
Models Coombs People Objects Thurstone MDS Unfolding Scales Scaling Levels Dispersion References

An introduction to Psychometric Theory
Theory of Data, Issues in Scaling

William Revelle

Department of Psychology
Northwestern University
Evanston, Illinois USA

April, 2025

1 / 115



Models Coombs People Objects Thurstone MDS Unfolding Scales Scaling Levels Dispersion References

Outline
Science as Model fitting

Data and scaling
Assigning Numbers to Observations

Coomb’s Theory of Data
Ordering people,

Fits
Proximity rather than order

Ordering objects
Importance of non-linearity

Thurstonian scaling
Thurstonian Scaling

MDS
Unfolding

Preferential Choice
Types of scales and how to describe data

Describing data graphically

Central Tendency
More scaling examples

Shape
Types of scales

Examples
Measures of dispersion

What is the fundamental scale?

2 / 115



Models Coombs People Objects Thurstone MDS Unfolding Scales Scaling Levels Dispersion References

Data = Model + Residual

• The fundamental equations of statistics are that
• Data = Model + Residual
• Residual = Data - Model

• The problem is to specify the model and then evaluate the fit
of the model to the data as compared to other models

• Fit = f(Data, Residual)
• Typically: Fit = f (1 − Residual2

Data2 )

• Fit = f (1 − (Data−Model)2

Data2 )

• Even for something as simple as the mean is a model of the
data. The residual left over after we remove the mean is the
variance.

• This is a course in developing, evaluating, and comparing
models of data.
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Psychometrics as model estimation and model fitting

We will explore a number of models
1. Modeling the process of data collection and of scaling

• X = f (θ)
• How to measure X, properties of the function f.

2. Correlation and Regression
• Y = βX
• Rxy =

σxy

σxσy

3. Factor Analysis and Principal Components Analysis
• R = FF ′ + U2 R = CC′

4. Reliability ρxx =
σ2
θ

σ2
X

5. Item Response Theory
• p(X |θ, δ) = f (θ − δ)

6. Structural Equation Modeling
• ρyy Y = βρxx X
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A theory of data and fundamentals of scaling
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Consider the following numbers, what do they represent?

Table: Numbers without context are meaningless. What do these number
represent? Which of these numbers represent the same thing?

2.7182818284590450908 3.141592653589793116
24 86,400
37 98.7

365.25 365.25636305
31,557,600 31,558,150
3,412.1416 .4046856422

299,792,458 6.022141 * 1023

42 X

See also Thorndike (1904) for an amazing introduction to the
problem of numbers and measurement.
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Clyde Coombs and the Theory of Data

1. O = the set of objects
• O = {oi , oj . . . on}

2. S = the set of Individuals
• S = {si , sj . . . sn}

3. Two comparison operations
• order ( x > y )
• proximity ( |x − y | < ϵ

4. Two types of comparisons
• Single dyads

• (si , sj) (si , oj) (oi , oj)

• Pairs of dyads
• (si , sj)(sk , sl) (si , oj)(sk , ol) (oi , oj)(ok , ol)

Coombs (1964)
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2 types of comparisons: Monotone ordering and single peak proximity
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Theory of Data and types of measures

Table: The theory of data provides a 3 x 2 x 2 taxonomy for various types
of measures

Elements of Dyad Number of
Dyads

Comparison Name Chapter

People x People 1 Order Tournament rankings Theory of Data ??
People x People 1 Proximity Social Networks Theory of Data ??
Objects x Objects 1 Order Scaling Thurstonian scaling ??
Objects x Objects 1 Proximity Similarities Multidimensional scaling ??
People x Objects 1 Order Ability Measurement Test Theory ??, ??
People x Objects 1 Proximity Attitude Measurement Attitudes ??
People x People 2 Order Tournament rankings
People x People 2 Proximity Social Networks Theory of Data ??
Objects x Objects 2 Order Scaling Theory of Data ??
Objects x Objects 2 Proximity Multidimensional scaling Theory of Data ??
People x Objects 2 Order Ability Comparisons
People x Objects 2 Proximity Preferential Choice Unfolding Theory ??
People x Objects x 2 Proximity Individual Differences in
Objects Multidimensional Scaling
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Tournaments to order people (or teams)

1. Goal is to order the players by outcome to predict future
outcomes

2. Complete Round Robin comparisons
• Everyone plays everyone
• Requires N ∗ (N − 1)/2 matches
• How do you scale the results?

3. Partial Tournaments – Seeding and group play
• World Cup
• NCAA basketball
• Is the winner really the best?
• Can you predict other matches
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Simulating a hypothetical chess game

> set . seed (42)

> p <− seq ( −1.5 , 1 .5 , 0 .2 )
> n <− length ( p )

> p d i f <− −p %+% t ( p )

> prob <− 1 / (1 + exp ( p d i f ) )

> match <− matrix ( rbinom ( n *n ,1 , prob ) , n , n )

> tournament <− t ( upper . t r i ( match ) * (1−match ) )
+ upper . t r i ( match ) *match

> colnames ( tournament ) <− rownames ( match ) <− paste ( "P" , 1 : n , sep=" " )

> diag ( tournament ) <− NA
> tournament

1. Set the random seed
to get the same
results

2. Generate a sequence
of latent values

3. Find the matrix sum
of a column vector
and row vector

4. Convert to
probabilities (using a
logit model)

5. Convert probabilities
to outcomes

6. Show the results

11 / 115



Models Coombs People Objects Thurstone MDS Unfolding Scales Scaling Levels Dispersion References

A hypothetical chess tournament

Table: Simulated wins and losses for 16 chess players. Entries reflect row
beating column. Thus, P1 wins 4 matches, while P 16 wins 14 matches.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16
P1 NA 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0
P2 0 NA 1 1 0 0 0 0 0 0 0 0 0 0 0 0
P3 1 0 NA 0 0 0 1 0 1 0 0 0 0 0 0 0
P4 0 0 1 NA 1 1 0 0 0 1 0 0 0 0 0 0
P5 0 1 1 0 NA 1 1 0 0 0 0 1 0 0 0 0
P6 1 1 1 0 0 NA 0 0 1 0 0 1 0 0 0 0
P7 1 1 0 1 0 1 NA 1 1 1 0 0 0 0 0 0
P8 1 1 1 1 1 1 0 NA 1 0 0 0 1 1 0 0
P9 1 1 0 1 1 0 0 0 NA 1 0 1 1 0 0 0
P10 1 1 1 0 1 1 0 1 0 NA 0 1 0 0 0 1
P11 0 1 1 1 1 1 1 1 1 1 NA 1 1 0 1 0
P12 1 1 1 1 0 0 1 1 0 0 0 NA 0 1 1 0
P13 1 1 1 1 1 1 1 0 0 1 0 1 NA 0 0 0
P14 1 1 1 1 1 1 1 0 1 1 1 0 1 NA 1 0
P15 1 1 1 1 1 1 1 1 1 1 0 0 1 0 NA 0
P16 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 NA
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The problem: How to scale the players

1. We want to assign numeric values to each player

2. What is best way to map from the values to the data?

3. How well do these values recreate the data?

4. Although players ranks can vary infinitely, pairwise
competitions always are between 0 and 1

5. What kind of ranking can we use, what kind of choice model?
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Multiple ways of ordering the results
> score <− rowMeans ( tournament , na . rm = TRUE)
> qscore <− qnorm ( score ) #convert means to normal deviates
> l o g i <− l o g i t ( score ) #convert means to logit units
> chess . df <− data . frame ( l a t e n t = p , observed = score ,

normed = qscore , l o g i )

> chess . df #show the data

> pairs . panels ( chess . df ) #plot the results in a SPLOM

l a t e n t observed normed l o g i
P1 −1.5 0.2666667 −0.62292572 −1.0116009
P2 −1.3 0.1333333 −1.11077162 −1.8718022
P3 −1.1 0.2000000 −0.84162123 −1.3862944
P4 −0.9 0.2666667 −0.62292572 −1.0116009
P5 −0.7 0.3333333 −0.43072730 −0.6931472
P6 −0.5 0.3333333 −0.43072730 −0.6931472
P7 −0.3 0.4666667 −0.08365173 −0.1335314
P8 −0.1 0.6000000 0.25334710 0.4054651
P9 0.1 0.4666667 −0.08365173 −0.1335314
P10 0.3 0.5333333 0.08365173 0.1335314
P11 0.5 0.8000000 0.84162123 1.3862944
P12 0.7 0.5333333 0.08365173 0.1335314
P13 0.9 0.6000000 0.25334710 0.4054651
P14 1.1 0.8000000 0.84162123 1.3862944
P15 1.3 0.7333333 0.62292572 1.0116009
P16 1.5 0.9333333 1.50108595 2.6390573

1. Find the mean for
each row

2. Express these as
normal deviates

3. Express means as
logit units

4. Organize all three
and the original latent
score into a data
frame

5. Show the results

6. Graph the results

Note: these numbers have been revised because they were not
correcting for the NAs 14 / 115
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All three methods match the latent pretty well

latent
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So why bother with normal or logitistic modeling, why not just use
total score?

1. How to predict wins and losses from the prior scores
• What is the likelihood that player P16 will beat player 1 if they

play again? We need some mapping function from scale to
model of the data

2. P(A > B) = f (A − B) But what is the function?
• Must map unlimited A and B into 0-1 space

3. Several classic rules
• Bradly - Terry - Luce Choice rule

p(A > B|A,B) = p(A)
p(A) + p(B)

. (1)

• Thurston Normal deviation model

p(A > B|A,B) = pnorm(zA − zB) (2)

• Elo/Rasch logistic model where logitA = log(pA/(1 − pA))

p(A > B|A,B) = 1
1 + e(logitB−logitA)

(3)

(Bradley and Terry, 1952; Luce, 1959, 1977; Joe, 1991; EIo, 1978; Elo, 1961) 16 / 115
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How well do these various models fit the data?

1. Generate the model of wins and losses
• Compare to the data
• Find the residuals
• Summarize these results

2. Can do it “by hand”
• Take the scale model, model the data
• Find residuals
• Find a goodness of fit

3. Can use a psych function: scaling.fits to find the fit
• Although we don’t need to know how the function works, it is

possible to find out by using just the function name
• To find out how to call a function, ?function, e.g., ?scaling.fits
• To run a function, just say function() e.g. scaling.fits(model,

data)
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Bradly - Terry - Luce model based upon scores
>round ( score , 4 )

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
P14 P15 P16
0.2667 0.1333 0.2000 0.2667 0.3333 0.3333 0.4667 0.6000 0.4667 0.5333 0.8000 0.5333 0.6000 0.8000 0.7333 0.9333
> b t l <− score / ( score %+% t ( score ) )

round ( b t l , 2 )
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1 0.50 0.67 0.57 0.50 0.44 0.44 0.36 0.31 0.36 0.33 0.25 0.33 0.31 0.25 0.27 0.22
P2 0.33 0.50 0.40 0.33 0.29 0.29 0.22 0.18 0.22 0.20 0.14 0.20 0.18 0.14 0.15 0.12
P3 0.43 0.60 0.50 0.43 0.38 0.38 0.30 0.25 0.30 0.27 0.20 0.27 0.25 0.20 0.21 0.18
P4 0.50 0.67 0.57 0.50 0.44 0.44 0.36 0.31 0.36 0.33 0.25 0.33 0.31 0.25 0.27 0.22
P5 0.56 0.71 0.62 0.56 0.50 0.50 0.42 0.36 0.42 0.38 0.29 0.38 0.36 0.29 0.31 0.26
P6 0.56 0.71 0.62 0.56 0.50 0.50 0.42 0.36 0.42 0.38 0.29 0.38 0.36 0.29 0.31 0.26
P7 0.64 0.78 0.70 0.64 0.58 0.58 0.50 0.44 0.50 0.47 0.37 0.47 0.44 0.37 0.39 0.33
P8 0.69 0.82 0.75 0.69 0.64 0.64 0.56 0.50 0.56 0.53 0.43 0.53 0.50 0.43 0.45 0.39
P9 0.64 0.78 0.70 0.64 0.58 0.58 0.50 0.44 0.50 0.47 0.37 0.47 0.44 0.37 0.39 0.33
P10 0.67 0.80 0.73 0.67 0.62 0.62 0.53 0.47 0.53 0.50 0.40 0.50 0.47 0.40 0.42 0.36
P11 0.75 0.86 0.80 0.75 0.71 0.71 0.63 0.57 0.63 0.60 0.50 0.60 0.57 0.50 0.52 0.46
P12 0.67 0.80 0.73 0.67 0.62 0.62 0.53 0.47 0.53 0.50 0.40 0.50 0.47 0.40 0.42 0.36
P13 0.69 0.82 0.75 0.69 0.64 0.64 0.56 0.50 0.56 0.53 0.43 0.53 0.50 0.43 0.45 0.39
P14 0.75 0.86 0.80 0.75 0.71 0.71 0.63 0.57 0.63 0.60 0.50 0.60 0.57 0.50 0.52 0.46
P15 0.73 0.85 0.79 0.73 0.69 0.69 0.61 0.55 0.61 0.58 0.48 0.58 0.55 0.48 0.50 0.44
P16 0.78 0.88 0.82 0.78 0.74 0.74 0.67 0.61 0.67 0.64 0.54 0.64 0.61 0.54 0.56 0.50

(Bradley and Terry, 1952; Luce, 1959, 1977)

p(A > B|A,B) = p(A)
p(A) + p(B)

. (4)
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BTL Residuals are data - model

> resid <− tournament − b t l

> round ( resid , 2 )
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P15 P16
P1 NA 0.33 −0.57 0.50 0.56 −0.44 −0.36 −0.31 −0.36 −0.33 0.75 −0.33 −0.31 −0.25 −0.27 −0.22
P2 −0.33 NA 0.60 0.67 −0.29 −0.29 −0.22 −0.18 −0.22 −0.20 −0.14 −0.20 −0.18 −0.14 −0.15 −0.12
P3 0.57 −0.60 NA −0.43 −0.38 −0.38 0.70 −0.25 0.70 −0.27 −0.20 −0.27 −0.25 −0.20 −0.21 −0.18
P4 −0.50 −0.67 0.43 NA 0.56 0.56 −0.36 −0.31 −0.36 0.67 −0.25 −0.33 −0.31 −0.25 −0.27 −0.22
P5 −0.56 0.29 0.38 −0.56 NA 0.50 0.58 −0.36 −0.42 −0.38 −0.29 0.62 −0.36 −0.29 −0.31 −0.26
P6 0.44 0.29 0.38 −0.56 −0.50 NA −0.42 −0.36 0.58 −0.38 −0.29 0.62 −0.36 −0.29 −0.31 −0.26
P7 0.36 0.22 −0.70 0.36 −0.58 0.42 NA 0.56 0.50 0.53 −0.37 −0.47 −0.44 −0.37 −0.39 −0.33
P8 0.31 0.18 0.25 0.31 0.36 0.36 −0.56 NA 0.44 −0.53 −0.43 −0.53 0.50 0.57 −0.45 −0.39
P9 0.36 0.22 −0.70 0.36 0.42 −0.58 −0.50 −0.44 NA 0.53 −0.37 0.53 0.56 −0.37 −0.39 −0.33
P10 0.33 0.20 0.27 −0.67 0.38 0.38 −0.53 0.53 −0.53 NA −0.40 0.50 −0.47 −0.40 −0.42
0.64
P11 −0.75 0.14 0.20 0.25 0.29 0.29 0.37 0.43 0.37 0.40 NA 0.40 0.43 −0.50 0.48 −0.46
P12 0.33 0.20 0.27 0.33 −0.62 −0.62 0.47 0.53 −0.53 −0.50 −0.40 NA −0.47 0.60 0.58 −0.36
P13 0.31 0.18 0.25 0.31 0.36 0.36 0.44 −0.50 −0.56 0.47 −0.43 0.47 NA −0.43 −0.45 −0.39
P14 0.25 0.14 0.20 0.25 0.29 0.29 0.37 −0.57 0.37 0.40 0.50 −0.60 0.43 NA 0.48 −0.46
P15 0.27 0.15 0.21 0.27 0.31 0.31 0.39 0.45 0.39 0.42 −0.48 −0.58 0.45 −0.48
NA −0.44
P16 0.22 0.12 0.18 0.22 0.26 0.26 0.33 0.39 0.33 −0.64 0.46 0.36 0.39 0.46 0.44
NA
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Find Goodness of Fit “by hand”

> b t l <− score / ( score %+% t ( score ) )
> resid <− tournament − b t l

> sum( resid ^2 ,na . rm=TRUE)
[ 1 ] 41.78075
> sum( tournament ^2 ,na . rm=TRUE)
[ 1 ] 120
> GF <− 1 − sum( resid ^2 ,na . rm=TRUE) /sum( tournament ^2 ,na . rm=TRUE)

> GF
[ 1 ] 0.651827

1. Find model

2. Find Residual =
Model - Data

3. Goodness of Fit is
1 − Residual2/Data2

Use a simple function:
scaling.fits(score, tournament, test = "choice", rowwise = FALSE)
$GF
[1] 0.651827

$original
[1] 120

$resid
[1] 41.78075
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Automate it by calling a function (scaling.fits) repeatedly for
alternative models

These data may be analyzed using repeated calls to the
scaling.fits function:
> t e s t s <− c ( " choice " , " l o g i t " , " normal " )
> f i t s <− matrix (NA, ncol = 3 ,nrow=4)
> for ( i i n 1 :4 ) {
+ for ( j i n 1 :3 ) {
+ f i t s [ i , j ] <− sca l i ng . f i t s ( chess . df [ i ] , data = tournament ,

t e s t = t e s t s [ j ] , rowwise=FALSE) $GF[ 1 ] } }
> rownames ( f i t s ) <− c ( " l a t e n t " , " observed " , " normed " , " l o g i s t i c " )
> colnames ( f i t s ) <− c ( " choice " , " l o g i s t i c " , " normal " )
> round ( f i t s , 2)

choice l o g i s t i c normal
l a t e n t 0.63 0.67 0.65 The generat ing data
observed 0.65 0.59 0.63 The observed data
normed 0.66 0.68 0.70 Normal t ransformed data
l o g i s t i c 0.66 0.70 0.70 L o g i s t i c t ransformed data

Note how the scaled data fit the observed choices better than the
actual observed orders fit.
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Advanced: The scaling.fits function
> sca l i ng . f i t s <−
function ( model , data , t e s t = " l o g i t " , d i g i t s = 2 , rowwise = TRUE) {

model <− as . matrix ( model )
data <− as . matrix ( data )
i f ( t e s t == " choice " ) {

model <− as . vector ( model )
i f ( min ( model ) <= 0)

model <− model − min ( model )
prob = model / ( model %+% t ( model ) )

}
else {

p d i f <− model %+% − t ( model )
i f ( t e s t == " l o g i t " ) {

prob <− 1 / (1 + exp( − p d i f ) )
}
else {

i f ( t e s t == " normal " ) {
prob <− pnorm ( p d i f )

}
}

}
i f ( rowwise ) {

prob = 1 − prob
}
e r r o r <− data − prob
sum . e r ro r2 <− sum( e r r o r ^2 , na . rm = TRUE)
sum . data2 <− sum( data ^2 , na . rm = TRUE)
gof <− 1 − sum . e r ro r2 /sum . data2
f i t <− l i s t (GF = gof , o r i g i n a l = sum . data2 , resid = sum . e r ror2 ,

r e s i d u a l = round ( e r ro r , d i g i t s ) )
return ( f i t )

}
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Friendship as proximity

1. Chess or football provides a ranking based upon an ordering
relationship (pi > pj ).

2. Alternatively, friendship groups are based upon closeness
(|pi − pj | < δ)
2.1 Do you know person j?
2.2 Do you like person j? or as an alternative:
2.3 Please list all your friends in this class (and is j included on the

list)
2.4 Would you be interested in having a date with person j?
2.5 Would you like to have sex with person j?
2.6 Would you marry person j?

3. Typically such data will be a rectangular matrix for there are
asymmetries in closeness.
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Moh’s hardness scale provides rank orders of hardness

How hard is rock? The scratch test.

Table: Mohs’ scale of mineral hardness. An object is said to be harder
than X if it scratches X. Also included are measures of relative hardness
using a sclerometer (for the hardest of the planes if there is a ansiotropy
or variation between the planes) which shows the non-linearity of the
Mohs scale (Burchard, 2004).

Mohs Hardness Mineral Scratch hardness
1 Talc .59
2 Gypsum .61
3 Calcite 3.44
4 Fluorite 3.05
5 Apaptite 5.2
6 Orthoclase Feldspar 37.2
7 Quartz 100
8 Topaz 121
9 Corundum 949

10 Diamond 85,300
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Measuring Hardness – Scratch versus Mohs
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Why we should report effect sizes rather than p:
Another example of non-linearity
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Ordering based upon external measures

Table: The Beaufort scale of wind intensity is an early example of a scale
with roughly equal units that is observationally based. Although the units
are roughly in equal steps of wind speed in nautical miles/hour (knots),
the force of the wind is not linear with this scale, but rather varies as the
square of the velocity.

Force Wind (Knots) WMO Classification Appearance of Wind Effects
0 Less than 1 Calm Sea surface smooth and mirror-like
1 1-3 Light Air Scaly ripples, no foam crests
2 4-6 Light Breeze Small wavelets, crests glassy, no breaking
3 7-10 Gentle Breeze Large wavelets, crests begin to break, scattered whitecaps
4 11-16 Moderate Breeze Small waves 1-4 ft. becoming longer, numerous whitecaps
5 17-21 Fresh Breeze Moderate waves 4-8 ft taking longer form, many whitecaps, some spray
6 22-27 Strong Breeze Larger waves 8-13 ft, whitecaps common more spray
7 28-33 Near Gale Sea heaps up, waves 13-20 ft, white foam streaks off breakers
8 34-40 Gale Moderately High (13-20 ft) waves of greater length, edges of crests begin to break into

spindrift, foam blown in streaks
9 41-47 Strong Gale High waves (20 ft), sea begins to roll, dense streaks of foam, spray may

reduce visibility
10 48-55 Storm Very high waves (20-30 ft) with overhanging crests, sea white with densely

blown foam, heavy rolling, lowered visibility
11 56-63 Violent Storm Exceptionally high (30-45 ft) waves, foam patches cover sea, visibility

more reduced
12 64+ Hurricane Air filled with foam, waves over 45 ft, sea completely white with driving

spray, visibility greatly reduced
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The Beaufort scale is non-linear with force or probability of capsizing
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Models of scaling objects

1. Assume each object (a, b, ...z) has a scale value (A,B, ...Z )
with some noise for each measurement.

2. Probability of A > B increases with difference between a and
b

3. P(A > B) = f (a − b)

4. Can we find a function, f, such that equal differences in the
latent variable (a, b, c) lead to equal differences in the
observed variable?

5. Several alternatives
• Direct scaling on some attribute dimension (simple but flawed)
• Indirect scaling by paired comparisons (more complicated but

probably better)
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Scaling of Objects: O x O comparisons

1. Typical object scaling is concerned with order or location of
objects

2. Subjects are assumed to be random replicates of each other,
differing only as a source of noise

3. Absolute scaling techniques
• Grant Proposals: 1 to 5
• “On a scale from 1 to 10" this [object] is a X?
• If A is 1 and B is 10, then what is C?
• College rankings based upon selectivity
• College rankings based upon "yield"
• Zagat ratings of restaurants
• A - F grading of papers
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Absolute scaling: difficulties

1. "On a scale from 1 to 10" this [object] is a X?
• sensitive to context effects
• what if a new object appears?
• Need unbounded scale

2. If A is 1 and B is 10, then what is C?
• results will depend upon A, B
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Absolute scaling: artifacts

1. College rankings based upon selectivity
• accept/applied
• encourage less able to apply

2. College rankings based upon “yield"
• matriculate/accepted
• early admissions guarantee matriculation
• don’t accept students who will not attend

3. Proposed solution: college choice as a tournament
• Consider all schools that accept a student
• Which school does he/she choose?

Avery et al. (2013)
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A revealed preference ordering Avery et al. (2013)
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A revealed preference ordering Avery et al. (2013)
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Weber-Fechner Law and non-linearity of scales

1. Early studies of psychophysics by Weber (1834b,a) and
subsequently Fechner (1860) demonstrated that the human
perceptual system does not perceive stimulus intensity as a
linear function of the physical input.

2. The basic paradigm was to compare one weight with another
that differed by amount ∆, e.g., compare a 10 gram weight
with an 11, 12, and 13 gram weight, or a 10 kg weight with a
11, 12, or 13 kg weight.

3. What was the ∆ that was just detectable? The finding was
that the perceived intensity follows a logarithmic function.

4. Examining the magnitude of the “just noticeable difference" or
JND, Weber (1834b) found that

JND =
∆Intensity
Intensity

= constant . (5)
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Weber-Fechner Law and non-linearity of scales

1. An example of a logarithmic scale of intensity is the decibel
measure of sound intensity.

2. Sound Pressure Level expressed in decibels (dB) of the root
mean square observed sound pressure, Po (in Pascals) is

Lp = 20Log10
Po

Pref
(6)

3. where the reference pressure,Pref , in the air is 20µPa.

4. Just to make this confusing, the reference pressure for sound
measured in the ocean is 1µPa. This means that sound
intensities in the ocean are expressed in units that are 20 dB
higher than those units used on land.
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The Just Noticeable Difference in Person and risk perception

1. Although typically thought of as just relevant for the perceptual
experiences of physical stimuli, Ozer (1993) suggested that
the JND is useful in personality assessment as a way of
understanding the accuracy and inter judge agreement of
judgments about other people.

2. In addition, Sinn (2003) has argued that the logarithmic nature
of the Weber-Fechner Law is of evolutionary significance for
preference for risk and cites Bernoulli (1738) as suggesting
that our general utility function is logarithmic.

3. The whole of Prospect Theory (Kahneman and Tversky,
1979; Kahneman, 2011) is based upon this non-linearity of
utilities: Better to skip lunch than be someone’s dinner.
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Money and non linearity

... the utility resulting from any small increase in wealth
will be inversely proportionate to the quantity of goods al-
ready possessed .... if ... one has a fortune worth a hun-
dred thousand ducats and another one a fortune worth
same number of semi-ducats and if the former receives
from it a yearly income of five thousand ducats while the
latter obtains the same number of semi-ducats, it is quite
clear that to the former a ducat has exactly the same sig-
nificance as a semi-ducat to the latter (Bernoulli, 1738, p
25).

Implies a log function for utility.
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Econs and Humans

1. Simple expected value theory =⇒ value = probability of
event x value of event

2. Bernouli theory of expected utility came to dominate choice
theory and is fundamental to economics

3. Studied by comparing gambles and showing utility is non
linear with value

• Would you rather have $80 or a 80% chance of $100 + 20% of
$10?

• expected value is 80 versus .8 * 100 + .2 * 10 = 82

4. Bernouli value (from Kahneman, 2011)
Wealth (millions) 1 2 3 4 5 6 7 8 9 10
Utility units 10 30 48 60 70 78 84 90 96 100
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Kahneman and Tversky: Prospect Theory
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Thurstonian scaling: basic concept

1. Every object has a value

2. Rated strength of object is noisy with Gaussian noise

3. P(A > B) = f (za − zb)

4. Assume equal variance for each item

5. Convert choice frequency to normal deviates

6. Scale is average normal deviates
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Thurstone choice model
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Figure: Thurstone’s model of paired discrimination. Left panel: three items differ in their

mean level as well as their variance. Right panel: choice between two items with equal

variance reflects the relative strength of the two items. The shaded section represents

choosing item 2 over item 1.
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Thurstone’s Vegetable data as an example of one dimensional scaling

Table: Consider the likelihood of liking a vegetable. Numbers reflect
probability that the column is preferred to the row. Can we turn this into a
scale?

The veg data set from the psych package in R
Variable Turn Cab Beet Asp Car Spin S.Beans Peas Corn
Turn 0.50 0.82 0.77 0.81 0.88 0.89 0.90 0.89 0.93
Cab 0.18 0.50 0.60 0.72 0.74 0.74 0.81 0.84 0.86
Beet 0.23 0.40 0.50 0.56 0.74 0.68 0.84 0.80 0.82
Asp 0.19 0.28 0.44 0.50 0.56 0.59 0.68 0.60 0.73
Car 0.12 0.26 0.26 0.44 0.50 0.49 0.57 0.71 0.76
Spin 0.11 0.26 0.32 0.41 0.51 0.50 0.63 0.68 0.63
S.Beans 0.10 0.19 0.16 0.32 0.43 0.37 0.50 0.53 0.64
Peas 0.11 0.16 0.20 0.40 0.29 0.32 0.47 0.50 0.63
Corn 0.07 0.14 0.18 0.27 0.24 0.37 0.36 0.37 0.50

#show the data from the veg data set from the psych package
veg

(Guilford, 1954)
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Some simple R
> veg #shows the data

Turn Cab Beet Asp Car Spin S. Beans Peas Corn
Turn 0.500 0.818 0.770 0.811 0.878 0.892 0.899 0.892 0.926
Cab 0.182 0.500 0.601 0.723 0.743 0.736 0.811 0.845 0.858
Beet 0.230 0.399 0.500 0.561 0.736 0.676 0.845 0.797 0.818
Asp 0.189 0.277 0.439 0.500 0.561 0.588 0.676 0.601 0.730
Car 0.122 0.257 0.264 0.439 0.500 0.493 0.574 0.709 0.764
Spin 0.108 0.264 0.324 0.412 0.507 0.500 0.628 0.682 0.628
S. Beans 0.101 0.189 0.155 0.324 0.426 0.372 0.500 0.527 0.642
Peas 0.108 0.155 0.203 0.399 0.291 0.318 0.473 0.500 0.628
Corn 0.074 0.142 0.182 0.270 0.236 0.372 0.358 0.372 0.500
> colMeans ( veg ) #show the means ( but too many decimals )

Turn Cab Beet Asp Car Spin S . Beans
Peas Corn
0.1793333 0.3334444 0.3820000 0.4932222 0.5420000 0.5496667 0.6404444 0.6583333 0.7215556
> round ( colMeans ( veg ) ) #round o f f , but not enough decimals

Turn Cab Beet Asp Car Spin S. Beans Peas Corn
0 0 0 0 1 1 1 1

1
> round ( colMeans ( veg ) , 2 ) # t h i s looks p r e t t y good

Turn Cab Beet Asp Car Spin S. Beans Peas Corn
0.18 0.33 0.38 0.49 0.54 0.55 0.64 0.66 0.7244 / 115
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Three ways of plotting the data
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op<− par ( mfrow=c ( 1 , 3 ) ) #I want to draw three graphs
plot ( colMeans ( veg ) , main=" simple p l o t " ) #the basic plot command
do tcha r t ( colMeans ( veg ) , main="A dot cha r t " ) #dot charts are more informative

e r r o r . dots ( veg , eyes=TRUE, main=" Vegetables and Cats Eyes " )
op <− par ( mfrow=c ( 1 , 1 ) ) #set the plotting back to a single graph
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And yet more ways of plotting the data
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Confidence Intervals around the mean

op <− par ( mfrow=c ( 1 , 2 ) ) #I want to draw two graphs
do tcha r t ( colMeans ( veg ) ) #dot charts are more informative
e r r o r . dots ( veg ) #add error bars to the plot
op <− par ( mfrow=c ( 1 , 1 ) ) #set the plotting back to a single graph 46 / 115
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Alternatively, use the error.bars function from psych
Mean and 95% confidence intervals
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e r r o r . bars ( veg , bars=TRUE, y lab=" Preference " , x lab=" Vegetables " , main="Mean and 95% conf idence i n t e r v a l s " )
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Naive scaling
> round ( veg , 2 )

Turn Cab Beet Asp Car Spin S. Beans Peas Corn
Turn 0.50 0.82 0.77 0.81 0.88 0.89 0.90 0.89 0.93
Cab 0.18 0.50 0.60 0.72 0.74 0.74 0.81 0.84 0.86
Beet 0.23 0.40 0.50 0.56 0.74 0.68 0.84 0.80 0.82
Asp 0.19 0.28 0.44 0.50 0.56 0.59 0.68 0.60 0.73
Car 0.12 0.26 0.26 0.44 0.50 0.49 0.57 0.71 0.76
Spin 0.11 0.26 0.32 0.41 0.51 0.50 0.63 0.68 0.63
S. Beans 0.10 0.19 0.16 0.32 0.43 0.37 0.50 0.53 0.64
Peas 0.11 0.16 0.20 0.40 0.29 0.32 0.47 0.50 0.63
Corn 0.07 0.14 0.18 0.27 0.24 0.37 0.36 0.37 0.50

> round ( colMeans ( veg ) , 2 )
Turn Cab Beet Asp Car Spin S. Beans

Peas Corn
0.18 0.33 0.38 0.49 0.54 0.55 0.64

0.66 0.72

> veg . t <− colMeans ( veg ) − mean( veg [ , 1 ] )

> round ( veg . t , 2 )

Turn Cab Beet Asp Car Spin S. Beans
Peas Corn

0.00 0.15 0.20 0.31 0.36 0.37 0.46
0.48 0.54

1. Show the data

2. Find the mean
for each
column.
Round to 2
decimals

3. Subtract the
mean for the
first column
from the
means

4. But these are
not really
useful scale
values.
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Convert the vegetables data set to normal deviates

> z . veg <− qnorm ( as . matrix ( veg ) )
> round ( z . veg , 2 ) #see table

Turn Cab Beet Asp Car Spin S. Beans Peas Corn
Turn 0.00 0.91 0.74 0.88 1.17 1.24 1.28 1.24 1.45
Cab −0.91 0.00 0.26 0.59 0.65 0.63 0.88 1.02 1.07
Beet −0.74 −0.26 0.00 0.15 0.63 0.46 1.02 0.83 0.91
Asp −0.88 −0.59 −0.15 0.00 0.15 0.22 0.46 0.26 0.61
Car −1.17 −0.65 −0.63 −0.15 0.00 −0.02 0.19 0.55 0.72
Spin −1.24 −0.63 −0.46 −0.22 0.02 0.00 0.33 0.47 0.33
S. Beans −1.28 −0.88 −1.02 −0.46 −0.19 −0.33 0.00 0.07 0.36
Peas −1.24 −1.02 −0.83 −0.26 −0.55 −0.47 −0.07 0.00 0.33
Corn −1.45 −1.07 −0.91 −0.61 −0.72 −0.33 −0.36 −0.33 0.00

> scaled . veg <− colMeans ( z . veg )
> round ( scaled . veg , 2 )

Turn Cab Beet Asp Car Spin S. Beans
Peas Corn

−0.99 −0.47 −0.33 −0.01 0.13 0.16 0.41
0.46 0.64
> scaled <− scaled . veg − min ( scaled . veg )
> round ( scaled , 2 )

Turn Cab Beet Asp Car Spin S. Beans
Peas Corn

0.00 0.52 0.65 0.98 1.12 1.14 1.40
1.44 1.63

1. Convert to normal
deviates using the
norm function. But
that only works on
matrices, so we need
to convert the
data.frame into a
matrix.

2. Display the data

3. Find the column
means and show
them

4. subtract the smallest
value to form a
positive scale.
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Form the model based upon these scale values
> p d i f <− − scaled %+% t ( scaled )
> colnames ( p d i f ) <− rownames ( p d i f ) <− colnames ( z . veg )
> round ( pd i f , 2 )

Turn Cab Beet Asp Car Spin S. Beans Peas Corn
Turn 0.00 0.52 0.65 0.98 1.12 1.14 1.40 1.44 1.63
Cab −0.52 0.00 0.13 0.46 0.60 0.62 0.88 0.92 1.11
Beet −0.65 −0.13 0.00 0.33 0.46 0.49 0.75 0.79 0.98
Asp −0.98 −0.46 −0.33 0.00 0.14 0.16 0.42 0.46 0.65
Car −1.12 −0.60 −0.46 −0.14 0.00 0.03 0.28 0.33 0.51
Spin −1.14 −0.62 −0.49 −0.16 −0.03 0.00 0.26 0.30 0.49
S. Beans −1.40 −0.88 −0.75 −0.42 −0.28 −0.26 0.00 0.04 0.23
Peas −1.44 −0.92 −0.79 −0.46 −0.33 −0.30 −0.04 0.00 0.19
Corn −1.63 −1.11 −0.98 −0.65 −0.51 −0.49 −0.23 −0.19 0.00

> modeled <− pnorm ( p d i f )
> round ( modeled , 2 )

Turn Cab Beet Asp Car Spin S. Beans Peas Corn
Turn 0.50 0.70 0.74 0.84 0.87 0.87 0.92 0.93 0.95
Cab 0.30 0.50 0.55 0.68 0.72 0.73 0.81 0.82 0.87
Beet 0.26 0.45 0.50 0.63 0.68 0.69 0.77 0.79 0.84
Asp 0.16 0.32 0.37 0.50 0.55 0.57 0.66 0.68 0.74
Car 0.13 0.28 0.32 0.45 0.50 0.51 0.61 0.63 0.70
Spin 0.13 0.27 0.31 0.43 0.49 0.50 0.60 0.62 0.69
S. Beans 0.08 0.19 0.23 0.34 0.39 0.40 0.50 0.52 0.59
Peas 0.07 0.18 0.21 0.32 0.37 0.38 0.48 0.50 0.57
Corn 0.05 0.13 0.16 0.26 0.30 0.31 0.41 0.43 0.50

1. Subtract the column
value from the row
value using the
matrix.addition

function from psych.

2. Show the result

3. Convert the normal
deviates into
probabilities using the
norm function.
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Data = Model + Residual

1. What is the model?
• Pref = Mean (preference)
• p(A > B) = f (A,B)
• what is f?

2. Possible functions
• f = A - B (simple difference)
• A

A+B Luce choice rule
• Thurstonian scaling
• logistic scaling

3. Evaluating functions – Goodness of fit
• Residual = Model - Data
• Minimize residual
• Minimize residual2
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Examine the residuals
> resid <− veg − modeled
> round ( resid , 2 )

Turn Cab Beet Asp Car Spin S.Beans Peas Corn
Turn 0.00 0.12 0.03 -0.03 0.01 0.02 -0.02 -0.03 -0.02
Cab -0.12 0.00 0.05 0.05 0.02 0.00 0.00 0.02 -0.01
Beet -0.03 -0.05 0.00 -0.07 0.06 -0.01 0.07 0.01 -0.02
Asp 0.03 -0.05 0.07 0.00 0.01 0.02 0.01 -0.08 -0.01
Car -0.01 -0.02 -0.06 -0.01 0.00 -0.02 -0.04 0.08 0.07
Spin -0.02 0.00 0.01 -0.02 0.02 0.00 0.03 0.06 -0.06
S.Beans 0.02 0.00 -0.07 -0.01 0.04 -0.03 0.00 0.01 0.05
Peas 0.03 -0.02 -0.01 0.08 -0.08 -0.06 -0.01 0.00 0.05
Corn 0.02 0.01 0.02 0.01 -0.07 0.06 -0.05 -0.05 0.00

> sum( resid )

[ 1 ] 3.816392e−16

> sum( resid ^2)

[ 1 ] 0.1416574

> sum( resid ^2) /sum( veg ^2)

[ 1 ] 0.005697482

1−sum( resid ^2) /sum( veg ^2)

[ 1 ] 0.9943025

1. Subtract the model
from the data to find
the residuals

2. Sum the residuals
(equal 0)

3. Sum the squared
residuals

4. Compare this to the
original data
(badness of fit)

5. Convert to a
goodness of fit
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Consider alternative scaling models

constant equal squared reversed raw thurstone
Turn 0.5 1 1 9 0.00 0.00
Cab 0.5 2 4 8 0.15 0.52
Beet 0.5 3 9 7 0.20 0.65
Asp 0.5 4 16 6 0.31 0.98
Car 0.5 5 25 5 0.36 1.12
Spin 0.5 6 36 4 0.37 1.14
S.Beans 0.5 7 49 3 0.46 1.40
Peas 0.5 8 64 2 0.48 1.44
Corn 0.5 9 81 1 0.54 1.63

choice l o g i s t i c normal
Constant 0.81 0.81 0.81
Equal 0.99 0.88 0.81
Squared 0.98 0.74 0.74
Reversed 0.40 −0.27 −0.43
Raw 0.97 0.89 0.93
Thurstone 0.97 0.97 0.99

1. Constant says all
items are equal

2. Equal implies the
steps are all 1

3. Square the values of
equal

4. Reverse the rank
order!

5. Just the scale values
based upon means

6. Thurstonian scaling
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Thurstonian scaling as an example of model fitting

We don’t really care all that much about vegetables, but we do care
about the process of model fitting.

1. Examine the data

2. Specify a model

3. Estimate the model

4. Compare the model to the data

5. Repeat until satisfied or exhausted
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Multidimensional Scaling: (|oi − oj | < |ok − ol |)

Distancexy =

√√√√ n∑
i=1

(xi − yi)
2. (7)

Consider the cities data set of airline distances.
> c i t i e s

ATL BOS ORD DCA DEN LAX MIA JFK SEA SFO MSY
ATL 0 934 585 542 1209 1942 605 751 2181 2139 424
BOS 934 0 853 392 1769 2601 1252 183 2492 2700 1356
ORD 585 853 0 598 918 1748 1187 720 1736 1857 830
DCA 542 392 598 0 1493 2305 922 209 2328 2442 964
DEN 1209 1769 918 1493 0 836 1723 1636 1023 951 1079
LAX 1942 2601 1748 2305 836 0 2345 2461 957 341 1679
MIA 605 1252 1187 922 1723 2345 0 1092 2733 2594 669
JFK 751 183 720 209 1636 2461 1092 0 2412 2577 1173
SEA 2181 2492 1736 2328 1023 957 2733 2412 0 681 2101
SFO 2139 2700 1857 2442 951 341 2594 2577 681 0 1925
MSY 424 1356 830 964 1079 1679 669 1173 2101 1925 0

55 / 115



Models Coombs People Objects Thurstone MDS Unfolding Scales Scaling Levels Dispersion References

A two dimensional solution of the airline distances

> c i t y . l o c a t i o n <− cmdscale ( c i t i e s , k=2)
> plot ( c i t y . l oca t i on , type=" n " , x lab=" Dimension 1 " ,

y lab=" Dimension 2 " , main =" cmdscale ( c i t i e s ) " )
> text ( c i t y . l oca t i on , labels=names ( c i t i e s ) )
> round ( c i t y . l oca t i on , 0 )

[ , 1 ] [ , 2 ]
ATL −571 248
BOS −1061 −548
ORD −264 −251
DCA −861 −211
DEN 616 10
LAX 1370 376
MIA −959 708
JFK −970 −389
SEA 1438 −607
SFO 1563 88
MSY −301 577

1. Use the cmdscale

function to do
multidimensional
scaling, ask for a 2
dimensional solution

2. Plot the results (don’t
actually show the
points)

3. Add the names of the
cities

4. Show the numeric
results
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Original solution for 11 US cities. What is wrong with this figure?
Axes of solutions are not necessarily directly interpretable.
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Multidimensional Scaling of 11 cities
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Revised solution for 11 US cities after making
city.location <- -city.location and adding a US map.

The correct locations of the cities are shown with circles. The MDS solution is the center of
each label. The central cities (Chicago, Atlanta, and New Orleans are located very precisely,
but Boston, New York and Washington, DC are north and west of their correct locations.

MultiDimensional Scaling of US cities
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Preferential Choice: Unfolding Theory (|si − oj| < |sk − ol |)
1. “Do I like asparagus more than you like broccoli?" compares

how far apart my ideal vegetable is to a particular vegetable
(asparagus) with respect to how far your ideal vegetable is to
another vegetable (broccoli).

2. More typical is the question of whether you like asparagus
more than you like broccoli. This comparison is between your
ideal point (on an attribute dimension) to two objects on that
dimension.

3. Although the comparisons are ordinal, there is a surprising
amount of metric information in the analysis.

4. This involves unfolding the individual preference orderings to
find a joint scale of individuals and stimuli (Coombs, 1964,
1975).

5. Can now be done using multidimensional scaling of people
and objects using proximity measures.
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Some data collection
Please email me your answers to the these two set of questions

1. If you had complete choice in your life, how many children
would you like to have?

2. If had complete choice, please rank order the number of
children you would like to have

3. Part 2:
4. If you had complete choice in your life, how many children

would you like to have? Call that A
5. If you could not have N children, would you rather have A - 1

or A + 1 (call that B)
6. If you could not have A or B children, would you rather have 1

+ max(A,B) or min(A,B) - 1, call that C
7. If could not have A,B, or C children, would you rather have 1 +

max(A,B,C) or min(A,B,C) - 1, call that D
8. If could not have A,B, C or Dchildren, would you rather have 1

+ max(A,B,C,D) or min(A,B,C,D) - 1, call that E
Please email revelle@northwestern.edu your answers 60 / 115
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Two different J scales

Table: Midpoint ordering gives some metric information. Left hand side: If
the midpoint (2|3) comes after (to the right of) the midpoint (0|5) that
implies that 3 is closer to 5 than 0 is to 2. Right hand side: The midpoint
(2|3) comes before (0|5) and thus 2 is closer to 0 than 3 is to 5. Similarly,
that 2|5 comes before 3|4 implies that 4 is closer to 5 than 2 is to 3.

0 1 2 3 4 5 0 1 2 3 4 5
0 0|5 5 0 0|5 5
0 2|3 5 0 2|3 5
0 1|2 5 0 1|2 5
0 0|1 4|5 5 0 0|1 4|5 5
0 3|4 5 0 3|4 5
0 2|5 5 0 2|5 5
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Measuring Abilities and Attitudes

1. Abilities and most models of personality assume an order
relationship

• The comparison is between the person and an item.
• si > oj
• A measurement mode without error is the Guttman scale

where prob(correct |θ, δ) = 1|θ > δ, 0|θ < δ
• With error, a prototypical example is the Rasch scale where

prob(correct |θ, δ) = f (θ − δ)

2. Attitudes (and some personality models) assume a single
peak (non-monotone) ordering

• People endorse attitudes that they are close to, and reject
more extreme items.
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The Bogardus Social Distance scale as a Guttman scale

Table: The Bogardus Social Distance Scale is one example of items that
can be made to a Guttman scale

“According to my first feeling reactions I would willingly admit
members of each race (as a class, and not the best I have known,
nor the worst member) to one or more of the classifications under

which I have placed a cross (x)."
1. Would exclude from my country
2. As visitors only to my country
3. Citizenship in my country
4. To employment in my occupation in my country
5. To my street as neighbors
6. To my club as personal chums
7. To close kinship by marriage

(Bogardus, 1925)
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Creating a Guttman scale

> guttman <− matrix ( rep (0 ,56 ) ,nrow=8)
> for ( i i n 1 :7 ) { for ( j i n 1 : i ) { guttman [ i +1 , j ] <− 1 } }
> rownames ( guttman ) <− paste ( "S" ,1 :8 , sep=" " )
> colnames ( guttman ) <− paste ( "O" ,1 :7 , sep=" " )
> guttman

O1 O2 O3 O4 O5 O6 O7
S1 0 0 0 0 0 0 0
S2 1 0 0 0 0 0 0
S3 1 1 0 0 0 0 0
S4 1 1 1 0 0 0 0
S5 1 1 1 1 0 0 0
S6 1 1 1 1 1 0 0
S7 1 1 1 1 1 1 0
S8 1 1 1 1 1 1 1
> rowSums( guttman )
S1 S2 S3 S4 S5 S6 S7 S8

0 1 2 3 4 5 6 7

1. Create a matrix of 0s

2. Add 1s below the
diagonal

3. Give the rows and
columns names

4. Show it

5. “score” it
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A basic error model with parallel trace lines
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Non-monotonic trace lines measure attitudes
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Preferential choice as a comparison of an ideal point for the individual
and the objects being chosen

1. The data are rank orders, but the analysis can produce quasi
interval scales

2. Originally done by hand, now can be done using the smacof
package (de Leeuw and Mair, 2009)
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Four types of scales and their associated statistics

Table: Four types of scales and their associated statistics (Rossi, 2007;
Stevens, 1946) The statistics listed for a scale are invariant for that type
of transformation.

Scale Basic operations Transformations Invariant statistic Examples
Nominal equality Permutations Counts Detection

xi = xj Mode Species classification
χ2 and (ϕ) correlation Taxons

Ordinal order Monotonic Median Mhos Hardness scale
xi > xj (homeomorphic) Percentiles Beaufort Wind (intensity)

x’ =f(x) Spearman correlations* Richter earthquake scale
f is monotonic

Interval differences Linear Mean (µ) Temperature (°F, °C)
(Affine) Standard Deviation (σ) Beaufort Wind (velocity)

(xi − xj ) > (xk − xl ) x’ = a + bx Pearson correlation (r)
Regression (β)

Ratio ratios Multiplication Coefficient of variation ( σ
µ

) Length, mass, time
(Similiarity) Temperature (°K)

xi
xj

>
xk
xl

x’ = bx Heating degree days

The Beaufort wind speed scale is interval with respect to the velocity of the wind, but only ordinal with respect to the effect

of the wind. The Richter scale of earthquake intensity is a logarithmic scale of the energy released but linear measure of

the deflection on a seismometer.
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Graphical and tabular summaries of data

1. The Tukey 5 number summary shows the important
characteristics of a set of numbers

• Maximum
• 75th percentile
• Median (50th percentile)
• 25th percentile
• Minimum

2. Graphically, this is the box plot
• Variations on the box plot include confidence intervals for the

median
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The summary command gives the Tukey 5 numbers

> summary ( sa t . ac t )

gender education age ACT SATV SATQ
Min. :1.000 Min. :0.000 Min. :13.00 Min. : 3.00 Min. :200.0 Min. :200.0
1st Qu.:1.000 1st Qu.:3.000 1st Qu.:19.00 1st Qu.:25.00 1st Qu.:550.0 1st Qu.:530.0
Median :2.000 Median :3.000 Median :22.00 Median :29.00 Median :620.0 Median :620.0
Mean :1.647 Mean :3.164 Mean :25.59 Mean :28.55 Mean :612.2 Mean :610.2
3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:29.00 3rd Qu.:32.00 3rd Qu.:700.0 3rd Qu.:700.0
Max. :2.000 Max. :5.000 Max. :65.00 Max. :36.00 Max. :800.0 Max. :800.0

NA's :13
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A box plot of the first 4 sat.act variables

gender education age ACT
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60
A Tukey Boxplot

boxplot(sat.act[1:4],main="A Tukey Boxplot")
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A violin or density plot of the first 5 epi.bfi variables

Density plot
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violinBy(epi.bfi[1:5],main="A Tukey violin plot")
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The describe function gives more descriptive statistics

> descr ibe ( sat . ac t )

vars n mean sd median trimmed mad min max range skew k u r t o s i s se
gender 1 700 1.65 0.48 2 1.68 0.00 1 2 1 −0.61 −1.62 0.02
educat ion 2 700 3.16 1.43 3 3.31 1.48 0 5 5 −0.68 −0.07 0.05
age 3 700 25.59 9.50 22 23.86 5.93 13 65 52 1.64 2.42 0.36
ACT 4 700 28.55 4.82 29 28.84 4.45 3 36 33 −0.66 0.53 0.18
SATV 5 700 612.23 112.90 620 619.45 118.61 200 800 600 −0.64 0.33 4.27
SATQ 6 687 610.22 115.64 620 617.25 118.61 200 800 600 −0.59 −0.02 4.41
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Multiple measures of central tendency

mode The most frequent observation. Not a very stable
measure, depends upon grouping. Can be used for
categorical data.

median The number with 50% above and 50% below. A
powerful, if underused, measure. Not sensitive to
transforms of the shape of the distribution, nor
outliers. Appropriate for ordinal data, and useful for
interval data.

mean One of at least seven measures that assume interval
properties of the data.
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Multiple ways to estimate the mean

Arithmetic mean X̄ = X. = (
∑N

i=1 Xi)/N mean(x)
Trimmed mean throws away the top and bottom t% of

observations. This follows the principle that all data
are normal at the middle. mean(x,trim=.1)

Winsorized mean Find the arithmetic mean after replacing the n
lowest observations with the nth value, and the N
largest values with the Nth largest. winsor(x,trim=.2)

Geometric Mean X̄geometric = N
√∏N

i=1 Xi = eΣ(ln(x))/N (The
anti-log of the mean log score). geometric.mean(x)

Harmonic Mean X̄harmonic = N∑N
i=1 1/Xi

(The reciprocal of the mean

reciprocal). harmonic.mean(x)

Circular Mean x̄circular = tan−1
(∑

cos(x)∑
sin(x)

)
circular.mean(x)

(where x is in radians)
circadian.mean circular.mean(x) (where x is in hours)
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Circular statistics

For variables that vary geographically (e.g., wind direction, flying
direction) or diurnally, seasonally (e.g. arousal, positive affect).

Table: Hypothetical mood data from six subjects for four mood variables.
The values reflect the time of day that each scale achieves its maximum
value for each subject. Each mood variable is just the previous one
shifted by 5 hours. Note how this structure is preserved for the circular
mean but not for the arithmetic mean.

Subject Energetic Arousal Positive Affect Tense Arousal Negative Affect
1 9 14 19 24
2 11 16 21 2
3 13 18 23 4
4 15 20 1 6
5 17 22 3 8
6 19 24 5 10

Arithmetic Mean 14 19 12 9
Circular Mean 14 19 24 5
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Some hypothetical data stored in a data.frame

Participant Name Gender θ X Y Z
1 Bob Male 1 12 2 1
2 Debby Female 3 14 6 4
3 Alice Female 7 18 14 64
4 Gina Female 6 17 12 32
5 Eric Male 4 15 8 8
6 Fred Male 5 16 10 16
7 Chuck Male 2 13 4 2

> s . df <− read . c l i pboa rd ( )
> dim ( s . df ) #how many elements are i n each dimension
[ 1 ] 7 7
> s t r ( s . df ) #show the s t r u c t u r e
' data . frame ' : 7 obs . o f 7 v a r i a b l e s :
$ P a r t i c i p a n t : i n t 1 2 3 4 5 6 7
$ Name : Factor w / 7 levels " A l i ce " , "Bob" , . . : 2 4 1 7 5 6 3
$ Gender : Factor w / 2 levels " Female " , " Male " : 2 1 1 1 2 2 2
$ t he ta : i n t 1 3 7 6 4 5 2
$ X : i n t 12 14 18 17 15 16 13
$ Y : num 2 6 14 12 8 10 4
$ Z : i n t 1 4 64 32 8 16 2
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Saving the data.frame in a readable form
The previous slide is readable by humans, but harder to read by
computer. PDFs are formatted in a rather weird way. We can share
data on slides by using the dput function. Copy this output to your
clipboard from the slide, and then get it into Rdirectly.
> dput ( s f . df )

structure ( l i s t ( ID = 1:7 , Name = structure ( c (2L , 4L , 1L , 7L , 5L ,
6L , 3L ) , . Label = c ( " A l i ce " , "Bob" , " Chuck " , " Debby " , " E r i c " ,
" Fred " , " Gina " ) , class = " f a c t o r " ) , gender = structure ( c (2L ,
1L , 1L , 1L , 2L , 2L , 2L ) , . Label = c ( " Female " , " Male " ) , class = " f a c t o r " ) ,

t he ta = c (1L , 3L , 7L , 6L , 4L , 5L , 2L ) , X = c (12L , 14L , 18L ,
17L , 15L , 16L , 13L ) , Y = c (2L , 6L , 14L , 12L , 8L , 10L , 4L ) ,
Z = c (1L , 4L , 64L , 32L , 8L , 16L , 2L ) ) , .Names = c ( " ID " , "Name" ,

" gender " , " the ta " , "X" , "Y" , "Z" ) , class = " data . frame " , row .names = c (NA,
−7L ) )

my. data <− structure ( l i s t ( ID = 1:7 , Name = structure ( c (2L , 4L , 1L , 7L , 5L ,
6L , 3L ) , . Label = c ( " A l i ce " , "Bob" , " Chuck " , " Debby " , " E r i c " ,
" Fred " , " Gina " ) , class = " f a c t o r " ) , gender = structure ( c (2L ,
1L , 1L , 1L , 2L , 2L , 2L ) , . Label = c ( " Female " , " Male " ) , class = " f a c t o r " ) ,

t he ta = c (1L , 3L , 7L , 6L , 4L , 5L , 2L ) , X = c (12L , 14L , 18L ,
17L , 15L , 16L , 13L ) , Y = c (2L , 6L , 14L , 12L , 8L , 10L , 4L ) ,
Z = c (1L , 4L , 64L , 32L , 8L , 16L , 2L ) ) , .Names = c ( " ID " , "Name" ,

" gender " , " the ta " , "X" , "Y" , "Z" ) , class = " data . frame " , row .names = c (NA,
−7L ) )
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Sorting the data can display certain features

We use the order function applied to the "Names" column and
then to the 4th column.

> my. data . alpha <−
my. data [ order (my. data [ , "Name" ] ) , ]

> my. data . alpha

ID Name gender the ta X Y Z
3 3 A l i ce Female 7 18 14 64
1 1 Bob Male 1 12 2 1
7 7 Chuck Male 2 13 4 2
2 2 Debby Female 3 14 6 4
5 5 Er i c Male 4 15 8 8
6 6 Fred Male 5 16 10 16
4 4 Gina Female 6 17 12 32

> my. data . t he ta <−
my. data [ order (my. data [ , 4 ] ) , ]

> my. data . t he ta

ID Name gender the ta X Y Z
1 1 Bob Male 1 12 2 1
7 7 Chuck Male 2 13 4 2
2 2 Debby Female 3 14 6 4
5 5 Er i c Male 4 15 8 8
6 6 Fred Male 5 16 10 16
4 4 Gina Female 6 17 12 32
3 3 A l i ce Female 7 18 14 64

It was harder to see the perfect relationship between θ and X, Y,
and Z with the original data.
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Multiple estimates of the central tendency using the apply function

> apply (my. data [ 4 : 7 ] , 2 ,mean)
the ta X Y Z

4.00000 15.00000 8.00000 18.14286

> apply (my. data [ 4 : 7 ] , 2 ,mean , t r i m = .2 )

t he ta X Y Z
4.0 15.0 8.0 12.4

> apply (my. data [ 4 : 7 ] , 2 , winsor .mean , t r i m = .2 )

t he ta X Y Z
4.00000 15.00000 8.00000 12.91429

> apply (my. data [ 4 : 7 ] , 2 , harmonic .mean)

t he ta X Y Z
2.699725 14.729687 5.399449 3.527559

> apply (my. data [ 4 : 7 ] , 2 , geometr ic .mean)

t he ta X Y Z
3.380015 14.865151 6.760030 8.000000

1. The basic mean is
applied to columns 4
- 7

2. Then do this, but trim
the top and bottom
20%

3. Now, don’t trim, but
winsorize

4. Compare with the
harmonic mean

5. Compare with
geometric mean.
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Effect of reciprocal transformation upon means

Table: Hypothetical study of arousal using an exciting movie. The post
test shows greater arousal if measured using skin conductance (higher
skin conductance means more arousal), but less arousal if measured
using skin resistance (higher skin conductance means less arousal)

Condition Subject Skin Conductance Skin Resistance
Pretest (Control) 1 2 .50

2 2 .50
Average 2 .50

Posttest (Movie) 1 1 1.00
2 4 .25

Average 2.5 .61
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Non linearity can influence means if the variances differ.
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Figure: The effect of non-linearity and variability on estimates of central
tendency. The movie condition increases the variability of the arousal
measures. The “real effect" of the movie is to increase variability which is
mistakenly interpreted as an increase/decrease in arousal.
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What is the "average" class size?

Table: Average class size depends upon point of view. For the faculty
members, the median of 10 is very appealing. From the Dean’s
perspective, the faculty members teach an average of 50 students per
course. But what about the students?

Faculty Freshman/ Junior Senior Graduate Mean Median
Member Sophmore

A 20 10 10 10 12.5 10
B 20 10 10 10 12.5 10
C 20 10 10 10 12.5 10
D 20 100 10 10 35.0 15
E 200 100 400 10 177.5 150

Total
Mean 56 46 110 10 50.0 39

Median 20 10 10 10 12.5 10

83 / 115



Models Coombs People Objects Thurstone MDS Unfolding Scales Scaling Levels Dispersion References

Class size from the students’ point of view.

Table: Class size from the students’ point of view. Most students are in
large classes; the median class size is 200 with a mean of 223.

Class size Number of classes number of students
10 12 120
20 4 80

100 2 200
200 1 200
400 1 400
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Time in therapy

A psychotherapist is asked what is the average length of time that
a patient is in therapy. This seems to be an easy question, for of
the 20 patients, 19 have been in therapy for between 6 and 18
months (with a median of 12) and one has just started. Thus, the
median client is in therapy for 52 weeks with an average (in weeks)
(1 * 1 + 19 * 52)/20 or 49.4.
However, a more careful analysis examines the case load over a
year and discovers that indeed, 19 patients have a median time in
treatment of 52 weeks, but that each week the therapist is also
seeing a new client for just one session. That is, over the year, the
therapist sees 52 patients for 1 week and 19 for a median of 52
weeks. Thus, the median client is in therapy for 1 week and the
average client is in therapy of ( 52 * 1 + 19 * 52 )/(52+19) = 14.6
weeks.
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Does teaching effect learning?

1. A leading research team in motivational and educational
psychology was interested in the effect that different teaching
techniques at various colleges and universities have upon
their students. They were particularly interested in the effect
upon writing performance of attending a very selective
university, a less selective university, or a two year junior
college.

2. A writing test was given to the entering students at three
institutions in the Boston area. After one year, a similar writing
test was given again. Although there was some attrition from
each sample, the researchers report data only for those who
finished one year. The pre and post test scores as well as the
change scores were as shown below:
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Types of teaching affect student outcomes?

Table: Three types of teaching and their effect on student outcomes

School Pretest Posttest Change
Junior College 1 5 4
Non-selective university 5 27 22
Selective university 27 73 45

From these data, the researchers concluded that the quality of
teaching at the selective university was much better than that of the
less selective university or the junior college and that the students
learned a great deal more. They proposed to study the techniques
used there in order to apply them to the other institutions.
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Teaching and math performance

Another research team in motivational and educational psychology
was interested in the effect that different teaching at various
colleges and universities affect math performance. They used the
same schools as the previous example with the same design.

Table: Three types of teaching and their effect on student outcomes

School Pretest Posttest Change
Junior College 27 73 45
Non-selective university 73 95 22
Selective university 95 99 4

They concluded that the teaching at the junior college was far
superior to that of the select university. What is wrong with this
conclusion?
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Effect of teaching, effect of students, or just scaling?

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 Writing 

 time in school

P
e

rf
o

rm
a

n
c
e

Ivy

JC

TC

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Math

 time in school

P
e

rf
o

rm
a

n
c
e

Ivy

JC

TC

89 / 115



Models Coombs People Objects Thurstone MDS Unfolding Scales Scaling Levels Dispersion References

The effect of scaling upon the latent variable - observed variable
relationship
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The problem of scaling is ubiquitous
1. A leading cognitive developmentalist believed that there is a

critical stage for learning spatial representations using maps.
Children younger than this stage are not helped by maps, nor
are children older than this stage.

2. He randomly assigned 3rd, 5th, and 7th grade students into
two conditions (nested within grade), control, and map use.
Performance was measures on a task of spatial recall
(children were shown toys at particular locations in a set of
rooms and then asked to find them again later.) Half the
children were shown a map of the rooms before doing the
task.

3. Their scores were
No Map Maps Effect

3rd grade 5 27 22 Too young
5th grade 27 73 46 Critical period
7th grade 73 95 22 Too old
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Map use is most effective at a particular developmental stage
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R code for the prior figure

R code
mapuse <- matrix(c( 3,5,27,5,27,73,7, 73,95),ncol=3,byrow=TRUE)
colnames(mapuse) <- c("grade","nomaps","maps")
rownames(mapuse) <- c("3rd","5th","7th")
maps.df <- data.frame(mapuse)
maps.df
with(maps.df,plot(maps~grade,ylab="Recall",ylim=c(0,100),
typ="b", main="Recall varies by age and exposure to maps"))
with(maps.df,points(nomaps~grade,ylab="Recall",

ylim=c(0,100),typ="b",lty="dashed"))
> text(5,80,"maps") #add line labels
> text(5,15,"nomaps")

grade nomaps maps
3rd 3 5 27
5th 5 27 73
7th 7 73 95
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Yet another developmentalist
Another cognitive developmentalist believed that there is a critical
stage but that it appears earlier than previously thought. Children
younger than this stage are not helped by maps, nor are children
older than this stage. He randomly assigned 1st, 3rd, 5th and 7th
grade students into two conditions (nested within grade), control
and mapa use. Performance was measured on a task of spatial
recall (children were shown toys at particular locations in a set of
rooms and then asked to find them again later. Half the children
were shown a map of the room before doing the task.
The scores were

No Map Maps Effect
1st grade 2 12 10 Too young
3rd grade 12 50 38
5th grade 50 88 38 Critical period
7th grade 88 98 10 Too old
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A critical period in developmental?
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R code for the prior figure

R code
mapuse <- matrix(c( 1,2,12,10,3,12,50,38,5,50,88,38,7,88,98,10),ncol=4,byrow=TRUE)
colnames(mapuse) <- c("grade","nomaps","maps","Diff")
rownames(mapuse) <- c("1st" ,"3rd","5th","7th")
maps.df <- data.frame(mapuse)
maps.df
with(maps.df,plot(maps~grade,ylab="Recall",ylim=c(0,100),
typ="b", main="Recall varies by age and exposure to maps"))
with(maps.df,points(nomaps~grade,ylab="Recall",

ylim=c(0,100),typ="b",lty="dashed"))
text(4,75,"maps") #add line labels
text(4,20,"nomaps")

grade nomaps maps
3rd 3 5 27
5th 5 27 73
7th 7 73 95
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Traditional levels of measurement

Nominal Categories: X, Y, W, V

Ordinal Ranks (X > Y > W > V )

Interval Equal Differences (X − Y > W − V )

Ratio Equal intervals with a zero point (X/Y > W/V )
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Types of scales and types of inference

1. Nominal allow us to say whether groups differ in frequency

2. Ordinal allows to compare rank orders of the data, is one
score greater than another score. Any monotonic
transformation will preserve rank order.

3. Interval is the claim that we can compare the magnitude of
intervals. Only linear transformations will preserve interval
information (i.e. we can add and subtract the numbers and
preserve interval information.

4. Ratio scales preserve absolute magnitude differences.
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Ordinal scales

1. Any monotonic transformation will preserve order

2. Inferences from observed to latent variable are restricted to
rank orders

3. Statistics: Medians, Quartiles, Percentiles
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Interval scales

1. Possible to infer the magnitude of differences between points
on the latent variable given differences on the observed
variable?X is as much greater than Y as Z is from W

2. Linear transformations preserve interval information

3. Allowable statistics: Means, Variances

4. Although our data are actually probably just ordinal, we tend
to use interval assumptions.

5. Most data are normal towards the middle.

6. Most monotonic relationships are somewhat linear in the
middle.
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Ratio Scales

1. Interval scales with a zero point

2. Possible to compare ratios of magnitudes (X is twice as long
as Y)

3. Are there any psychological examples?
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The search for an appropriate scale

1. Is today colder than yesterday? (ranks) Is the amount that
today is colder than yesterday more than the amount that
yesterday was colder than the day before? (intervals)

• 50F − 39F < 68F − 50F
• 10C − 4C < 20C − 10C
• 283K − 277K < 293K − 283K

2. How much colder is today than yesterday?
• (Degree days as measure of energy use) is almost ratio
• K as measure of molecular energy
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Measurement confusions – arousal

1. Arousal is a fundamental concept in many psychological
theories. It is thought to reflect basic levels of alertness and
preparedness. Typical indices of arousal are measures of the
amount of palmer sweating.

2. This may be indexed by the amount of electricity that is
conducted by the fingertips.

3. Alternatively, it may be indexed (negatively) by the amount of
skin resistance of the finger tips. The Galvanic Skin Response
(GSR) reflects moment to moment changes, SC and SR
reflect longer term, basal levels.

4. High skin conductance (low skin resistance) is thought to
reflect high arousal.
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Arousal and anxiety

1. Anxiety is thought to be related to arousal. The following data
were collected by two different experimenters. One collected

Resistance , conductance data.
low anxiety 1, 5 1, .2
high anxiety 2, 2 .5, .5

The means were therefore:
Resistance , conductance data.

low anxiety 3 .6
high anxiety 2 .5,

2. That is, the low anxiety participants had higher skin resistance
and thus were more relaxed, but they also had higher skin
conductance, and thus were more aroused.

3. How can this be?
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Multiple measures of dispersion

Range (highest - lowest) is sensitive to the number of
observations, but is a very good way to detect errors
in data entry.

MAD (Median Absolute Deviation from the Median) applied
ordinal statistics to interval measures

Variance (σ2) is the Mean Square deviation (implies interval
data)

Standard Deviation (σ) is the Root Mean Square deviation.

Coefficient of Variation σx
µx

Average difference σx
√

2
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Normal and non-normal curves
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Three normal curves
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Seriously contaminated data
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The normal curve and its frequent transforms
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Decision making and the benefit of extreme selection ratios

1. Typical traits are approximated by a normal distribution.

2. Small differences in means or variances can lead to large
differences in relative odds at the tails

3. Accuracy of decision/prediction is higher for extreme values.

4. Do we infer trait mean differences from observing differences
of extreme values?

5. Climate change is a nice example, a 2◦ change in mean leads
to a large increase in extreme events.
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The effect of small mean differences at the tails of a distribution
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The effect of small differences in variance at the tails of a distribution
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Tukey’s ladder

Table: Tukey’s ladder of transformations. One goes up and down the
ladder until the relationships desired are roughly linear or the distribution
is less skewed. The effect of taking powers of the numbers is to
emphasize the larger numbers, the effect of taking roots, logs, or
reciprocals is to emphasize the smaller numbers.

Transformation effect
x3 emphasize large numbers reduce negative skew
x2 emphasize large numbers reduce negative skew
x the basic data√
x emphasize smaller numbers reduce positive skew

-1/x emphasize smaller numbers reduce positive skew
log(x) emphasize smaller numbers reduce positive skew
−1/x2 emphasize smaller numbers reduce positive skew
−1/x3 emphasize smaller numbers reduce positive skew
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Figure: Tukey (1977) suggested a number of transformations of data that
allow relationships to be seen more easily. Ranging from the cube to the
reciprocal of the cube, these transformations emphasize different parts of
the distribution.
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The best scale is the one that works best

1. Money is linear but negatively accelerated with utility.

2. Perceived intensity is a log function of physical intensity.

3. Probabilty of being correct is a logistic or cumulative normal
function of ability.

4. Energy used to heat a house is linear function of outdoor
temperature.

5. Time to fall a particular distance varies as the square root of

the distance (s = at2 <=> t =
√

s
a )

6. Gravitational attraction varies as 1/distance2 (F = G m1m2
d2 )

7. Hull speed of sailboat varies as square root of length of boat.

8. Sound intensity in db is log(observed/reference)

9. pH of solutions is -log(concentration of hydrogen ions)
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