# Psychology 405: Psychometric Theory Examples of finding correlations from composites

#### William Revelle

Department of Psychology Northwestern University Evanston, Illinois USA



April, 2018

## **Outline**

Composite variances/covariances

Regression

References

## Consider the following correlation matrix

| Variable | V1  | V2  | V3  | V4  |
|----------|-----|-----|-----|-----|
| V1       | 1.0 | 0.4 | 0.3 | 0.2 |
| V2       | 0.4 | 1.0 | 0.1 | 0.3 |
| V3       | 0.3 | 0.1 | 1.0 | 0.5 |
| V4       | 0.2 | 0.3 | 0.5 | 1.0 |

- 1. Find the Variance of the composite of V1 and V2
- 2. Find the Variance of the composite V3 and V4
- 3. Find the covariance of (V1, V2) with (V3, V4)
- 4. Find the correlation of (V1, V2) with (V3, V4)

## Consider the following correlation matrix

| Variable | V1  | V2  | V3  | V4  |
|----------|-----|-----|-----|-----|
| V1       | 1.0 | 0.4 | 0.3 | 0.2 |
| V2       | 0.4 | 1.0 | 0.1 | 0.3 |
| V3       | 0.3 | 0.1 | 1.0 | 0.5 |
| V4       | 0.2 | 0.3 | 0.5 | 1.0 |

- 1. The Variance of the composite of V1 and V2 = 1 + .4 + .4 + 1 = 2.8
- 2. The Variance of the composite V3 and V4 = 1 + .5 + .5 + 1 = 3
- 3. The covariance of (V1, V2) with (V3, V4) = .3 + .1 + .2 + .3 = .9
- 4. The correlation of (V1, V2) with (V3, V4) =  $\frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{.9}{sqrt2.8*3} = .31$

### Consider the following correlation matrix

| Variable | V1  | V2  | V3  | V4  |
|----------|-----|-----|-----|-----|
| V1       | 1.0 | 0.4 | 0.3 | 0.2 |
| V2       | 0.4 | 1.0 | 0.1 | 0.3 |
| V3       | 0.3 | 0.1 | 1.0 | 0.5 |
| V4       | 0.2 | 0.3 | 0.5 | 1.0 |

- 1. What is the covariance of item 1 with the composite of V1 and V2  $\,$
- What is the covariance of item 1 with the composite of (V1 ... V4)
- 3. What is the variance of the total composite?
- 4. What is the correlation of item 1 with the composite of V1 and V2
- What is the correlation of V1 with the entire set of items (V1 ... V4)

| Consider | the | following | correlation | matrix |
|----------|-----|-----------|-------------|--------|
|----------|-----|-----------|-------------|--------|

| Variable | V1  | V2  | V3  | V4  |
|----------|-----|-----|-----|-----|
| V1       | 1.0 | 0.4 | 0.3 | 0.2 |
| V2       | 0.4 | 1.0 | 0.1 | 0.3 |
| V3       | 0.3 | 0.1 | 1.0 | 0.5 |
| V4       | 0.2 | 0.3 | 0.5 | 1.0 |

- 1. The covariance of item 1 with the composite of V1 and V2 = 1 + .4 = 1.4
- 2. The covariance of item 1 with the composite of (V1 ... V4) = 1 + .4 + .3 + .2 = 1.9
- 3. What is the variance of the total composite? = (.4 + .3 + .2 + .1 + .3 + .5)\*2 + 4 = 7.6
- 4. The correlation of item 1 with the composite of V1 and V2 =  $\frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{1.4}{\sqrt{2.8*1}} = .84$
- 5. What is the correlation of V1 with the entire set of items (V1 ... V4) =  $\frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{1.9}{\sqrt{7.6*1}} = .69$

| Variable | V1 | V2 | V3 | V4 |
|----------|----|----|----|----|
| V1       | 1  | 0  | 0  | 0  |
| V2       | 0  | 1  | 0  | 0  |
| V3       | 0  | 0  | 1  | 0  |
| V4       | 0  | 0  | 0  | 1  |

- 1. Find the Variance of the composite of V1 and V2
- 2. Find the Variance of the composite V3 and V4
- 3. Find the covariance of (V1, V2) with (V3, V4)
- 4. Find the correlation of (V1, V2) with (V3, V4)

| Variable | V1 | V2 | V3 | V4 |
|----------|----|----|----|----|
| V1       | 1  | 0  | 0  | 0  |
| V2       | 0  | 1  | 0  | 0  |
| V3       | 0  | 0  | 1  | 0  |
| V4       | 0  | 0  | 0  | 1  |

- 1. Find the Variance of the composite of V1 and V2 = 1+1+0+0=2
- 2. Find the Variance of the composite V3 and V4 = 1 + 1 + 0 + 0 = 2
- 3. Find the covariance of (V1, V2) with (V3, V4) = 0 + 0 + 0 + 0 = 0
- 4. Find the correlation of (V1, V2) with (V3, V4) =  $\frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{0}{\sqrt{2*2}} = 0$

| Variable | V1 | V2 | V3 | V4 |
|----------|----|----|----|----|
| V1       | 1  | 0  | 0  | 0  |
| V2       | 0  | 1  | 0  | 0  |
| V3       | 0  | 0  | 1  | 0  |
| V4       | 0  | 0  | 0  | 1  |

- What is the covariance of item 1 with the composite of V1 and V2
- 2. What is the covariance of item 1 with the composite of  $(V1 \dots V4)$
- 3. What is the variance of the total composite?
- 4. What is the correlation of item 1 with the composite of V1 and V2
- What is the correlation of V1 with the entire set of items (V1 ... V4)

| Variable | V1 | V2 | V3 | V4 |
|----------|----|----|----|----|
| V1       | 1  | 0  | 0  | 0  |
| V2       | 0  | 1  | 0  | 0  |
| V3       | 0  | 0  | 1  | 0  |
| V4       | 0  | 0  | 0  | 1  |

- 1. What is the covariance of item 1 with the composite of V1 and V2 = 1 + 0 = 1
- 2. What is the covariance of item 1 with the composite of (V1 ... V4) = 1+0+0+0=1
- 3. What is the variance of the total composite? 4
- 4. What is the correlation of item 1 with the composite of V1 and V2 =  $\frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{1}{\sqrt{2*1}} = .71$
- 5. What is the correlation of V1 with the entire set of items (V1 ... V4) =  $\frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{1}{\sqrt{4}} = .5$

### Multiple regression

| Variable | V1  | V2  | V3  | V4  |
|----------|-----|-----|-----|-----|
| V1       | 1.0 | 0.4 | 0.4 | 0.4 |
| V2       | 0.4 | 1.0 | 0.2 | 0.0 |
| V3       | 0.4 | 0.2 | 1.0 | 0.5 |
| V4       | 0.4 | 0.0 | 0.5 | 1.0 |

- 1. What is the unit weighted correlation between the composite of V1 and V2 with V3?
- 2. What is the unit weighted correlation between the composite of V1 and V2 with V4?
- 3. What is the multiple correlation between the optimal composite of V1 and V2 predicting V3?
- 4. What is the multiple correlation between V1 and V2 predicting V4?

# Multiple regression

| Variable | V1  | V2  | V3  | V4  |
|----------|-----|-----|-----|-----|
| V1       | 1.0 | 0.4 | 0.4 | 0.4 |
| V2       | 0.4 | 1.0 | 0.2 | 0.0 |
| V3       | 0.4 | 0.2 | 1.0 | 0.5 |
| V4       | 0.4 | 0.0 | 0.5 | 1.0 |

- What is the unit weighted correlation between the composite of V1 and V2 with V3?
- 2. This is just what does the composite V1 + V2 correlate V3
- 3. Find the variance of V1 + V2 = 1 = 1 + .4 + .4 + 1 = 2.8
- 4. Find the covariance of (V1+V2) with V3.4+.2=.6
- 5. The unweighted correlation is therefore  $= \frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{.6}{\sqrt{2.8*1}} = .36$
- 6. What is the unit weighted correlation between the composite of V1 and V2 with V4?
- 7. The unweighted correlation is  $=\frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{.4}{\sqrt{2.8*1}} = .24$
- 8. What is the multiple correlation between the optimal composite of V1 and V2 predicting V3?

## Multiple regression

| Variable | V1  | V2  | V3  | V4  |
|----------|-----|-----|-----|-----|
| V1       | 1.0 | 0.4 | 0.4 | 0.4 |
| V2       | 0.4 | 1.0 | 0.2 | 0.0 |
| V3       | 0.4 | 0.2 | 1.0 | 0.5 |
| V4       | 0.4 | 0.0 | 0.5 | 1.0 |
|          |     |     |     |     |

1. 
$$\beta_{13.2} = \frac{r_{13} - r_{23}r_{12}}{1 - r_{12}^2} = \frac{.4 - .2 * .4}{1 - .4^2} = \frac{.32}{.84} = .38$$

2. 
$$\beta_{23.1} = \frac{r_{23} - r_{13}r_{12}}{1 - r_{12}^2} = \frac{.2 - .4 * .4}{1 - .4^2} = \frac{.04}{.84} = .05$$

3. 
$$R^2 = \beta_{13.2}r_{13} + \beta_{23.1}r_{23} = .38 * .4 + .05 * .2 = .16 => R = .4$$

4. What is the unit weighted correlation between the composite of V1 and V2 with V4?

5. The unweighted correlation is 
$$=\frac{C_{xy}}{\sqrt{V_x V_y}} = \frac{.4}{\sqrt{2.8*1}} = .36$$

- 6. What is the multiple correlation between the optimal composite of V1 and V2 predicting V3?
- 7. What is the multiple correlation between V1 and V2 predicting V4?

| A table from the psych package in R | m the psych package in R |
|-------------------------------------|--------------------------|
|-------------------------------------|--------------------------|

| Variable | V1  | V2  |  | V3  | V4     |
|----------|-----|-----|--|-----|--------|
| V1       | 1.0 | 0.4 |  | 0.4 | 0.4    |
| V2       | 0.4 | 1.0 |  | 0.2 | 0.0    |
| V3       | 0.4 | 0.2 |  | 1.0 | 0.5    |
| V4       | 0.4 | 0.0 |  | 0.5 | 1.0    |
|          |     |     |  | = 1 | R code |

$$setCor(V3 \sim V1 + V2, data = R)$$

#### Multiple Regression from matrix input

Multiple Regression R R2 Ruw R2uw V3 0.4 0.16 0.36 0.13