based upon item correlations

ci <- cor.ci(bfi,keys=keys,main='Correlations of composite scales')




#### Correlations of composite scales



| Part III <-     | CTT $\alpha \omega_h \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|-----------------|--------------------------------|---------------|-----|------|
|                 | 00<br>0000                     | 000000        | 0   |      |
| Multiple Scales |                                |               |     |      |

# Upper and Lower bounds of Correlations of composite scores based upon item correlations and bootstrap resampling

cor.plot.upperLowerCi(ci,main='Upper and lower bounds of Big 5 correlations')



Upper and lower bounds of Big 5 correlations



| Part III <-           | CTT $\alpha \omega_h \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|-----------------------|--------------------------------|---------------|-----|------|
|                       | 00                             | 00000         | 0   |      |
|                       | 0000                           | 0             | 00  |      |
| Exploratory Eactor Ar | alveis                         |               |     |      |

#### Exploratory Factor Analysis

## Factor analysis of Thurstone 9 variable problem

|                       | R code                                                              |
|-----------------------|---------------------------------------------------------------------|
| f3 <- fa(Thurst       | one, nfactors=3) #use this built in dataset                         |
| f3 #we keep the       | e output as an object to use later                                  |
|                       |                                                                     |
| Factor Analysis using |                                                                     |
| Call: fa(r = Thurston |                                                                     |
|                       | (pattern matrix) based upon correlation matrix<br>MR2 MR3 h2 u2 com |
| MR1                   |                                                                     |
|                       | -0.04 0.04 0.82 0.18 1.0                                            |
|                       | 0.06 -0.03 0.84 0.16 1.0                                            |
|                       | 0.04 0.00 0.73 0.27 1.0                                             |
|                       | 0.86 0.00 0.73 0.27 1.0                                             |
|                       | 0.74 0.10 0.63 0.37 1.0                                             |
|                       | 0.63 -0.08 0.50 0.50 1.2                                            |
|                       | -0.01 0.84 0.72 0.28 1.0                                            |
|                       | -0.05 0.47 0.50 0.50 1.9                                            |
| Letter.Group -0.06    | 0.21 0.64 0.53 0.47 1.2                                             |
|                       | MR1 MR2 MR3                                                         |
| SS loadings           | 2.64 1.86 1.50                                                      |
| Proportion Var        | 0.29 0.21 0.17                                                      |
| Cumulative Var        | 0.29 0.50 0.67                                                      |
| Proportion Explained  | 0.44 0.31 0.25                                                      |
| Cumulative Proportion | 0.44 0.75 1.00                                                      |
| With factor correlat  | ions of                                                             |
| MR1 MR2 MR3           |                                                                     |
| MR1 1.00 0.59 0.54    |                                                                     |
| MR2 0.59 1.00 0.52    |                                                                     |
| MRZ 0.33 I.00 0.32    |                                                                     |

MP3 0 54 0 52 1 00



| P | а | rt | П | U | <- |
|---|---|----|---|---|----|
|   |   |    |   |   |    |

CTT  $\alpha \omega_h \omega$ 00 0000 EFA, CFA, SEM

IRT 0 00

Exploratory Factor Analysis

#### Factor analysis output, continued

With factor correlations of MR1 MR2 MR3 MR1 1.00 0.59 0.54 MR2 0.59 1.00 0.52 MR3 0.54 0.52 1.00

Mean item complexity = 1.2 Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was 5.2The degrees of freedom for the model are 12 and the objective function was 0.01

The root mean square of the residuals (RMSR) is 0.01The df corrected root mean square of the residuals is 0.01

Fit based upon off diagonal values = 1 Measures of factor score adequacy

|                                                                                                                                                                                             | MR1  | MR2  | MR3  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|
| MR1 MR2 MR3<br>Correlation of scores with factors 0.96 0.92 0.90<br>Multiple R square of scores with factors 0.93 0.85 0.81<br>Minimum correlation of possible factor scores 0.86 0.71 0.63 | 0.90 |      |      |
| Multiple R square of scores with factors                                                                                                                                                    | 0.93 | 0.85 | 0.81 |
| Minimum correlation of possible factor scores                                                                                                                                               | 0.86 | 0.71 | 0.63 |



| Part III <-            | CTT $\alpha \omega_h \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|------------------------|--------------------------------|---------------|-----|------|
|                        | 00<br>0000                     | 00000<br>0    | 000 |      |
| Exploratory Factor Ana | lvsis                          |               |     |      |

## **Bootstrapped confidence intervals**

|                                 | R code |  |
|---------------------------------|--------|--|
| fa(Thurstone, 3, n. obs=213, n. |        |  |

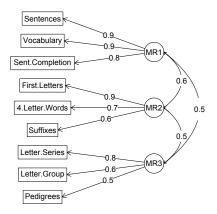
. . .

| Coefficients and | d boots | strappe | ed con: | fidence | e inte | rvals |       |       |     |
|------------------|---------|---------|---------|---------|--------|-------|-------|-------|-----|
|                  | low     | MR1     | upper   | low     | MR2    | upper | low   | MR3   | upp |
| Sentences        | 0.83    | 0.91    | 0.97    | -0.10   | -0.04  | 0.06  | -0.02 | 0.04  | 0   |
| Vocabulary       | 0.80    | 0.89    | 0.98    | 0.00    | 0.06   | 0.15  | -0.12 | -0.03 | 0   |
| Sent.Completion  | 0.75    | 0.83    | 0.90    | -0.05   | 0.04   | 0.11  | -0.08 | 0.00  | 0   |
| First.Letters    | -0.08   | 0.00    | 0.09    | 0.68    | 0.86   | 0.97  | -0.09 | 0.00  | 0   |
| 4.Letter.Words   | -0.13   | -0.01   | 0.12    | 0.57    | 0.74   | 0.90  | -0.01 | 0.10  | 0   |
| Suffixes         | 0.07    | 0.18    | 0.26    | 0.50    | 0.63   | 0.76  | -0.23 | -0.08 | 0   |
| Letter.Series    | -0.09   | 0.03    | 0.13    | -0.06   | -0.01  | 0.08  | 0.68  | 0.84  | 0   |
| Pedigrees        | 0.27    | 0.37    | 0.52    | -0.17   | -0.05  | 0.04  | 0.33  | 0.47  | 0   |
| Letter.Group     | -0.16   | -0.06   | 0.08    | 0.12    | 0.21   | 0.29  | 0.41  | 0.64  | 0   |
|                  |         |         |         |         |        |       |       |       |     |

| Interfa | actor o | correlatio | ons and | bootstrapped | confidence | intervals |
|---------|---------|------------|---------|--------------|------------|-----------|
|         | lower   | estimate   | upper   |              |            |           |
| MR1-MR2 | 0.47    | 0.59       | 0.68    |              |            |           |
| MR1-MR3 | 0.39    | 0.54       | 0.61    |              |            | R         |
| MR2-MR3 | 0.30    | 0.52       | 0.64    |              |            |           |

|  |  | <- |
|--|--|----|
|  |  |    |
|  |  |    |

CTT α ω<sub>h</sub> α 00 0000 EFA, CFA, SEM


IRT 0 00 -> V

Exploratory Factor Analysis

# The simple factor structure

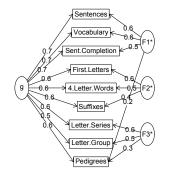
# factor.diagram(f3) # show the diagram

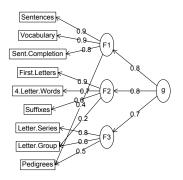
**Factor Analysis** 





|  |  | <- |
|--|--|----|
|  |  |    |


CTT α ω<sub>h</sub> α 00 0000 EFA, CFA, SEM 0000●0 IF O O


Exploratory Factor Analysis

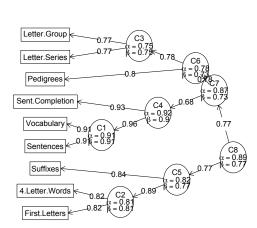
# Two ways of viewing the higher order structure om <- omega(Thurstone) omega.diagram(om,sl=FALSE)

Omega

Hierarchical (multilevel) Structure








| Part III <-           | CTT $\alpha \omega_h \omega_t$ | EFA, CFA, SEM | IRT | -> V |
|-----------------------|--------------------------------|---------------|-----|------|
|                       | 00                             | 000000        | 0   |      |
| Evelopetany Frates An |                                |               |     |      |

Exploratory Factor Analysis

# A hierarchical cluster structure found by iclust iclust(Thurstone)

iclust





# Structural Equation modeling packages

- 1. Sem (Fox, Nie & Byrnes, 2013)
  - uses RAM notation
- 2. lavaan (Rosseel, 2012)
  - Mimics as much as possible MPLUS output
  - Allows for multiple groups
  - Easy syntax
- 3. OpenMx (Neale, Hunter, Pritikin, Zahery, Brick, Kickpatrick, Estabrook, Bates, Maes & Boker, 2016)
  - Open source and R version of Mx
  - Allows for multiple groups (and almost anything else)
  - Complicated syntax

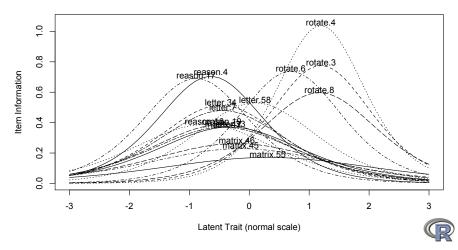


| P | ar | t | Ī | Ī | Ī | <- |
|---|----|---|---|---|---|----|
|   |    |   |   |   |   |    |

CTT α ω<sub>h</sub> α 00 0000 EFA, CFA, SEN 000000 0



# Mutiple packages to do Item Response Theory analysis


- 1. *psych* uses a factor analytic procedure to estimate item discriminations and locations
  - irt.fa finds either tetrachoric or polychoric correlation matrices
    - converts factor loadings to discriminations
  - plot.irt plots item information and item characteristic functions
  - look at examples for irt.fa
  - two example data sets: ability and bfi
- 2. Other packages to do more conventional IRT include *ltm*, *eRm*, *mirt*, + others



| Part III <-           | CTT $\alpha \omega_h \omega_t$    | EFA, CFA, SEM | IRT | -> V |
|-----------------------|-----------------------------------|---------------|-----|------|
|                       | 00                                | 000000        | 0   |      |
|                       | 0000                              | 0             | •0  |      |
| IRT from factor analy | sis: the irt.fa function in psych |               |     |      |

## Item Response Information curves for 16 ability items from ICAR

#### Item information from factor analysis



| Part III <- | Ρ | а | r | t | I | I | L | < | - |
|-------------|---|---|---|---|---|---|---|---|---|
|-------------|---|---|---|---|---|---|---|---|---|

 $\begin{array}{c} \mathsf{CTT} \ \alpha \ \omega_h \ \omega_t \\ \circ \circ \\ \circ \circ \circ \circ \circ \end{array}$ 

EFA, CFA, SEM 000000 0



IRT from factor analysis: the irt.fa function in psych

# **Questions?**





-> V

# A few of the most useful data manipulations functions (adapted from Rpad-refcard). Use ? for details

| file choose | () find a file                 | dim              | (x) dimensions of x        |
|-------------|--------------------------------|------------------|----------------------------|
|             | (new=TRUE) create a            | str              | (x) Structure of an object |
| me.enoose   | new file                       | list             | () create a list           |
| read.table  | (filename)                     | colnames         | (x) set or find column     |
| read.csv    | (filename) reads a             |                  | names                      |
|             | comma separated file           | rownames         | (x) set or find row names  |
| read.delim  | (filename) reads a tab         | ncol(x), nrow(z) | number of row, columns     |
|             | delimited file                 | rbind            | () combine by rows         |
| с           | () combine arguments           | cbind            | () combine by columns      |
| from:to     | e.g., 4:8                      | is.na            | (x) also is.null(x), is    |
| seq         | (from,to, by)                  | na.omit          | (x) ignore missing data    |
| rep         | (x,times,each) repeat $\times$ | table            | (x)                        |
| gl          | (n,k,) generate factor         | merge            | (x,y)                      |
|             | levels                         | apply            | (x,rc,FUNCTION)            |
| matrix      | (x,nrow=,ncol= ) create        | ls               | () show workspace          |
| data fuanca |                                | rm               | () remove variables from   |
| data.frame  | () create a data frame         |                  | workspace 195/279          |

More Help

|         | re useful statistical<br>(x,na.rm=TRUE) * |                   | e ? for details<br>is from <i>psych</i> package |
|---------|-------------------------------------------|-------------------|-------------------------------------------------|
| is.na   | (x) also is.null(x), is                   | describe          | (x) descriptive stats                           |
| na.omit | (x) ignore missing data                   | describeBy        | (x,y) descriptives by group                     |
| sum     | (x)                                       | pairs.panels      | (x) SPLOM                                       |
| rowSums | (x) see also colSums(x)                   | error.bars        | (x) means $+$ error bars                        |
| colSums | (x) see also rowSums(x)                   | error.bars.by     | (x) Error bars by groups                        |
| min     | (x,na.rm=TRUE)*                           | fa                | (x,n) Factor analysis                           |
| max     | (x) *ignores NA values                    | principal         | (x,n) Principal components                      |
| range   | (x)                                       | iclust            | (x) Item cluster analysis                       |
| table   | (x)                                       | scoreltems        | (x) score multiple scales                       |
| summary | (x) depends upon x                        | score.multiple.ch | oice (x) score multiple choice                  |
| sd      | (x) standard deviation                    |                   | scales                                          |
| cor     | (x,use="pairwise")                        | alpha             | (×) Cronbach's alpha                            |
|         | correlation                               | omega             | (x) MacDonald's omega                           |
| COV     | (x) covariance                            | irt.fa            | (x) Item response theory                        |
| solve   | (x) inverse of x                          |                   | through factor analysis                         |
| Im      | (y~x) linear model                        | mediate           | (y,x,m,data)                                    |
| aov     | (y~x) ANOVA                               |                   | Mediation/moderation                            |

# More help

- An introduction to R as HTML, PDF or EPUB from http://cran.r-project.org/manuals.html (many different links on this page
- 2. FAQ General and then Mac and PC specific
- R reference card http://cran.r-project.org/doc/ contrib/Baggott-refcard-v2.pdf
- 4. Various "cheat sheets" from RStudio http://www.rstudio.com/resources/cheatsheets/
- 5. Using R for psychology http://personality-project.org/r/
- 6. Package vignettes (e.g., http://personality-project. org/r/psych/vignettes/overview.pdf)
- 7. R listserve, StackOverflow, your students and colleagues



 V <-</th>
 Descriptive and inferential statistics
 Scores and Reliability
  $\beta, \omega$  EFA
  $\omega$  Mediation
 IRT
 multilevel
 FA and beyond

 000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

## An introduction to the psych package





 V <-</th>
 Descriptive and inferential statistics
 Scores and Reliability
  $\beta, \omega$  EFA
  $\omega$  Mediation
 IRT
 multilevel
 FA and beyond

 000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

# Outline

# Part I: What is R, where did it come from, why use it

- Installing R and adding packages: the building blocks of R
- Part II: A brief introduction an overview
  - R is just a fancy (very fancy) calculator
  - Descriptive data analysis
  - Some inferential analysis

# Part III R is a powerful statistical system

- Data entry (detail and practice)
- Descriptive (again)
- Inferential (t and F with more practice)
- Regression
- Basic R commands

Part IV: Psychometrics

- Reliability and its discontents
- EFA, CFA, SEM

Part V: Help and More Help

• List of useful commands

Part VI: The psych package and more practice



 V <-</th>
 Descriptive and inferential statistics
 Scores and Reliability
  $\beta, \omega$  EFA
  $\omega$  Mediation
 IRT
 multilevel
 FA and beyond

 000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

# The psych package

- 1. Developed at NU over the past 12 years to make using R easier for psychologists
- 2. Basically does the kind of statistics that my students and I find useful for personality, motivation and cognitive psychology
- 3. Available at CRAN for PCs and Macs
- Development version (for Macs) is always available at the http://personality-project.org/r repository.
- 5. Bugs are fixed and new versions with new toys (functions) are released about every 4-6 months.
- 6. Version number reflects the year and month of release (1.8.4)
- 7. Has several vignettes to describe what it does:
  - http://personality-project.org/r/psych/vignettes/ intro.pdf An introduction
  - http://personality-project.org/r/psych/vignettes/ overview.pdf An overview



 http://personality-project.org/r/psych/vignettes/ psych\_for\_sem.pdf as a front end to doing sem 
 V <-</th>
 Descriptive and inferential statistics
 Scores and Reliability
  $\beta$ ,  $\omega$  EFA
  $\omega$  Mediation
 IRT
 multilevel
 FA and beyond

 000
 000000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

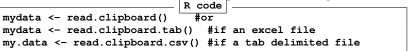
# 

| objects("pacl      | kage:psych")    |                         |                         |                |
|--------------------|-----------------|-------------------------|-------------------------|----------------|
| [1] "%+%"          |                 | "ability"               | "affect"                | "all.income"   |
| [5] "alpha"        |                 | "anova.psych"           | "autoR"                 | "Bechtoldt"    |
| [49] "cohen.ka     | appa"           | "comorbidity"           | "con2cat"               | "congeneric.s: |
| [53] "cor.ci       | "               | "cor.plot"              | "cor.plot.upperLowerCi" | "cor.smooth"   |
| [81] "cushny       | "               | "d2r"                   | "densityBy"             | "describe"     |
| <br>[109] "epi.dio | ctionary"       | "equamax"               | "error.bars"            | "error.bars.l  |
| [177] "ICC21at     | tex"            | "iclust"                | "ICLUST"                | "ICLUST.clust  |
| <br>[201] "irt.fa  | "               | "irt.item.diff.rasch"   | "irt.person.rasch"      | "irt.response  |
| [241] "mixed.o     | cor"            | "mixedCor"              | "mlArrange"             | "mlPlot"       |
| [253] "omega"      |                 | "omega.diagram"         | "omega.graph"           | "omega2latex   |
| [309] "read.c.     | lipboard.upper" | "read.file"             | "read.file.csv"         | "read.https"   |
| [329] "score.a     | alpha"          | "score.irt"             | "score.irt.2"           | "score.irt.po  |
| [333] "score.:     | -               | "score.multiple.choice" | "scoreFast"             | "scoreIrt"     |
| <br>[405] "Thursto | one"            | "Thurstone.33"          | "topBottom"             | "tr"           |
| [409] "Tucker"     |                 | "unidim"                | "varimin"               | "veg"          |

| V <- | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω       | Mediation | IRT | multilevel | FA and be | eyond |
|------|----------------------------------------|------------------------|-----------------|------|---------|-----------|-----|------------|-----------|-------|
| 000  | 0000000                                | 0000000                | 0000            | 0000 | cannasc | )         |     |            | 00000     |       |
|      | 00000                                  | 00000000               |                 | 0000 | 5       |           |     |            |           |       |

Getting and cleaning data

## Get your data: using read.file or read.clipboard


From a website: define the file name

fn <- "http://personality-project.org/r/datasets/Maps.mixx.msql.epi.bf.txt"
fn #show it to check
[1] "http://personality-project.org/r/datasets/Maps.mixx.msql.epi.bf.txt"
mydata <- read.file(fn,header=TRUE)</pre>

From a local file: find fhe file using read.file

From the clipboard: (first, go to the remote site, copy to the

clipboard and then use the read.clipboard function).



| V <- | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω             | Mediation | IRT | multilevel | FA and beyond |
|------|----------------------------------------|------------------------|-----------------|------|---------------|-----------|-----|------------|---------------|
| 000  | 0000000                                | 0000000                | 0000            | 0000 | C (1111111) ( | C         |     |            | 00000         |
|      |                                        |                        |                 |      | -             |           |     |            |               |

#### Getting and cleaning data

#### Checking the data using describe

#### > dim(mydata)

- [1] 231 86
- > describe(mydata)

|           | vars | n   | mean  | sd    | median | trimmed | mad   | min | max | range | skew  | kurtosis | se   |
|-----------|------|-----|-------|-------|--------|---------|-------|-----|-----|-------|-------|----------|------|
| id        | 1    | 231 | 66.82 | 45.13 | 58     | 64.14   | 50.41 | 1   | 160 | 159   | 0.45  | -0.96    | 2.97 |
| delighted | 2    | 231 | 0.82  | 1.05  | 1      | 0.68    | 1.48  | 0   | 9   | 9     | 2.46  | 14.15    | 0.07 |
| sociable  | 3    | 231 | 1.32  | 0.96  | 1      | 1.28    | 1.48  | 0   | 3   | 3     | 0.06  | -1.03    | 0.06 |
| jittery   | 4    | 231 | 0.55  | 0.78  | 0      | 0.39    | 0.00  | 0   | 3   | 3     | 1.37  | 1.23     | 0.05 |
| hostile   | 5    | 231 | 0.35  | 0.85  | 0      | 0.17    | 0.00  | 0   | 9   | 9     | 5.34  | 45.21    | 0.06 |
| sluggish  | 6    | 231 | 1.21  | 0.96  | 1      | 1.14    | 1.48  | 0   | 3   | 3     | 0.47  | -0.70    | 0.06 |
| depressed | 7    | 231 | 0.56  | 0.83  | 0      | 0.39    | 0.00  | 0   | 3   | 3     | 1.45  | 1.37     | 0.05 |
|           |      |     |       |       |        |         |       |     |     |       |       |          |      |
| ashamed   | 71   | 231 | 0.32  | 1.15  | 0      | 0.06    | 0.00  | 0   | 9   | 9     | 5.92  | 40.25    | 0.08 |
| anxious   | 72   | 231 | 0.75  | 1.26  | 0      | 0.53    | 0.00  | 0   | 9   | 9     | 3.85  | 21.39    | 0.08 |
| idle      | 73   | 231 | 0.98  | 1.15  | 1      | 0.83    | 1.48  | 0   | 9   | 9     | 3.11  | 18.20    | 0.08 |
| epiE      | 74   | 231 | 13.33 | 4.14  | 14     | 13.49   | 4.45  | 1   | 22  | 21    | -0.33 | -0.06    | 0.27 |
| epiS      | 75   | 231 | 7.58  | 2.69  | 8      | 7.77    | 2.97  | 0   | 13  | 13    | -0.57 | -0.02    | 0.18 |
| epiImp    | 76   | 231 | 4.37  | 1.88  | 4      | 4.36    | 1.48  | 0   | 9   | 9     | 0.06  | -0.62    | 0.12 |
| epilie    | 77   | 231 | 2.38  | 1.50  | 2      | 2.27    | 1.48  | 0   | 7   | 7     | 0.66  | 0.24     | 0.10 |
|           |      |     |       |       |        |         |       |     |     |       |       |          |      |
| traitanx  | 85   | 231 | 39.01 | 9.52  | 38     | 38.36   | 8.90  | 22  | 71  | 49    | 0.67  | 0.47     | 0.63 |
| stateanx  | 86   | 231 | 39.85 | 11.48 | 38     | 38.92   | 10.38 | 21  | 79  | 58    | 0.72  | -0.01    | 0.76 |





#### Getting and cleaning data

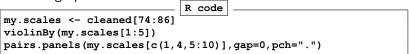
#### Cleaning the data using scrub

#### We want to change 9s in variables 2 - 73 into NA

```
> cleaned <- scrub(mydata,where=2:73,isvalue=9,newvalue=NA)</p>
```

> describe(cleaned)

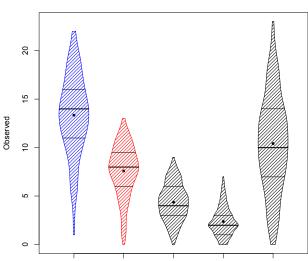
|           | vars | n   | mean  | sd    | median | trimmed | mad   | min | max | range | skew  | kurtosis | se   |
|-----------|------|-----|-------|-------|--------|---------|-------|-----|-----|-------|-------|----------|------|
| id        | 1    | 231 | 66.82 | 45.13 | 58.0   | 64.14   | 50.41 | 1   | 160 | 159   | 0.45  | -0.96    | 2.97 |
| delighted | 2    | 230 | 0.78  | 0.90  | 1.0    | 0.67    | 1.48  | 0   | 3   | 3     | 0.79  | -0.52    | 0.06 |
| sociable  | 3    | 231 | 1.32  | 0.96  | 1.0    | 1.28    | 1.48  | 0   | 3   | 3     | 0.06  | -1.03    | 0.06 |
| jittery   | 4    | 231 | 0.55  | 0.78  | 0.0    | 0.39    | 0.00  | 0   | 3   | 3     | 1.37  | 1.23     | 0.05 |
| hostile   | 5    | 230 | 0.31  | 0.63  | 0.0    | 0.17    | 0.00  | 0   | 3   | 3     | 2.12  | 4.19     | 0.04 |
| sluggish  | 6    | 231 | 1.21  | 0.96  | 1.0    | 1.14    | 1.48  | 0   | 3   | 3     | 0.47  | -0.70    | 0.06 |
| depressed | 7    | 231 | 0.56  | 0.83  | 0.0    | 0.39    | 0.00  | 0   | 3   | 3     | 1.45  | 1.37     | 0.05 |
|           |      |     |       |       |        |         |       |     |     |       |       |          |      |
| ashamed   | 71   | 228 | 0.21  | 0.57  | 0.0    | 0.05    | 0.00  | 0   | 3   | 3     | 3.00  | 8.95     | 0.04 |
| anxious   | 72   | 228 | 0.64  | 0.84  | 0.0    | 0.51    | 0.00  | 0   | 3   | 3     | 1.11  | 0.32     | 0.06 |
| idle      | 73   | 229 | 0.91  | 0.88  | 1.0    | 0.82    | 1.48  | 0   | 3   | 3     | 0.64  | -0.42    | 0.06 |
| epiE      | 74   | 231 | 13.33 | 4.14  | 14.0   | 13.49   | 4.45  | 1   | 22  | 21    | -0.33 | -0.06    | 0.27 |
| epiS      | 75   | 231 | 7.58  | 2.69  | 8.0    | 7.77    | 2.97  | 0   | 13  | 13    | -0.57 | -0.02    | 0.18 |
| epiImp    | 76   | 231 | 4.37  | 1.88  | 4.0    | 4.36    | 1.48  | 0   | 9   | 9     | 0.06  | -0.62    | 0.12 |
| epilie    | 77   | 231 | 2.38  | 1.50  | 2.0    | 2.27    | 1.48  | 0   | 7   | 7     | 0.66  | 0.24     | 0.10 |
|           |      |     |       |       |        |         |       |     |     |       |       |          |      |
| traitanx  | 85   | 231 | 39.01 | 9.52  | 38.0   | 38.36   | 8.90  | 22  | 71  | 49    | 0.67  | 0.47     | 0.63 |
| stateanx  | 86   | 231 | 39.85 | 11.48 | 38.0   | 38.92   | 10.38 | 21  | 79  | 58    | 0.72  | -0.01    | 0.76 |






## Multiple ways to graphically display data

- 1. box.plots (Core R)
- 2. Violin plots (violinBy in psych )
- 3. Scatter Plot Matrix (SPLOM) plots (pairs.panels in psych)


First, lets just make a smaller data.frame and then issue two different graphic commands.





| $\vee$ <- | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA | ω                                    | Mediation | IRT | multilevel | FA and beyond |
|-----------|----------------------------------------|------------------------|-----------------|-----|--------------------------------------|-----------|-----|------------|---------------|
| 000       | 0000000                                | 0000000                | 0000            | 000 | C (1111111) (<br>C (11111111) (<br>C | )         |     |            | 00000         |
| Graphi    | cal displays                           |                        |                 |     |                                      |           |     |            |               |

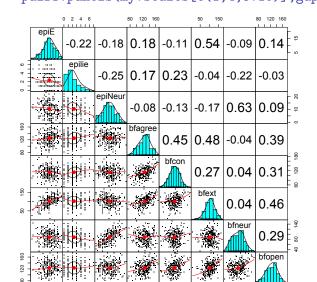
# Violin Plot violinBy(my.scales[1:5])



enilmn

eniNeur

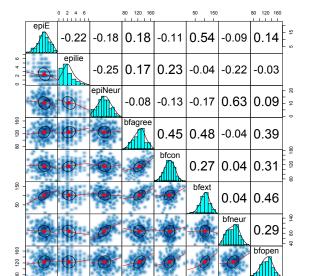
eniF


eniS

#### Density plot



| $\vee <$ - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                                     | Mediation | IRT | multilevel | FA and beyond |
|------------|----------------------------------------|------------------------|-----------------|------|---------------------------------------|-----------|-----|------------|---------------|
| 000        | 000000<br>00000                        | 0000000                | 0000            | 0000 | C (11111111) (<br>C (11111111) (<br>C | )         |     |            | 00000         |
| Graphic    | cal displays                           |                        |                 |      |                                       |           |     |            |               |


**Scatter Plot of Matrices (SPLOM) of select variables** pairs.panels(my.scales[c(1,4,5:10)],gap=0,pch=".")





| $\vee <$ - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA | ω             | Mediation | IRT | multilevel | FA and beyond |
|------------|----------------------------------------|------------------------|-----------------|-----|---------------|-----------|-----|------------|---------------|
| 000        | 0000000                                | 0000000                | 0000            | 000 | C (1111111) ( | C         |     |            | 00000         |
| Graphi     | cal displays                           |                        |                 |     |               |           |     |            |               |

Scatter Plot of Matrices (SPLOM) of select variables pairs.panels(my.scales[c(1,4,5:10)],gap=0,pch=".",smoother=TRU



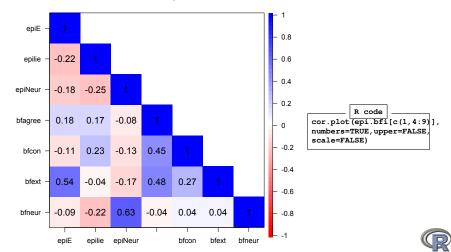


| V <-<br>000 | Descriptive and inferential statistics<br>00000000<br>00000 | Scores and Reliability |  | C (11111111) ( | IRT | multilevel | FA and beyond |
|-------------|-------------------------------------------------------------|------------------------|--|----------------|-----|------------|---------------|
| Graphi      | cal displays                                                |                        |  |                |     |            |               |

#### Show a table of correlations

R code

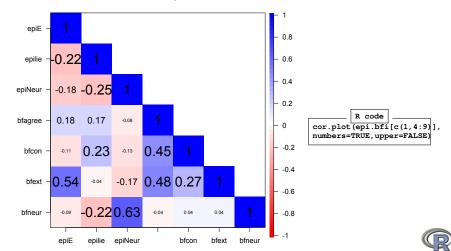
R <- lowerCor(my.scales[c(1,4,5:10)])
cor.plot(R,numbers=TRUE)</pre>


epili epiNr bfagr bfcon bfext bfner bfopn epiE epiE 1.00 -0.22 1.00 epilie epiNeur -0.18 -0.25 1.00 bfagree 0.18 0.17 -0.08 1.00 bfcon -0.11 0.23 -0.13 0.45 1.00 bfext 0.54 -0.04 -0.17 0.48 0.27 1.00 bfneur = -0.09 = -0.22 = 0.63 = -0.040.04 0.04 1.00 bfopen 0.14 -0.03 0.09 0.39 0.31 0.46 0.29 1.00

Automatically calls the cor and round functions with default parameters and then does a pretty print out using lowerMat. Invisibly returns the full (square) matrix of unrounded values.



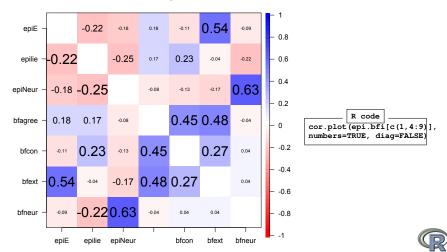
| V < -   | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA | ω                | Mediation | IRT | multilevel | FA and beyond |
|---------|----------------------------------------|------------------------|-----------------|-----|------------------|-----------|-----|------------|---------------|
| 000     | 00000000<br>00000                      | 0000000                | 0000            | 000 | 0<br>0 0000000 ( | C         |     |            | 00000         |
| Graphic | cal displays                           |                        |                 |     |                  |           |     |            |               |


#### A simple heat map using cor.plot



#### **Correlation plot**

| V < -  | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                               | Mediation | IRT | multilevel | FA and beyond |
|--------|----------------------------------------|------------------------|-----------------|------|---------------------------------|-----------|-----|------------|---------------|
| 000    | <b>00000000</b>                        | 0000000                | 0000            | 0000 | C (1111111) (<br>C (11111111) ( | 0         |     |            | 00000         |
| Graphi | cal displays                           |                        |                 |      |                                 |           |     |            |               |

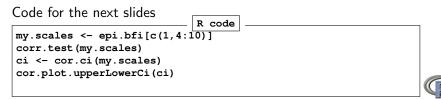

## Scale the correlations using cor.plot



#### **Correlation plot**

| V <-   | Descriptive and inferential statistics | Scores and Reliability |      |      | ω<br>ວဏာဏာ |          | IRT | multilevel | FA and beyond |
|--------|----------------------------------------|------------------------|------|------|------------|----------|-----|------------|---------------|
| 000    | 00000                                  | 00000000               | 0000 | 0000 |            | <i>.</i> |     |            | 00000         |
| Graphi | cal displays                           |                        |      |      |            |          |     |            |               |

#### Show the whole matrix cor.plot




#### **Correlation plot**



## Testing and displaying the "significance" of a set of correlations

- 1. Normal theory corr.test
  - raw probabilities as well as with a Holm adjusted for multiple correlations
- 2. Display these with cor.plot
- 3. Boot strapped confidence intervals based significance using cor.ci
  - Graphic displays correlations scaled by "significance"
  - Graphic displays of probability of correlation using plot.cor.upperLowerCi



| $\vee <$ - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                 | Mediation | IRT | multilevel | FA and beyond |
|------------|----------------------------------------|------------------------|-----------------|------|-------------------|-----------|-----|------------|---------------|
| 000        | 0000000                                | 0000000                | 0000            | 0000 | ) (111111) (<br>) | )         |     |            | 00000         |
| · · ·      |                                        |                        |                 |      | ~                 |           |     |            |               |

Some interential statistics – testing correlations

# Normal theory test of correlations using corr.test

corr.test(my.scales)

```
> corr.test(my.scales)
```

Call:corr.test(x = my.scales)

Correlation matrix

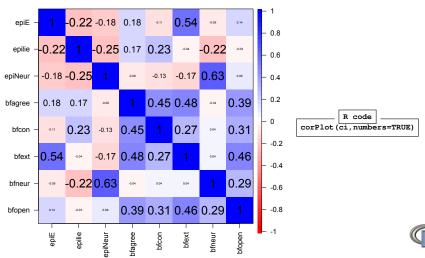
epiE epilie epiNeur bfagree bfcon bfext bfneur bfopen

| epiE     | 1.00  | -0.22 | -0.18 | 0.18  | -0.11 | 0.54  | -0.09 | 0.14  |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| epilie   | -0.22 | 1.00  | -0.25 | 0.17  | 0.23  | -0.04 | -0.22 | -0.03 |
| epiNeur  | -0.18 | -0.25 | 1.00  | -0.08 | -0.13 | -0.17 | 0.63  | 0.09  |
| bfagree  | 0.18  | 0.17  | -0.08 | 1.00  | 0.45  | 0.48  | -0.04 | 0.39  |
| bfcon    | -0.11 | 0.23  | -0.13 | 0.45  | 1.00  | 0.27  | 0.04  | 0.31  |
| bfext    | 0.54  | -0.04 | -0.17 | 0.48  | 0.27  | 1.00  | 0.04  | 0.46  |
| bfneur   | -0.09 | -0.22 | 0.63  | -0.04 | 0.04  | 0.04  | 1.00  | 0.29  |
| bfopen   | 0.14  | -0.03 | 0.09  | 0.39  | 0.31  | 0.46  | 0.29  | 1.00  |
| Sample S | Size  |       |       |       |       |       |       |       |

[1] 231

Probability values (Entries above the diagonal are adjusted for multiple tests.) epiE epilie epiNeur bfagree bfcon bfext bfneur bfopen

| epiE    | 0.00 | 0.01 | 0.11 | 0.11 | 0.75 | 0.00 | 1.00 | 0.4 |
|---------|------|------|------|------|------|------|------|-----|
| epilie  | 0.00 | 0.00 | 0.00 | 0.12 | 0.01 | 1.00 | 0.01 | 1.0 |
| epiNeur | 0.01 | 0.00 | 0.00 | 1.00 | 0.43 | 0.12 | 0.00 | 1.0 |
| bfagree | 0.01 | 0.01 | 0.21 | 0.00 | 0.00 | 0.00 | 1.00 | 0.0 |
| bfcon   | 0.08 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 1.00 | 0.0 |
| bfext   | 0.00 | 0.50 | 0.01 | 0.00 | 0.00 | 0.00 | 1.00 | 0.0 |
| bfneur  | 0.15 | 0.00 | 0.00 | 0.50 | 0.50 | 0.57 | 0.00 | 0.0 |
| bfopen  | 0.04 | 0.70 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 |

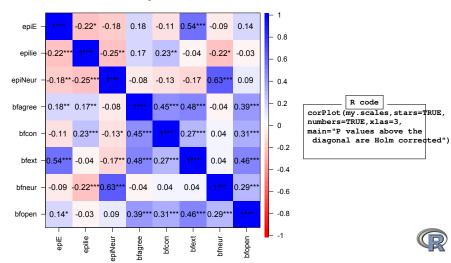

To see confidence intervals of the correlations, print with the short=FALSE option



| V <- Descriptive and inferential statistic | Scores and Reliability | $\beta, \omega$ | EFA  | ω               | Mediation | IRT | multilevel | FA and beyond |
|--------------------------------------------|------------------------|-----------------|------|-----------------|-----------|-----|------------|---------------|
| 000 000000<br>00000                        | 0000000                | 0000            | 0000 | ) (111111)<br>( | C         |     |            | 00000         |

Some inferential statistics - testing correlations

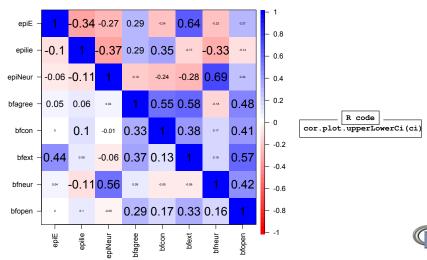
### Heat map scaled by "significance" using cor.ci




#### **Correlation plot**

| V < - | Descriptive and inferential statistics                                                                           | Scores and Reliability | $\beta, \omega$ | EFA  | ω | Mediation | IRT | multilevel | FA and beyond |
|-------|------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|------|---|-----------|-----|------------|---------------|
| 000   | 000000                                                                                                           | 0000000                | 0000            | 0000 |   | )         |     |            | 00000         |
| · · · | and the second |                        |                 |      |   |           |     |            |               |

Some inferential statistics – testing correlations


## Heat map scaled by "significance" and showing magic asterisks



P values above the diagonal are Holm corrected

| V < -  | Descriptive and inferential statistics  | Scores and Reliability | $\beta, \omega$ | EFA | ω             | Mediation | IRT | multilevel | FA and beyond |
|--------|-----------------------------------------|------------------------|-----------------|-----|---------------|-----------|-----|------------|---------------|
| 000    | 0000000<br>00000                        | 0000000                | 0000            | 000 | C (1111111) ( | 0         |     |            | 00000         |
| Somo i | nforontial statistics testing correlati | 0.00                   |                 |     |               |           |     |            |               |

#### Heat map scaled by "significance" and showing confidence intervals



Upper and lower confidence intervals of correlations



### Multiple types of reliability

- 1. Internal consistency estimates
  - $lpha,\lambda_{6}$  , use the alpha function
  - $\omega_{hierarchical}$  and  $\omega_{total}$  use the omega function
- 2. IntraClass coefficients
  - ICC
- 3. Rater agreement use wkappa function (finds Cohen's kappa and weighted kappa)
- Multilevel reliability and generalizability, use mlr or multilevel.reliability





#### For the next examples we will use a built in data set

- bfi consists of 25 personality items measuring 5 factors as well as some demographics.
- 2. The data were collected as part of the SAPA project and have 2,800 subjects.
- 3. For help on this data set, ?bfi
- 4. To see all of the *psych* data sets: data(package="psych")



| V < - | Descriptive and | inferential | statistics | Scores |
|-------|-----------------|-------------|------------|--------|
| 000   | 00000000        |             |            | 00000  |

#### Reliability

## First, we intentionally misspecify the data

alpha(bfi[1:5]) #score the first five items

```
Some items ( A1 ) were negatively correlated with the total scale and
probably should be reversed.
To do this, run the function again with the 'check.kevs=TRUE' option
Reliability analysis
Call: alpha(x = bfi[1:5])
 raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
     0.43
              0.46
                     0.53
                              0.15 0.85 0.016 4.2 0.74
                                                          0.32
lower alpha upper
                     95% confidence boundaries
0 4 0 43 0 46
Reliability if an item is dropped:
  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
       0.72
                0.73 0.67 0.398 2.64 0.0087 0.0065 0.376
A1
A2
       0.28 0.30 0.39 0.097 0.43 0.0219 0.1098 0.081
   0.18 0.21 0.31 0.061 0.26 0.0249 0.1015 0.081
A3
   0.25 0.31 0.44 0.099 0.44 0.0229 0.1607 0.105
Α4
A5
       0.21 0.24 0.36 0.072 0.31 0.0238 0.1311 0.095
```

Item statistics

n raw.r std.r r.cor r.drop mean sd Al 2784 0.066 0.024 -0.39 -0.31 2.4 1.4 A2 2773 0.630 0.666 0.58 0.37 4.8 1.2 A3 2774 0.724 0.742 0.72 0.48 4.6 1.3 A4 2781 0.686 0.661 0.50 0.37 4.7 1.5 A5 2784 0.700 0.719 0.64 0.45 4.6 1.3

<-- need to rekey this item



| V < -   | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω           | Mediation | IRT | multilevel | FA and beyond |
|---------|----------------------------------------|------------------------|-----------------|------|-------------|-----------|-----|------------|---------------|
| 000     | 0000000                                | 0000000                | 0000            | 0000 | C 0000000 C | )         |     |            | 00000         |
| Reliabi | lity                                   |                        |                 |      |             |           |     |            |               |

#### Try it again. Turn on automatic R code scores <- alpha(bfi[1:5], check.keys =TRUE)

```
Reliability analysis
Call: alpha(x = bfi[1:5], check.kevs = TRUE)
 raw alpha std.alpha G6(smc) average r S/N ase mean sd median r
      0.7
              0.71
                     0.68
                              0.33 2.5 0.009 4.7 0.9
                                                       0.34
lower alpha upper
                    95% confidence boundaries
0.69 0.7 0.72
Reliability if an item is dropped:
   raw alpha std.alpha G6(smc) average r S/N alpha se var.r med.r
A1-
        0 72
                0.73
                        0.67
                                 0.40 2.6 0.0087 0.0065 0.38
A2
        0.62
               0.63 0.58
                               0.29 1.7 0.0119 0.0169 0.29
            0.61 0.56 0.28 1.6 0.0124 0.0094 0.32
A3
        0.60
        0.69 0.69 0.65 0.36 2.3 0.0098 0.0159 0.37
Α4
Δ5
        0 64
            0.66 0.61 0.32 1.9 0.0111 0.0126 0.34
 Item statistics
      n raw.r std.r r.cor r.drop mean sd
A1-2784 0.58 0.57 0.38
                         0.31 4.6 1.4
A2 2773 0.73 0.75 0.67
                        0.56 4.8 1.2
A3 2774 0.76 0.77 0.71
                        0.59 4.6 1.3
A4 2781 0.65 0.63 0.47 0.39 4.7 1.5
A5 2784 0.69 0.70 0.60
                        0.49 4.6 1.3
```



Warning message:

In alpha(bfi[1:5], check.kevs = TRUE) :



### R functions will return objects without necessarily telling you

- 1. The basic logic of R is that you can do lots of calculations, but you might not want all the output.
- The output is there, to be processed by other functions if you want, but you probably don't want to see all of it unless you ask.
- Thus, alpha returns the scores based upon the scales you asked for, but doesn't show them, because they are so many,
- 4. The str command tells you the structure of an object. The names will just list the names of the objects.



| $\vee <$ - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                  | Mediation | IRT | multilevel | FA and beyond |
|------------|----------------------------------------|------------------------|-----------------|------|--------------------|-----------|-----|------------|---------------|
| 000        | 0000000                                | 0000000                | 0000            | 0000 | ) (1111111) (<br>) |           |     |            | 00000         |
| Reliabi    | lity                                   |                        |                 |      |                    |           |     |            |               |

# names and str of alpha output

names (scores) str(scores)

| names(scores)            |                      |                   |                         |         |
|--------------------------|----------------------|-------------------|-------------------------|---------|
| [1] "total"              | "alpha.drop"         | "item.stats"      | "response.freq"         | "keys"  |
| "scores"                 | "nvar" "h            | oot.ci"           |                         |         |
| [9] "boot"               | "Unidim"             | "Fit"             | "call"                  | "title" |
|                          |                      |                   |                         |         |
|                          | :'data.frame':       | 1 obs. of         | <pre>8 variables:</pre> |         |
| \$ raw_alpha:            |                      |                   |                         |         |
| \$ std.alpha:            | num 0.713            |                   |                         |         |
| \$ G6(smc) :             |                      |                   |                         |         |
| \$ average_r:            |                      |                   |                         |         |
| \$ S/N :                 | num 2.48             |                   |                         |         |
| \$ ase :                 | num 0.00895          |                   |                         |         |
| \$ mean :                | num 4.65             |                   |                         |         |
| \$ sd :                  |                      |                   |                         |         |
| <pre>\$ alpha.drop</pre> | :'data.frame':       | 5 obs. of 6 v     | ariables:               |         |
| \$ raw_alpha:            | num [1:5] 0.719 0.6  | 517 0.6 0.686 0.6 | 43                      |         |
| \$ std.alpha:            | num [1:5] 0.726 0.6  | 526 0.613 0.694 0 | . 656                   |         |
| \$ G6(smc) :             | num [1:5] 0.673 0.5  | 579 0.558 0.65 0. | 605                     |         |
| \$ average_r:            | num [1:5] 0.398 0.2  | 295 0.284 0.361 0 | . 322                   |         |
| \$ S/N :                 | num [1:5] 2.64 1.67  | 1.58 2.26 1.9     |                         |         |
| \$ alpha se :            | num [1:5] 0.00873 0  | 0.0119 0.01244 0. | 00983 0.01115           |         |
| <pre>\$ item.stats</pre> | :'data.frame':       | 5 obs. of 7 v     | ariables:               |         |
| \$n :nu                  | m [1:5] 2784 2773 27 | 74 2781 2784      |                         |         |
| \$ raw.r : nu            | m [1:5] 0.581 0.728  | 0.76 0.654 0.687  |                         |         |
| \$ std.r : nu            | m [1:5] 0.566 0.748  | 0.767 0.631 0.69  | 9                       |         |
| \$ r.cor : nu            | m [1:5] 0.376 0.667  | 0.709 0.471 0.59  | 6                       |         |
| \$ r.drop: nu            | m [1:5] 0.308 0.564  | 0.587 0.394 0.48  | 9                       |         |
|                          |                      |                   |                         |         |





# One of the objects of alpha is the scores object

describe(scores\$scores)

But, since there are scores for all subjects, but just one score, this is not very interesting.

```
describe(scores$scores)
```

vars n mean sd median trimmed mad min max range skew kurte X1 1 2800 4.65 0.9 4.8 4.73 0.89 1 6 5 -0.76 >

Note that alpha has the option of doing cumulative scores (adding up items, or scoring in the unit of the items (the default).

```
R code
scores <- alpha(bfi[1:5],check.keys=TRUE,cumulative=TRUE)
#set the cumulative option to be true
describe(scores$scores)
```

```
describe(scores$scores)

vars n mean sd median trimmed mad min max range skew ku

X1 1 2800 23.08 4.54 24 23.43 4.45 5 30 25 -0.26
```

| V < -   | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                               | Mediation | IRT | multilevel | FA and beyond |
|---------|----------------------------------------|------------------------|-----------------|------|---------------------------------|-----------|-----|------------|---------------|
| 000     | 0000000                                | 0000000                | 0000            | 0000 | C (1111111) (<br>C (11111111) ( | C         |     |            | 00000         |
| Scoring | a Scales                               |                        |                 |      |                                 |           |     |            |               |

### Perhaps a more useful case: scoring multiple scales using scoreItems

First, define the scoring keys, and then call scoreitems Use the msq data set

Call: scoreItems(keys = keys, items = msq[1:75])

(Unstandardized) Alpha: EA TA PA NAf alpha 0.93 0.75 0.92 0.83 Standard errors of unstandardized Alpha: EA TA PA NAf ASE 0.004 0.0082 0.0044 0.0064 Average item correlation: EA TA PA NAf

average.r 0.58 0.23 0.52 0.33



#### Scoring Scales

#### Score multiple scales (continued)

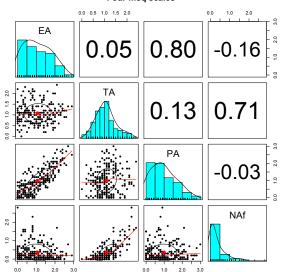
```
Standard errors of unstandardized Alpha:
         EA
                TA
                       PA
                             NAf
      0.004 0.0082 0.0044 0.0064
ASE
Average item correlation:
            EA
                TA PA NAf
average.r 0.58 0.23 0.52 0.33
Median item correlation:
 EΑ
       ТΆ
           PA NAF
0 59 0 24 0 52 0 40
 Guttman 6* reliability:
          EA TA PA NAf
Lambda.6 0.95 0.8 0.93 0.87
Signal/Noise based upon av.r :
             EA TA PA NAF
Signal/Noise 14 3 11 4.9
Scale intercorrelations corrected for attenuation
 raw correlations below the diagonal, alpha on the diagonal
 corrected correlations above the diagonal:
        EΑ
             ͲΆ
                   PΆ
                         NAF
     0.932 0.29 0.870 -0.069
EA
     0.238 0.75 0.226 0.710
TA
PΑ
     0.804 0.19 0.915 0.044
NAf -0.061 0.56 0.039 0.831
```



| $\vee$ <- | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω              | Mediation | IRT | multilevel | FA and beyor |
|-----------|----------------------------------------|------------------------|-----------------|------|----------------|-----------|-----|------------|--------------|
| 000       | 0000000                                | 0000000                | 0000            | 0000 | C (11111111) ( | C         |     |            | 00000        |
| Scoring   | 7 Scales                               |                        |                 |      |                |           |     |            |              |

### More detailed item statistics

R code


print (msq.scores, short=FALSE)

| Item by scale correlations:                   | Non missing response frequency for each item |
|-----------------------------------------------|----------------------------------------------|
| corrected for item overlap and scale reliabil | ity 0 1 2 3 miss                             |
| EA TA PA NAÍ                                  |                                              |
| delighted 0.56 0.04 0.67 -0.17                | delighted 0.50 0.27 0.19 0.04 0.00           |
| sociable 0.57 0.06 0.64 -0.15                 | sociable 0.24 0.30 0.35 0.11 0.00            |
| jittery 0.15 0.52 0.23 0.46                   | jittery 0.60 0.28 0.09 0.03 0.00             |
| hostile -0.21 0.37 -0.13 0.58                 | hostile 0.77 0.17 0.05 0.01 0.00             |
| sluggish -0.65 -0.02 -0.40 0.21               | sluggish 0.24 0.44 0.19 0.13 0.00            |
| depressed -0.30 0.44 -0.26 0.67               | depressed 0.61 0.26 0.08 0.05 0.00           |
| satisfied 0.54 -0.23 0.62 -0.35               | satisfied 0.22 0.29 0.38 0.12 0.00           |
| relaxed 0.35 -0.56 0.40 -0.51                 | relaxed 0.13 0.20 0.43 0.24 0.00             |
| warmhearted 0.47 -0.09 0.66 -0.19             | warmhearted 0.17 0.23 0.37 0.22 0.00         |
| blue -0.23 0.40 -0.19 0.64                    | blue 0.60 0.30 0.08 0.02 0.00                |
| intense 0.25 0.42 0.44 0.47                   | intense 0.54 0.28 0.15 0.03 0.00             |
| strong 0.55 0.00 0.69 -0.03                   | strong 0.31 0.26 0.32 0.11 0.00              |
| scared -0.05 0.61 0.08 0.75                   | scared 0.80 0.15 0.04 0.01 0.00              |
| enthusiastic 0.69 0.16 0.83 -0.07             | enthusiastic 0.43 0.29 0.19 0.08 0.00        |
| proud 0.57 0.05 0.73 -0.11                    | proud 0.41 0.24 0.26 0.10 0.00               |
| sad -0.22 0.46 -0.18 0.73                     | sad 0.66 0.22 0.09 0.03 0.00                 |
| active 0.71 0.18 0.83 -0.05                   | active 0.38 0.32 0.22 0.08 0.00              |
| full.of.pep 0.80 0.05 0.80 -0.15              | full.of.pep 0.54 0.21 0.20 0.05 0.00         |
| unhappy -0.30 0.44 -0.26 0.70                 | unhappy 0.65 0.24 0.07 0.04 0.00             |
| lively 0.78 0.04 0.81 -0.13                   | lively 0.44 0.28 0.22 0.06 0.00              |



| $\vee <$ - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                  | Mediation | IRT | multilevel | FA and beyond |
|------------|----------------------------------------|------------------------|-----------------|------|--------------------|-----------|-----|------------|---------------|
| 000        | 0000000                                | 0000000                | 0000            | 0000 | ) (20000000 (<br>) | )         |     |            | 00000         |
| Scoring    | g Scales                               |                        |                 |      |                    |           |     |            |               |

### Show the SPLOM of the msq scales using pairs.panels



#### Four msq scales





### But what if we have overlapping scales?

- 1. Sometimes we are interested in how higher order scales relate to lower order scales.
- 2. The problem is, the items overlap.
- 3. Some people solve this problem by dropping the overlapping items. But this changes the meaning of the scales.
- 4. A fairly straightfoward procedure is estimate the overlapping variances with the best estimate of shared (common) variance, similar to what is done when finding coefficient  $\alpha$ .
- 5. Need to do this on the correlation matrix of the items, not the raw data.
- 6. See ?scoreOverlap



V <- Descriptive and inferential statistics Scores and Reliability  $\beta$ ,  $\omega$  EFA  $\omega$  Mediation IRT multilevel FA and beyond

#### Scoring Scales

# Correcting for item overlap

000000000

```
small.msq <- msq[ c("active", "energetic", "vigorous", "wakeful",</pre>
 "wide.awake", "full.of.pep", "lively", "sleepy", "tired", "drowsy",
 "intense", "jittery", "fearful", "tense", "clutched.up", "quiet",
 "still", "placid", "calm", "at.rest") ]
small.R <- cor(small.msg,use="pairwise")</pre>
kevs.list <- list(
EA = c("active", "energetic", "vigorous", "wakeful", "wide.awake",
"full.of.pep", "lively", "-sleepy", "-tired", "-drowsy"),
TA =c("intense", "jittery", "fearful", "tense", "clutched.up",
"-quiet", "-still", "-placid", "-calm", "-at.rest") ,
high.EA = c("active", "energetic", "vigorous", "wakeful",
 "wide.awake", "full.of.pep", "lively"),
low.EA =c("sleepy", "tired", "drowsy"),
lowTA= c("quiet", "still", "placid", "calm", "at.rest"),
highTA = c("intense", "jittery", "fearful", "tense", "clutched.up")
   ۱
keys <- make.keys(small.R,keys.list)</pre>
adjusted.scales <- scoreOverlap(kevs.list.small.R)
```

| $\vee <$ - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA | ω                | Mediation | IRT | multilevel | FA and be | yond |
|------------|----------------------------------------|------------------------|-----------------|-----|------------------|-----------|-----|------------|-----------|------|
| 000        | 00000000                               | 0000000                | 0000            | 000 | 0<br>0 0000000 ( | 0         |     |            | 00000     |      |
| Scoring    | g Scales                               |                        |                 |     |                  |           |     |            |           |      |

#### Correcting for item overlap using scoreOverlap. (continued)

Call: scoreOverlap(keys = keys.list, r = small.R)

| (Standard  | ized) A | Alpha:    |          |         |         |
|------------|---------|-----------|----------|---------|---------|
| EA         | TA      | high.EA   | low.EA   | lowTA   | highTA  |
| 0.93       | 0.75    | 0.94      | 0.93     | 0.73    | 0.76    |
|            |         |           |          |         |         |
| (Standard  | ized) ( | 36*:      |          |         |         |
| EA         | TA      | high.EA   | low.EA   | lowTA   | highTA  |
| 0.88       | 0.68    | 0.94      | 0.90     | 0.73    | 0.75    |
|            |         |           |          |         |         |
| Average if | tem com | rrelation | :        |         |         |
| EA         | TA      | high.EA   | low.EA   | lowTA   | highTA  |
| 0.59       | 0.23    | 0.68      | 0.81     | 0.35    | 0.38    |
|            |         |           |          |         |         |
| Number of  | items   | :         |          |         |         |
| EA         | TA      | high.EA   | low.EA   | lowTA   | highTA  |
| 10         | 10      | 7         | 3        | 5       | 5       |
| Signal to  | Noise   | ratio ba  | sed upon | average | r and n |
| EA         | TA      | high.EA   | low.EA   | lowTA   | highTA  |
| 14.1       | 3.0     | 14.8      | 12.9     | 2.7     | 3.1     |

Scale intercorrelations corrected for item overlap and attenuation adjusted for overlap correlations below the diagonal, alpha on the diagonal corrected correlations above the diagonal:

 EA
 TA
 high.EA
 low.EA
 lowTA
 highTA

 EA
 0.93
 0.27
 0.965
 -0.803
 -0.18
 0.253

 TA
 0.23
 0.75
 0.282
 -0.167
 -0.81
 0.821

 high.EA
 0.90
 0.24
 0.937
 -0.620
 -0.12
 0.324

 low.EA
 -0.75
 -0.14
 -0.579
 0.928
 0.25
 -0.033

 lowTA
 -0.15
 -0.60
 -0.098
 0.204
 0.73
 -0.335



| V <-<br>000 | Descriptive and inferential statistics<br>00000000<br>00000 | Scores and Reliability |            | EFA ω<br>000000000000000000000000000000000000 | IRT    | multilevel | FA and beyond |
|-------------|-------------------------------------------------------------|------------------------|------------|-----------------------------------------------|--------|------------|---------------|
| Scoring     | g Scales                                                    |                        |            |                                               |        |            |               |
|             | Compare<br>adjusted.scales <-<br>raw <- scoreItems()        | -                      | de<br>(key | s.list,sm                                     | <br>ed |            |               |

| Scale intercorrelations corrected for item overlap and | attenuation           |
|--------------------------------------------------------|-----------------------|
| adjusted for overlap correlations below the diagonal,  | alpha on the diagonal |
| corrected correlations above the diagonal:             |                       |

|         | EA    | TA    | high.EA | low.EA | lowTA | highTA |
|---------|-------|-------|---------|--------|-------|--------|
| EA      | 0.93  | 0.27  | 0.965   | -0.803 | -0.18 | 0.253  |
| TA      | 0.23  | 0.75  | 0.282   | -0.167 | -0.81 | 0.821  |
| high.EA | 0.90  | 0.24  | 0.937   | -0.620 | -0.12 | 0.324  |
| low.EA  | -0.75 | -0.14 | -0.579  | 0.928  | 0.25  | -0.023 |
| lowTA   | -0.15 | -0.60 | -0.098  | 0.204  | 0.73  | -0.335 |
| highTA  | 0.21  | 0.62  | 0.273   | -0.019 | -0.25 | 0.757  |

| Scale intercorrelations | corrected for | attenuation           |
|-------------------------|---------------|-----------------------|
| raw correlations below  | the diagonal, | alpha on the diagonal |
| corrected correlations  | above the dia | gonal:                |

|         | EA    | TA    | high.EA | low.EA | lowTA | highTA |
|---------|-------|-------|---------|--------|-------|--------|
| EA      | 0.93  | 0.27  | 1.024   | -0.848 | -0.18 | 0.253  |
| TA      | 0.23  | 0.75  | 0.282   | -0.167 | -1.06 | 1.056  |
| high.EA | 0.96  | 0.24  | 0.937   | -0.620 | -0.12 | 0.324  |
| low.EA  | -0.79 | -0.14 | -0.579  | 0.928  | 0.25  | -0.023 |
| lowTA   | -0.15 | -0.78 | -0.098  | 0.204  | 0.73  | -0.335 |
| highTA  | 0.21  | 0.80  | 0.273   | -0.019 | -0.25 | 0.757  |



 V <-</th>
 Descriptive and inferential statistics
 Scores and Reliability
  $\beta, \omega$  EFA
  $\omega$  Mediation
 IRT
 multilevel
 FA and beyond

 000
 0000000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

 $\alpha$ ,  $\omega_{hierarchical}$  and  $\beta$  as alternative measures of internal consistency

1.  $\alpha$  as the mean split half reliability

- alpha to find  $\alpha$
- splitHalf to find all (if  $n \le 16$ ) or 10,000 random possible split half reliabilities ( n > 16)
- 2.  $\omega_{hierarchical}$  and  $\omega_{total}$  as factor based reliabilities
  - ω<sub>hierarchical</sub> estimates general factor saturation
  - Found using omega and omegaSem
- 3.  $\beta$  as worst split half reliability as an alternative estimate of the general factor saturation.
  - Found using a hierarchical clustering algorithm (iclust).
  - iclust is also useful for scale construction.

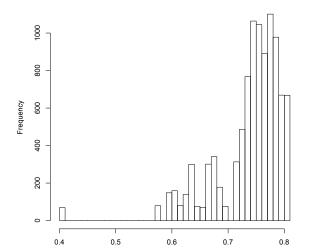


```
        V <-</th>
        Descriptive and inferential statistics
        Scores and Reliability
        \beta_{,\omega}
        EFA
        \omega
        Mediation
        IRT
        multilevel
        FA and beyond

        000
        000000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
        0000
```

### $\alpha$ from <code>alpha</code> and all split halves found using <code>splitHalf</code>

Find  $\alpha$  and all split half reliabilities of 5 Agreeableness items and 5 Conscientiousness items from the bfi data set included in *psych*.


```
alpha(bfi[1:10], check.keys=TRUE) #find alpha, let it automatically r
splitHalf(bfi[1:10], key=c(1,9,10)) #reverse 3 items
```

```
Reliability analysis
Call: alpha(x = bfi[1:10])
  raw alpha std.alpha G6(smc) average r S/N ase mean
                                                          \mathbf{sd}
      0.73
                0.74
                        0.76
                                   0.22 2.8 0.01
                                                  4.5 0.73
 lower alpha upper
                       95% confidence boundaries
0.71 0.73 0.75
Split half reliabilities
Call: splitHalf(r = bfi[1:10], key = c(1, 9, 10))
Maximum split half reliability (lambda 4) =
                                              0.81
Guttman lambda 6
                                              0.76
Average split half reliability
                                              0.73
                                           =
Guttman lambda 3 (alpha)
                                              0.74
                                           =
Minimum split half reliability (beta)
                                              0.41
Average interitem r = 0.22 with median =
                                             0.17
```



# All possible spit halves of 5 agreeableness and 5 conscientiousness items. Note the one worst one! This is not one construct.

All split half reliabilities of bfi[1:10]



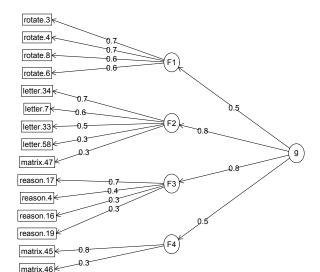


| $\vee$ <- | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω | Mediation | IRT | multilevel | FA and beyond |
|-----------|----------------------------------------|------------------------|-----------------|------|---|-----------|-----|------------|---------------|
| 000       | 0000000                                | 0000000                | 0000            | 0000 |   | )         |     |            | 00000         |



omega(ability,4)

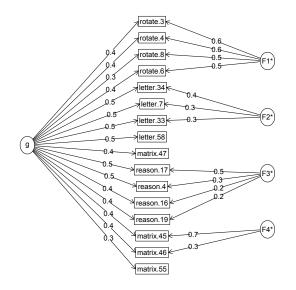
| Omega        |            |         |         |        |      |      |      |
|--------------|------------|---------|---------|--------|------|------|------|
| Call: omega  | (m = abili |         | actors  | = 4)   |      |      |      |
| Alpha:       |            | 0.83    |         |        |      |      |      |
| G.6:         |            | 0.84    |         |        |      |      |      |
| Omega Hiera  | rchical:   | 0.65    |         |        |      |      |      |
| Omega H asyr | mptotic:   | 0.76    |         |        |      |      |      |
| Omega Total  |            | 0.86    |         |        |      |      |      |
|              |            |         |         |        |      |      |      |
| Schmid Leima | an Factor  | loading | gs grea | ater t | han  | 0.2  |      |
|              | g F1*      | F2*     | F3*     | F4*    | h2   | u2   | p2   |
| reason.4 0   | .50        |         | 0.27    |        | 0.34 | 0.66 | 0.73 |
| reason.16 0  | . 42       |         | 0.21    |        | 0.23 | 0.77 | 0.76 |
| reason.17 0. | . 55       |         | 0.47    |        | 0.52 | 0.48 | 0.57 |
| reason.19 0. | . 44       |         | 0.21    |        | 0.25 | 0.75 | 0.77 |
| letter.7 0   | . 52       | 0.35    |         |        | 0.39 | 0.61 | 0.69 |
| letter.33 0  | .46        | 0.30    |         |        | 0.31 | 0.69 | 0.70 |
| letter.34 0  | . 54       | 0.38    |         |        | 0.43 | 0.57 | 0.67 |
| letter.58 0  | . 47       | 0.20    |         |        | 0.28 | 0.72 | 0.78 |
| matrix.45 0  | . 40       |         |         | 0.66   | 0.59 | 0.41 | 0.27 |
| matrix.46 0  | . 40       |         |         | 0.26   | 0.24 | 0.76 | 0.65 |
| matrix.47 0  | . 42       |         |         |        | 0.23 | 0.77 | 0.79 |
| matrix.55 0  | . 28       |         |         |        | 0.12 | 0.88 | 0.65 |
| rotate.3 0   | .36 0.61   |         |         |        | 0.50 | 0.50 | 0.26 |
| rotate.4 0   | .41 0.61   |         |         |        | 0.54 | 0.46 | 0.31 |
| rotate.6 0   | .40 0.49   |         |         |        | 0.41 | 0.59 | 0.39 |
| rotate.8 0   | .32 0.53   |         |         |        | 0.40 | 0.60 | 0.26 |
|              |            |         |         |        |      |      |      |


With eigenvalues of:

g F1\* F2\* F3\* F4\*





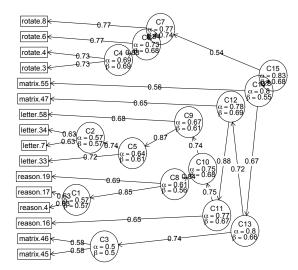

#### 16 ability items from the International Cognitive Ability Resource general ability and 4 subfactors of ICAR data







#### general abilty and 4 subfactors of ICAR data








### Hierarchical clustering of 16 ICAR ability items: iclust(ability)

#### Hierarchical clustering of 16 ability items using iclust





 $\begin{array}{cccc} V <- & \mbox{Descriptive and inferential statistics} & \mbox{Scores and Reliability} & \beta, \omega & \mbox{EFA} & \omega & \mbox{Mediation IRT multilevel} & \mbox{FA and beyond occoncentration} & \mbox{Descriptive and inferential statistics} & \mbox{Cores} & \mbox{Descriptive and inferential statistics} & \mbox{Descriptive and inference and inferen$ 

### **Exploratory Factor Analysis**

- 1. How many factors: an unsolved problem
  - Parallel analysis, MAPS, VSS, BIC, RMSEA, etc. available in nfactors and fa.parallel
- 2. Factor extraction algorithms available in the fa function
  - maximum likelihood, minimum residual, principal factor, ...
- 3. Factor rotation procedures are done using *GPArotation* package
  - orthogonal: varimax, quartimax, bifactor, ...
  - oblique: oblimin, geomin, biquartimin, ...
- 4. Displaying the solutions using fa.plot

Note, that EFA is not the same as Principal Components Analysis and the two should not be confused.

1. PCA done using principal





### The number of factors problem is easy and hard

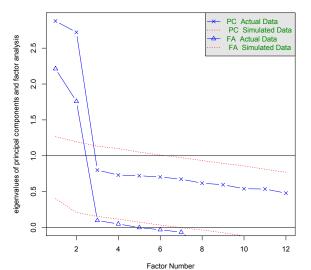
No best rule, one worst rule

"Solving the number of factors problem is easy, I do it everyday before breakfast. But knowing the right solution is harder." (Henry Kaiser)

- 1. Parallel analysis (Extract factors until the eigen values are less than those of a random matrix).
  - Although a good rule for 100-500 subjects, this will not do as well with many (>1000) subjects.
- 2. Velicer's Mininum Average Partial (MAP) is pretty good
- 3. For items, the Very Simple Structure (VSS) criterion is pretty good.
- 4. Multiple statistical tests, many have problems with sample size.
  - If you want few factors, run few subjects
  - If you want many factors, run many subjects
- 5. One worst rule is the eigen value of 1.0 rule.



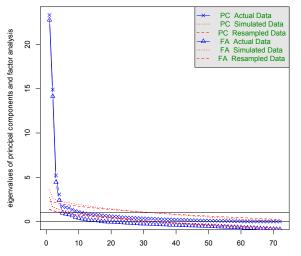



What about parallel analysis? Pearson R or polychoric  $\rho$ ? Of the raw (Pearson) correlations compared to the polychoric correlations

```
fa.parallel(cleaned[2:73])
Parallel analysis suggests that the number of factors = 5
                   and the number of components =
                                                   - 5
#use polychoric correlations
fa.parallel(cleaned[2:73], cor="poly")
> fa.parallel(cleaned[2:73], cor="poly")
some warnings are issued
The items do not have an equal number of response
             alternatives, global set to FALSE
Parallel analysis suggests that the number of factors =
                 and the number of components =
                                                - 4
Warning message:
In cor.smooth(mat) : Matrix was not positive definite,
             smoothing was done
>
```



#### Parallel analysis with Pearson correlations


#### **Parallel Analysis Scree Plots**





| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω     | Mediation | IRT | multilevel | FA and beyor |
|-------|----------------------------------------|------------------------|-----------------|------|-------|-----------|-----|------------|--------------|
| 000   | 0000000                                | 0000000                | 0000            | 0000 | 00000 | C         |     |            | 00000        |
| How m | any factors are in the mood data       |                        |                 |      |       |           |     |            |              |

### Parallel analysis with polychoric correlations (takes somewhat longer)



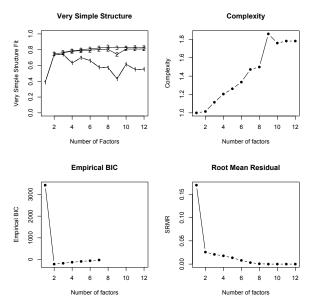
#### **Parallel Analysis Scree Plots**



| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω | Mediation | IRT | multilevel | FA and beyon |
|-------|----------------------------------------|------------------------|-----------------|------|---|-----------|-----|------------|--------------|
| 000   | 0000000                                | 0000000                | 0000            | 0000 |   | )         |     |            | 00000        |
|       |                                        |                        |                 |      |   |           |     |            |              |

#### How many factors: what does nfactors tell us?

> nfactors(cleaned[2:73])


#### Number of factors

#### Statistics by number of factors

|    | vss1 | vss2 | map    | dof  | chisq | prob     | sqresid | fit  | RMSEA | BIC   | SABIC | complex | eChisq | SRMR  | e |
|----|------|------|--------|------|-------|----------|---------|------|-------|-------|-------|---------|--------|-------|---|
| 1  | 0.68 | 0.00 | 0.0552 | 2484 | 8907  | 0.0e+00  | 192.3   | 0.68 | 0.115 | -4612 | 3261  | 1.0     | 35253  | 0.173 | 0 |
| 2  | 0.74 | 0.90 | 0.0179 | 2413 | 5827  | 2.9e-282 | 58.9    | 0.90 | 0.087 | -7305 | 343   | 1.2     | 7619   | 0.080 | 0 |
| 3  | 0.69 | 0.91 | 0.0145 | 2343 | 4928  | 8.6e-186 | 40.3    | 0.93 | 0.077 | -7823 | -397  | 1.4     | 4442   | 0.061 | 0 |
| 4  | 0.66 | 0.86 | 0.0110 | 2274 | 4095  | 1.7e-107 | 29.0    | 0.95 | 0.067 | -8281 | -1074 | 1.5     | 2532   | 0.046 | 0 |
| 5  | 0.62 | 0.85 | 0.0101 | 2206 | 3587  | 1.9e-69  | 24.9    | 0.96 | 0.061 | -8419 | -1427 | 1.7     | 1933   | 0.040 | 0 |
| 6  | 0.63 | 0.84 | 0.0094 | 2139 | 3274  | 4.1e-51  | 22.0    | 0.96 | 0.057 | -8367 | -1588 | 1.8     | 1560   | 0.036 | 0 |
| 7  | 0.63 | 0.83 | 0.0094 | 2073 | 3047  | 2.1e-40  | 19.7    | 0.97 | 0.055 | -8235 | -1665 | 1.9     | 1314   | 0.033 | 0 |
| 8  | 0.63 | 0.82 | 0.0091 | 2008 | 2810  | 7.0e-30  | 17.9    | 0.97 | 0.052 | -8118 | -1754 | 2.0     | 1100   | 0.031 | 0 |
|    |      |      |        |      |       |          |         |      |       |       |       |         |        |       |   |
| 18 | 0.53 | 0.78 | 0.0105 | 1413 | 1467  | 1.5e-01  | 9.2     | 0.98 | 0.032 | -6223 | -1745 | 2.6     | 324    | 0.017 | 0 |
| 19 | 0.52 | 0.78 | 0.0108 | 1359 | 1371  | 4.0e-01  | 8.7     | 0.99 | 0.030 | -6025 | -1718 | 2.6     | 291    | 0.016 | 0 |
| 20 | 0.52 | 0.77 | 0.0111 | 1306 | 1284  | 6.6e-01  | 8.2     | 0.99 | 0.028 | -5824 | -1685 | 2.7     | 258    | 0.015 |   |

| V < | - Descriptive and inferential statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Scores and Reliability | $\beta, \omega $ <b>EFA</b> $\omega$ N  | /lediation | IRT | multilevel | FA and beyond |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|------------|-----|------------|---------------|
| 000 | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000000                | 000000000000000000000000000000000000000 |            |     |            | 00000         |
|     | and the second sec |                        |                                         |            |     |            |               |

### The number of factors from nfactors

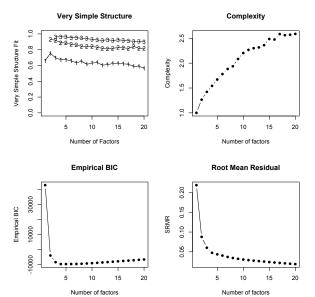




| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                  | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------|------|--------------------|-----------|-----|------------|---------------|
| 000   | 0000000<br>00000                       | 0000000                | 0000            | 0000 | <b>) (0000</b> 00) |           |     |            | 00000         |

#### What if we use polychoric correlations

```
> nfactors(cleaned[2:73],cor="poly")
The items do not have an equal number of response alternatives, global set to FALSE
```


```
Number of factors
Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm,
n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
VSS complexity 1 achieves a maximium of 0.76 with 2 factors
VSS complexity 2 achieves a maximium of 0.93 with 2 factors
The Velicer MAP achieves a minimum of 0.02 with 9 factors
Empirical BIC achieves a minimum of -9764.2 with 5 factors
Sample Size adjusted BIC achieves a minimum of 39801.49 with 20 factors
```

#### Statistics by number of factors

|    | vss1  | vss2  | map    | dof   | chisq  | prob   | sqresid | fit    | RMSEA  | BIC   | SABIC  | complex  | eChisq | SRMR  | eCRMS |
|----|-------|-------|--------|-------|--------|--------|---------|--------|--------|-------|--------|----------|--------|-------|-------|
| 1  | 0.66  | 0.00  | 0.099  | 2484  | 56503  | - o    | 280.2   | 0.66   | 0.33   | 42984 | 50857  | 1.0      | 56472  | 0.219 | 0.222 |
| 2  | 0.76  | 0.93  | 0.027  | 2413  | 51500  | 0      | 58.1    | 0.93   | 0.32   | 38368 | 46016  | 1.3      | 9088   | 0.088 | 0.090 |
| 3  | 0.70  | 0.92  | 0.023  | 2343  | 50169  | 0      | 31.0    | 0.96   | 0.32   | 37417 | 44843  | 1.4      | 4295   | 0.060 | 0.063 |
| 4  | 0.67  | 0.89  | 0.018  | 2274  | 48889  | 0      | 21.6    | 0.97   | 0.32   | 36513 | 43721  | 1.5      | 2649   | 0.047 | 0.050 |
| 5  | 0.67  | 0.89  | 0.018  | 2206  | 48230  | 0      | 18.6    | 0.98   | 0.32   | 36224 | 43216  | 1.7      | 2242   | 0.044 | 0.047 |
| 6  | 0.66  | 0.87  | 0.018  | 2139  | 47695  | 0      | 16.0    | 0.98   | 0.33   | 36053 | 42833  | 1.8      | 1930   | 0.040 | 0.044 |
| 7  | 0.64  | 0.86  | 0.017  | 2073  | 47098  | 0      | 13.7    | 0.98   | 0.33   | 35816 | 42386  | 1.9      | 1612   | 0.037 | 0.041 |
| 8  | 0.65  | 0.84  | 0.017  | 2008  | 46595  | 0      | 11.8    | 0.99   | 0.33   | 35666 | 42031  | 1.9      | 1391   | 0.034 | 0.039 |
|    |       |       |        |       |        |        |         |        |        |       |        |          |        |       |       |
| 19 | 0.59  | 0.82  | 0.022  | 1359  | 43055  | 0      | 3.5     | 1.00   | 0.40   | 35659 | 39966  | 2.6      | 462    | 0.020 | 0.027 |
| 20 | 0.56  | 0.82  | 0.022  | 1306  | 42770  | 0      | 3.1     | 1.00   | 0.41   | 35662 | 39801  | 2.6      | 419    | 0.019 | 0.026 |
| Wa | rning | messa | age :  |       |        |        |         |        |        |       |        |          |        |       |       |
| In | cor.s | mooth | n(mat) | : Mat | rix wa | is not | positiv | ve de: | finite | smoot | hing w | was done |        | (     |       |

| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ EFA $\omega$            | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------------------------------|-----------|-----|------------|---------------|
| 000   | 0000000                                | 0000000                | 0000 0000000000000000000000000000000000 | )         |     |            | 00000         |
|       |                                        |                        |                                         |           |     |            |               |

### The number of factors from nfactors







ummary(f2)

```
Factor analysis with Call: fa(r = msq[1:72], nfactors = 2)
```

Test of the hypothesis that 2 factors are sufficient. The degrees of freedom for the model is 2413 and the objective fur The number of observations was 3896 with Chi Square = 67730.13

The root mean square of the residuals (RMSA) is 0.09The df corrected root mean square of the residuals is 0.09

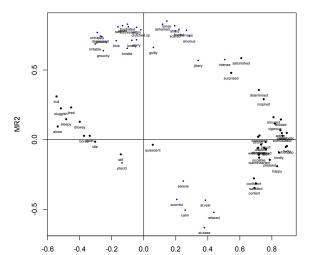
| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA | ω                  | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------|-----|--------------------|-----------|-----|------------|---------------|
| 000   | 0000000<br>00000                       | 0000000                | 0000            | 000 | 0 (1111111) (<br>0 | >         |     |            | 00000         |

Factor extraction and graphical displays

#### Show the factors, sorted by factor loadings

```
> print(f2, sort=TRUE)
Factor Analysis using method = minres
Call: fa(r = msq[1:72], nfactors = 2, cor = "poly")
Standardized loadings (pattern matrix) based upon correlation matrix
            item
                  MR1
                        MR2
                               h2
                                    112 COM
lively
              20 0.89 -0.05 0.811 0.19 1.0
energetic 55 0.89 0.05 0.789 0.21 1.0
full.of.pep 18 0.89 -0.05 0.800 0.20 1.0
            5 -0.52 0.22 0.348 0.65 1.4
sluqqish
            59 -0.48 0.15 0.274 0.73 1.2
sleepy
tired
             28 -0.45 0.23 0.285 0.71 1.5
             51 -0.40 0.13 0.189 0.81 1.2
drowsy
tense
             69 0.14 0.85 0.714 0.29 1.1
frustrated 65 -0.10 0.83 0.718 0.28 1.0
              70 0.12 0.83 0.676 0.32 1.0
ashamed
upset
              48 -0.13 0.82 0.714 0.29 1.1
            8 0.44 -0.52 0.519 0.48 1.9
relaxed
calm
            50 0.26 -0.50 0.354 0.65 1.5
at rest
              26 0.38 -0.43 0.378 0.62 2.0
```

|                       | MR1   | MR2   |
|-----------------------|-------|-------|
| SS loadings           | 21.07 | 17.15 |
| Proportion Var        | 0.29  | 0.24  |
| Cumulative Var        | 0.29  | 0.53  |
| Proportion Explained  | 0.55  | 0.45  |
| Cumulative Proportion | 0.55  | 1.00  |






Factor extraction and graphical displays

### fa.plot(f2,labels=colnames(msq[1:72]),cex=.5,title="2 dimensions of the Motivational State Questionnaire")

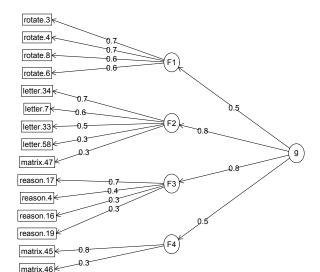
2 dimensions of the Motivational State Questionnaire





| 000         0000000         0000000         00000         00000         00000           000000         0000000         0000         0000         0000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         00000         000000         00000         00000 <td< th=""><th><math>\vee</math> &lt;-</th><th>Descriptive and inferential statistics</th><th>Scores and Reliability</th><th><math>\beta, \omega</math></th><th>EFA</th><th>ω</th><th>Mediation</th><th>IRT</th><th>multilevel</th><th>FA and beyond</th></td<> | $\vee$ <- | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA | ω | Mediation | IRT | multilevel | FA and beyond |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|------------------------|-----------------|-----|---|-----------|-----|------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000       |                                        |                        | 0000            |     |   |           |     |            | 00000         |

Factor extraction and graphical displays


### **Convert to and sort polar coordinates** round(polar(f2),2)

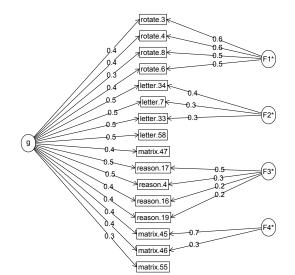
|              | Var | theta21 | vecl21 |
|--------------|-----|---------|--------|
| strong       | 12  | 1.68    | 0.51   |
| enthusiastic | 14  | 1.89    | 0.75   |
|              |     |         |        |
| anxious      | 71  | 69.09   | 0.63   |
| nervous      | 45  | 71.26   | 0.69   |
|              |     |         |        |
| angry        | 44  | 93.20   | 0.65   |
| sorry        | 58  | 93.59   | 0.52   |
|              |     |         |        |
| sad          | 16  | 101.25  | 0.68   |
| blue         | 10  | 103.59  | 0.53   |
|              |     |         |        |
| drowsy       | 51  | 162.17  | 0.18   |
| sleepy       | 59  | 163.11  | 0.26   |
|              |     |         |        |
| relaxed      | 8   | 310.03  | 0.46   |
| at.rest      | 26  | 311.56  | 0.34   |
| • •          |     |         |        |
| happy        | 61  | 347.14  | 0.73   |
| pleased      | 60  | 349.61  | 0.64   |
|              |     |         |        |
| alert        | 52  | 354.89  | 0.59   |



|         | Descriptive and inferential statistics<br>0000000<br>00000 |  |  | IRT | multilevel | FA and beyond |
|---------|------------------------------------------------------------|--|--|-----|------------|---------------|
| Graphic | cal displays of hierarchical analysis                      |  |  |     |            |               |

#### 16 ability items from the International Cognitive Ability Resource general ability and 4 subfactors of ICAR data








Graphical displays of hierarchical analysis

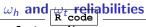
#### Schmid Leiman transformation of 16 ability items from ICAR

#### general abilty and 4 subfactors of ICAR data








#### More types of reliability

- 1.  $\alpha$  is a hodgepodge ratio of general factor and group factor reliability
- 2.  $\omega_h$  (omega hierarchical) is an estimate of the general factor variance of a test
- 3.  $\omega_t$  (omega total) is an estimate of the total reliable variance of a test
- 4. When do we use these?
  - When estimating how much of a test measures one thing. *omega*<sub>h</sub>
  - When estimating what is the total reliable variance in a test (when adjusting for test reliability in an SEM context)



| $\vee$ <- | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω | Mediation | IRT | multilevel | FA and beyond |
|-----------|----------------------------------------|------------------------|-----------------|------|---|-----------|-----|------------|---------------|
| 000       | 0000000                                | 0000000                | 0000            | 0000 |   | )         |     |            | 00000         |

Graphical displays of hierarchical analysis



om <- omega(ability, nfactors=4)

| om         |         |       |        |        |      |      |      |      |
|------------|---------|-------|--------|--------|------|------|------|------|
| Omega      |         |       |        |        |      |      |      |      |
| Call: omeg | ja(m =  | abili | ty, nf | actors | = 4) |      |      |      |
| Alpha:     |         |       | 0.83   |        |      |      |      |      |
| G.6:       |         |       | 0.84   |        |      |      |      |      |
| Omega Hier | rarchio | al:   | 0.65   |        |      |      |      |      |
| Omega H as | symptot | ic:   | 0.76   |        |      |      |      |      |
| Omega Tota | al      |       | 0.86   |        |      |      |      |      |
|            |         |       |        |        |      |      |      |      |
| Schmid Lei | iman Fa |       |        |        |      |      |      |      |
|            | g       | F1*   | F2*    | F3*    | F4*  | h2   | u2   | p2   |
| reason.4   | 0.50    |       |        | 0.27   |      | 0.34 | 0.66 | 0.73 |
| reason.16  | 0.42    |       |        | 0.21   |      | 0.23 | 0.77 | 0.76 |
| reason.17  | 0.55    |       |        | 0.47   |      | 0.52 | 0.48 | 0.57 |
| reason.19  | 0.44    |       |        | 0.21   |      | 0.25 | 0.75 | 0.77 |
| letter.7   | 0.52    |       | 0.35   |        |      | 0.39 | 0.61 | 0.69 |
| letter.33  | 0.46    |       | 0.30   |        |      | 0.31 | 0.69 | 0.70 |
| letter.34  | 0.54    |       | 0.38   |        |      | 0.43 | 0.57 | 0.66 |
| letter.58  | 0.47    |       | 0.20   |        |      | 0.28 | 0.72 | 0.78 |
| matrix.45  | 0.40    |       |        |        | 0.66 | 0.59 | 0.41 | 0.27 |
| matrix.46  | 0.40    |       |        |        | 0.26 | 0.24 | 0.76 | 0.65 |
| matrix.47  | 0.42    |       |        |        |      | 0.23 | 0.77 | 0.79 |
| matrix.55  | 0.28    |       |        |        |      | 0.12 | 0.88 | 0.65 |
| rotate.3   | 0.36    | 0.61  |        |        |      | 0.50 | 0.50 | 0.26 |
| rotate.4   | 0.41    | 0.61  |        |        |      | 0.54 | 0.46 | 0.31 |
| rotate.6   | 0.40    | 0.49  |        |        |      | 0.41 | 0.59 | 0.39 |
| rotate.8   | 0.32    | 0.53  |        |        |      | 0.40 | 0.60 | 0.26 |
|            |         |       |        |        |      |      |      |      |



| V < - | Descriptive and inferential statistics  | Scores and Reliability | $\beta, \omega$ | EFA  | ω | Mediation | IRT | multilevel | FA and beyond |
|-------|-----------------------------------------|------------------------|-----------------|------|---|-----------|-----|------------|---------------|
| 000   | 000000000000000000000000000000000000000 | 0000000                | 0000            | 0000 |   | •         |     |            | 00000         |

Graphical displays of hierarchical analysis

#### $\omega$ continued

With eigenvalues of: g F1\* F2\* F3\* F4\* 3.04 1.32 0.46 0.42 0.55

general/max 2.3 max/min = 3.17mean percent general = 0.58 with sd = 0.2 and cv of 0.35 Explained Common Variance of the general factor = 0.53

The degrees of freedom are 62 and the fit is 0.05 The number of observations was 1525 with Chi Square = 70.19 with prob < 0.22 The root mean square of the residuals is 0.01 The df corrected root mean square of the residuals is 0.02 RMSEA index = 0.009 and the 90 % confidence intervals are 0 0.014 BIC = -384.25

Compare this with the adequacy of just a general factor and no group factors The degrees of freedom for just the general factor are 104 and the fit is 0.78The number of observations was 1525 with Chi Square = 1186.18 with prob < 5e-183 The root mean square of the residuals is 0.09The df corrected root mean square of the residuals is 0.09

RMSEA index = 0.083 and the 90 % confidence intervals are 0.078 0.085 BIC = 423.88

Measures of factor score adequacy

|                                               | g FII     | FZ*   | 1'3* 1'4*  |  |
|-----------------------------------------------|-----------|-------|------------|--|
| Correlation of scores with factors            | 0.83 0.80 | 0.53  | 0.56 0.71  |  |
| Multiple R square of scores with factors      | 0.69 0.64 | 0.28  | 0.32 0.50  |  |
| Minimum correlation of factor score estimates | 0.37 0.28 | -0.44 | -0.37 0.00 |  |

257 / 279

Total, General and Subset omega for each subset

-- -- -- --

# Data set from Preacher & Hayes (2004)

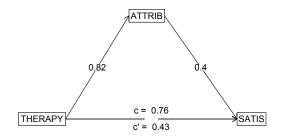
```
# from Preacher and Hayes (2004)
sobel <- structure(list(SATIS = c(-0.59, 1.3, 0.02, 0.01, 0.79, -0.35,
-0.03, 1.75, -0.8, -1.2, -1.27, 0.7, -1.59, 0.68, -0.39, 1.33,
...
"Therapy", "Attributional Positivity"), .Names = c("SATIS", "THERAPY",
"ATTRIB")))
#n.iter set to 50 (instead of default of 5000) for speed of example
mediate(1,2,3,sobel,n.iter=50) #The example in Preacher and Hayes</pre>
```

The DV (Y) was SATIS . The IV (X) was THERAPY . The mediating variable(s) = ATTRIB .

```
Total Direct effect(c) of THERAPY on SATIS = 0.76 S.E. = 0.31 t direct = 2.5
Direct effect(c') of THERAPY on SATIS removing ATTRIB = 0.43 S.E. = 0.32 t di
Indirect effect (ab) of THERAPY on SATIS through ATTRIB = 0.33
Mean bootstrapped indirect effect = 0.31 with standard error = 0.16 Lower CI = 0.07
R2 of model = 0.31
To see the longer output, specify short = FALSE in the print statement
Full output
```

```
Total effect estimates (c)
SATIS se t Prob
THERAPY 0.76 0.31 2.5 0.0186
```

Direct effect estimates (c') SATIS se t Prob THERAPY 0.43 0.32 1.35 0.190 ATTRIE 0.40 0.18 2.23 0.034


```
'a' effect estimates
THERAPY se t Prob
```



| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                                       | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------|------|-----------------------------------------|-----------|-----|------------|---------------|
| 000   | 0000000                                | 0000000                | 0000            | 0000 | 0.0000000000000000000000000000000000000 |           |     |            | 00000         |

#### The Preacher mediation example

#### Mediation model





# Take the data example from Hayes (2013)

```
C.pmi <- cov(Tal_Or)
#n.iter set to 50 (instead of default of 5000) for speed of example
mediate(y="reaction",x = "cond",m=c("pmi","import"),data=C.pmi,n.obs=123,n.iter=50)</pre>
```

```
Call: mediate(y = "reaction", x = "cond", m = c("pmi", "import"), data = C.pmi,
    n.obs = 123, n.iter = 50)
```

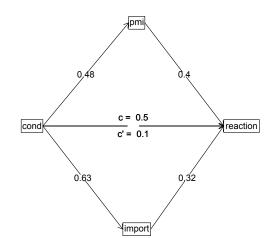
```
The DV (Y) was reaction . The IV (X) was cond . The mediating variable(s) = pmi import
```

```
Total Direct effect(c) of cond on reaction = 0.5 S.E. = 0.28 t direct = 1.79
Direct effect(c') of cond on reaction removing pmi import = 0.1 S.E. = 0.24 f
Indirect effect(ab) of cond on reaction through pmi import = 0.39
Mean bootstrapped indirect effect = 0.7 with standard error = 0.17 Lower CI = 0.39
R2 of model = 0.33
To see the longer output, specify short = FALSE in the print statement
```

Full output

```
Total effect estimates (c)
reaction se t Prob
cond 0.5 0.28 1.79 0.0766
```

Direct effect estimates (c') reaction se t Prob cond 0.10 0.24 0.43 6.66e-01 pmi 0.40 0.09 4.26 4.04e-05 import 0.32 0.07 4.59 1.13e-05


```
'a' effect estimates
cond se t Prob
```



| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                                       | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------|------|-----------------------------------------|-----------|-----|------------|---------------|
| 000   | 0000000                                | 0000000                | 0000            | 0000 | 0.0000000000000000000000000000000000000 |           |     |            | 00000         |

# The Hayes (2013) example mediation

#### **Mediation model**





## The "New" Psychometrics

- 1. Classical Test theory examines responses assuming items are equivalent, or at least congeneric equivalent
- 2. Item Response Theory models item difficulty as well as item discrimination
- 3. Although seemingly very different models, factor analysis of categorical items (using tetrachoric or polychoric correlations) is equivalent to IRT 2 PL models.
- 4. Rasch model is just a 1 PL model where items differ in difficulty, but not discrimination.
- 5. 2PL has difficulty and discrimination estimated from factor analysis of tetrachoric/polychoric items.



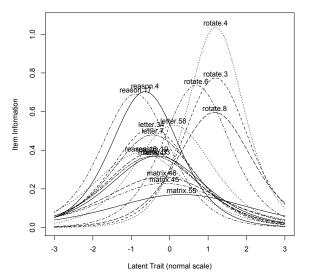


```
f1 <- irt.fa(ability)</pre>
```

```
> f1
Item Response Analysis using Factor Analysis
Call: irt.fa(x = ability)
Item Response Analysis using Factor Analysis
Summary information by factor and item
Factor = 1
-3 -2 -1 0 1 2
```

|           | 5    | -    | -    | •    | -    | ~    | 5    |
|-----------|------|------|------|------|------|------|------|
| reason.4  | 0.05 | 0.24 | 0.64 | 0.53 | 0.16 | 0.03 | 0.01 |
| reason.16 | 0.08 | 0.22 | 0.38 | 0.31 | 0.14 | 0.05 | 0.01 |
| reason.17 | 0.08 | 0.33 | 0.69 | 0.42 | 0.11 | 0.02 | 0.00 |
| reason.19 | 0.06 | 0.17 | 0.35 | 0.36 | 0.19 | 0.07 | 0.02 |
| letter.7  | 0.05 | 0.18 | 0.41 | 0.44 | 0.20 | 0.06 | 0.02 |
| letter.33 | 0.05 | 0.15 | 0.31 | 0.36 | 0.20 | 0.08 | 0.02 |
| letter.34 | 0.05 | 0.19 | 0.45 | 0.46 | 0.20 | 0.06 | 0.01 |
| letter.58 | 0.02 | 0.09 | 0.30 | 0.53 | 0.35 | 0.12 | 0.03 |
| matrix.45 | 0.05 | 0.11 | 0.19 | 0.23 | 0.17 | 0.09 | 0.04 |
|           |      |      |      |      |      |      |      |
| Test Info | 0.67 | 2.11 | 4.73 | 5.83 | 5.28 | 2.55 | 0.69 |
|           |      |      |      |      |      |      |      |




263 / 279

3

| $\vee$ <- | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω         | Mediation | IRT | multilevel | FA and | beyond |
|-----------|----------------------------------------|------------------------|-----------------|------|-----------|-----------|-----|------------|--------|--------|
| 000       | 0000000<br>00000                       | 0000000                | 0000            | 0000 | 000000000 |           |     |            | 00000  |        |

#### FA solution with tetrachoric correlations

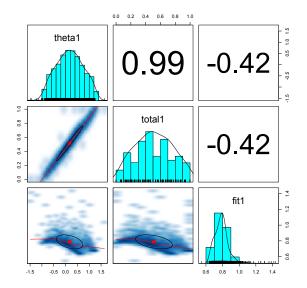
#### Item information from factor analysis







#### IRT based scoring and Classical Test Theory based scoring


- 1. CTT and IRT based scores correlate almost perfectly without missing data
- 2. With lots of missing data, and different items for different people, IRT based scores provide more subtle distinctions.
- 3. scoreIrt.2pl and scoreIrt.1pl will do IRT based scores.
- 4. By default, will find the irt based parameters and then do the scoring.

|                                                                                                                            | R code |           |
|----------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| <pre>ability.irt &lt;- irt.fa(ability) ability.scores &lt;- scoreIrt(ability.in pairs.panels(ability.scores,smoother</pre> |        | ן<br>יצי) |



 $\begin{array}{cccc} V < - & \mbox{Descriptive and inferential statistics} & \mbox{Scores and Reliability} & \beta, \omega & \mbox{EFA} & \omega & \mbox{Mediation} & \mbox{IRT} & \mbox{multilevel} & \mbox{FA} & \mbox{and beyond} & \mbox{Occose} &$ 

#### CTT and IRT based scores are almost identical





## **Multilevel reliability**

1. Classic reliability measures assess the variance of between person differences compared to error of the measurement.

$$\rho_{xx} = \frac{1 - \sigma_e^2}{\sigma_x^2} \tag{1}$$

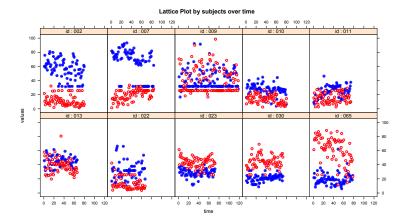
2. Multilevel reliability is a series of generallizability coefficients, generalizing over items, over time, time x items,

$$R_{kF} = \frac{\sigma_{id}^2 + (\sigma_{idxitems}^2/m)}{\sigma_{id}^2 + (\sigma_{idxitems}^2/m) + \sigma_{error}^2/(km)}$$
(2)

From Equation 6 (Shrout & Lane, 2012, p 310). See Shrout & Lane (2012) for five other generalizability formula.

- 3. Implemented in *psych* as mlr or multilevel.reliability
- 4. Also simulations using sim.multi
- 5. I show the data from Fisher (2015) who reports 10 subjects measured over 60 (or more) days on 28 affect items.
- 6. (Download the R data files, minor rearrangement and




Table: The multilevel.reliablity function estimates of the generalizability coefficients for the positively and negatively valenced items from Fisher (2015). RkF is the reliability of average of all ratings across all items and times (Fixed time effects), R1R is the generalizability of a single time point across all items (Random time effects), RkR is the generalizability of average time points across all items (Random time effects), Rc is the generalizability of change (fixed time points, fixed items), RkRn is the generalizability of between person differences averaged over time (time nested within people) and Rcn is the generalizability of within person variations averaged over items (time nested within people).

| Multilevel reliability estimates |                |      |  |  |  |  |  |
|----------------------------------|----------------|------|--|--|--|--|--|
| Coefficient                      | Negative items |      |  |  |  |  |  |
| RkF                              | 1.00           | 1.00 |  |  |  |  |  |
| R1R                              | 0.80           | 0.77 |  |  |  |  |  |
| RkR                              | 1.00           | 1.00 |  |  |  |  |  |
| Rc                               | 0.72           | 0.71 |  |  |  |  |  |
| RkRn                             | 1.00           | 1.00 |  |  |  |  |  |
| Rcn                              | 0.64           | 0.59 |  |  |  |  |  |

.. . ...



# Assessing reliability of within subject differences in affect. Data from Fisher (2015)







#### psych includes some very old ideas

- 1. Schmid-Leiman (Schmid & Leiman, 1957) transformations from correlated factor stuctures to higher order structures.
- 2. Dwyer extension (Dwyer, 1937; Mosier, 1938; Horn, 1973) to extend a factor solution to more variables.
- 3. This can be used to extend other variables into a factor space, or to relate two domains to each other.



#### Extend a data set into another

```
First, create the data set

set.seed(42)

d <- sim.item(12) #two orthogonal factors

R <- cor(d)

Ro <- R[c(1,2,4,5,7,8,10,11),c(1,2,4,5,7,8,10,11)]

Roe <- R[c(1,2,4,5,7,8,10,11),c(3,6,9,12)]

fo <- fa(Ro,2)

fe <- fa.extension(Roe,fo)

fa.diagram(fo,fe=fe)
```

fe

```
Call: fa.extension(Roe = Roe, fo = fo)

Standardized loadings (pattern matrix) based upon correlation matrix

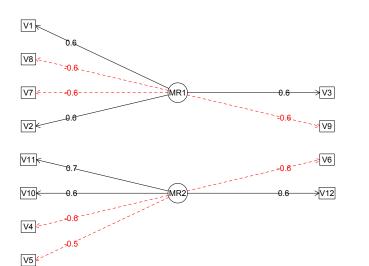
MR1 MR2 h2 u2

V3 0.63 -0.02 0.39 0.61

V6 0.04 -0.61 0.37 0.63

V9 -0.61 0.01 0.38 0.62

V12 -0.06 0.58 0.33 0.67
```


|                       | MR1  | MR2  |
|-----------------------|------|------|
| SS loadings           | 0.77 | 0.69 |
| Proportion Var        | 0.19 | 0.17 |
| Cumulative Var        | 0.19 | 0.37 |
| Proportion Explained  | 0.53 | 0.47 |
| Cumulative Proportion | 0.53 | 1.00 |



| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω           | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------|------|-------------|-----------|-----|------------|---------------|
| 000   | 0000000                                | 0000000                | 0000            | 0000 | C 0000000 C | )         |     |            | 00000         |

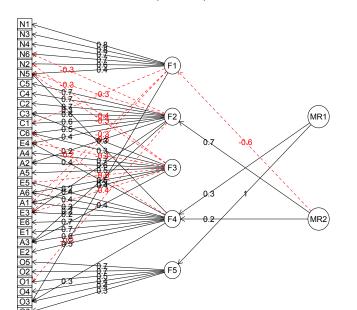
# Factor extension

#### Factor analysis and extension





| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω               | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------|------|-----------------|-----------|-----|------------|---------------|
| 000   | 0000000                                | 0000000                | 0000            | 0000 | ) ((())<br>(()) |           |     |            | 00000         |


# Hiearchical factor analysis

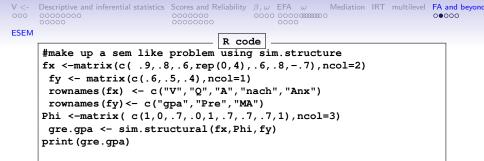
|                                                                  | R code |  |
|------------------------------------------------------------------|--------|--|
| <pre>neo52 &lt;- fa.multi(neo,5,2) fa.multi.diagram(neo52)</pre> |        |  |
| ra.murcr.uragram(ne052)                                          |        |  |



| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω                                                                      | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------|------|------------------------------------------------------------------------|-----------|-----|------------|---------------|
| 000   | 00000000                               | 0000000                | 0000            | 0000 | )<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1 |           |     |            | 00000         |

#### Hierarchical (multilevel) Structure






| V <-<br>000 | Descriptive and inferential statistics<br>00000000<br>00000 | Scores and Reliability |  | ) (111111111111111111111111111111111111 | IRT | multilevel | FA and beyond<br>•0000 |
|-------------|-------------------------------------------------------------|------------------------|--|-----------------------------------------|-----|------------|------------------------|
| ESEM        |                                                             |                        |  |                                         |     |            |                        |

ESEM can be thought of as factor extension from A to B and B to A

- 1. If we have two sets of variables that show factor structures within each set
- 2. And then link the factor structures.
- 3. Tjhis can be done in SEM, but here show how to do exploratory SEM
- 4. We make up a toy data set





Call: sim.structural(fx = fx, Phi = Phi, fy = fy)

\$model (Population correlation matrix)

|      | v    | Q    | A     | nach  | Anx   | gpa   | Pre   | MA    |
|------|------|------|-------|-------|-------|-------|-------|-------|
| v    | 1.00 | 0.72 | 0.54  | 0.00  | 0.00  | 0.38  | 0.32  | 0.25  |
| Q    | 0.72 | 1.00 | 0.48  | 0.00  | 0.00  | 0.34  | 0.28  | 0.22  |
| A    | 0.54 | 0.48 | 1.00  | 0.48  | -0.42 | 0.50  | 0.42  | 0.34  |
| nach | 0.00 | 0.00 | 0.48  | 1.00  | -0.56 | 0.34  | 0.28  | 0.22  |
| Anx  | 0.00 | 0.00 | -0.42 | -0.56 | 1.00  | -0.29 | -0.24 | -0.20 |
| gpa  | 0.38 | 0.34 | 0.50  | 0.34  | -0.29 | 1.00  | 0.30  | 0.24  |
| Pre  | 0.32 | 0.28 | 0.42  | 0.28  | -0.24 | 0.30  | 1.00  | 0.20  |
| MA   | 0.25 | 0.22 | 0.34  | 0.22  | -0.20 | 0.24  | 0.20  | 1.00  |

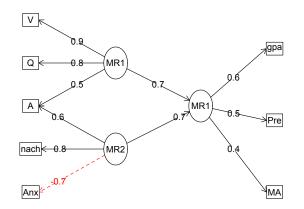
\$reliability (population reliability)

V Q A nach Anx gpa Pre MA



|      | Descriptive and inferential statistics | 0000000 | 0000 | 000000000 | IRT | multilevel | FA and beyond |
|------|----------------------------------------|---------|------|-----------|-----|------------|---------------|
| ESEM | 00000                                  | 0000000 | 0000 | )         |     |            |               |

# Exploratory Structural Equation Modling


example <- esem(gre.gpa\$model,varsX=1:5,varsY=6:8,nfX=2,nfY=1, n.obs=1000,plot=FALSE)

```
> example
Exploratory Structural Equation Modeling Analysis using method = minres
Call: esem(r = gre.gpamodel, varsX = 1:5, varsY = 6:8, nfX = 2, nfY = 1,
    n.obs = 1000, plot = FALSE)
For the 'X' set:
       MR1
             MR2
      0 91 -0 06
v
     0.81 - 0.05
Q
А
      0.53 0.57
nach -0.10 0.81
Anx 0.08 -0.71
For the 'Y' set:
    MR1
gpa 0.6
Pre 0.5
MA 0 4
Correlations between the X and Y sets.
     X1
          X2 Y1
X1 1 00 0 19 0 68
X2 0.19 1.00 0.67
Y1 0 68 0 67 1 00
The degrees of freedom for the null model are 56 and the empirical chi square
                                                                                 function
The degrees of freedom for the model are 7 and the empirical chi square function7wa37923
```

| V < - | Descriptive and inferential statistics | Scores and Reliability | $\beta, \omega$ | EFA  | ω             | Mediation | IRT | multilevel | FA and beyond |
|-------|----------------------------------------|------------------------|-----------------|------|---------------|-----------|-----|------------|---------------|
| 000   | 0000000                                | 0000000                | 0000            | 0000 | C (1111111) ( | )         |     |            | 00000         |
| ESEM  |                                        |                        |                 |      |               |           |     |            |               |

### ESEM of our toy problem

#### **Exploratory Structural Model**





| V <-<br>000 | Descriptive and inferential statistics<br>00000000<br>00000 | Scores and Reliability |  | 000000000 | IRT | multilevel | FA and beyond<br>0000● |
|-------------|-------------------------------------------------------------|------------------------|--|-----------|-----|------------|------------------------|
| ESEM        |                                                             |                        |  |           |     |            |                        |

# Outline

# Part I: What is R, where did it come from, why use it

- Installing R and adding packages: the building blocks of R
- Part II: A brief introduction an overview
  - R is just a fancy (very fancy) calculator
  - Descriptive data analysis
  - Some inferential analysis

# Part III R is a powerful statistical system

- Data entry (detail and practice)
- Descriptive (again)
- Inferential (t and F with more practice)
- Regression
- Basic R commands

Part IV: Psychometrics

- Reliability and its discontents
- EFA, CFA, SEM

Part V: Help and More Help

• List of useful commands

Part VI: The psych package and more practice



- Bechtoldt, H. (1961). An empirical study of the factor analysis stability hypothesis. *Psychometrika*, 26(4), 405–432.
- Bond, T. G. (1995). BLOT:Bond's Logical Operations Test. Townsville, Australia: James Cook Univer- sity. (Original work published 1976).
- Burt, C. (1915). General and specific factors underlying the primary emotions. In *Reports of the British Association for the Advancement of Science (85th Meeting)*, (pp. 694–696)., London (retrieved from the web at http://www.biodiversitylibrary.org/item/95822#790) ). John Murray.
- Condon, D. M. & Revelle, W. (2014). The International Cognitive Ability Resource: Development and initial validation of a public-domain measure. *Intelligence*, *43*, 52–64.
- Costa, P. T. & McCrae, R. R. (1985). NEO PI professional manual. Odessa, FL: Psychological Assessment Resources, Inc.



Cushny, A. R. & Peebles, A. R. (1905). The action of optical isomer. ii. hyoscines. *The Journal of Physiology*, 32(501-510).
Dwyer, P. S. (1937). The determination of the factor loadings of a given test from the known factor loadings of other tests. *Psychometrika*, 2(3), 173–178.

Fisher, A. J. (2015). Toward a dynamic model of psychological assessment: Implications for personalized care. *Journal of Consulting and Clinical Psychology*, 83(4), 825 – 836.

- Fox, J., Nie, Z., & Byrnes, J. (2013). sem: Structural Equation Models. R package version 3.1-3.
- Guilford, J. P. (1954). *Psychometric Methods* (2nd ed.). New York: McGraw-Hill.
- Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.

Holzinger, K. & Swineford, F. (1937). The bi-factor method. *Psychometrika*, *2*(1), 41–54.



- Horn, J. L. (1973). On extension analysis and its relation to correlations between variables and factor scores. *Multivariate Behavioral Research*, 8(4), 477 – 489.
- Mosier, C. (1938). A note on Dwyer: The determination of the factor loadings of a given test. *Psychometrika*, 3(4), 297–299.
- Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick,
  T. R., Kickpatrick, R. M., Estabrook, R., Bates, T. C., Maes,
  H. H., & Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*.
- Preacher, K. J. & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. *Behavior Research Methods, Instruments, & Computers, 36*(4), 717–731.
- Reise, S., Morizot, J., & Hays, R. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. *Quality of Life Research*, 16(0), 19–31.



 $\begin{array}{cccc} & V <- & {\sf Descriptive and inferential statistics} & {\sf Scores and Reliability} & \beta, \omega & {\sf EFA} & \omega & {\sf Mediation} & {\sf IRT} & {\sf multilevel} & {\sf FA} & {\sf and} & {\sf beyond} \\ & {\sf cococococ} & {\sf cococc} & {\sf cococ} & {\sf cocococ} & {\sf cococ} & {\sf cococ} & {\sf cococ} & {\sf cocococ}$ 

Revelle, W. & Condon, D. M. (2015). A model for personality at three levels. Journal of Research in Personality, 56, 70-81. Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. Schmid, J. J. & Leiman, J. M. (1957). The development of hierarchical factor solutions. *Psychometrika*, 22(1), 83–90. Shrout, P. E. & Lane, S. P. (2012). Psychometrics. In Handbook of research methods for studying daily life. Guilford Press. Smillie, L. D., Cooper, A., Wilt, J., & Revelle, W. (2012). Do extraverts get more bang for the buck? refining the affective-reactivity hypothesis of extraversion. Journal of Personality and Social Psychology, 103(2), 306–326. Tal-Or, N., Cohen, J., Tsfati, Y., & Gunther, A. C. (2010). Testing causal direction in the influence of presumed media influence. Communication Research, 37(6), 801–824. Thurstone, L. L. & Thurstone, T. G. (1941). Factorial studies of

intelligence. Chicago, III.: The University of Chicago press.





Venables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with S (Fourth ed.). New York: Springer. ISBN 0-387-95457-0.

