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Outline

Cluster analysis
Clusters of People?

Distance
Measuring individual differences: the tradeoff between breadth
versus depth

Profile correlations

Sources of data
Indirect: Other

Individual models
MDS
More sources

Personality can be modeled at multiple levels of analysis
Ways of viewing coherence
Levels of analysis
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Cluster analysis as a reduction procedure

. Cluster analysis is used in many different fields to group

objects

Cluster analysis of galaxies in astronomy
Cluster relationships of viruses in biology
Clusters of dna in genetics

Clusters of “projectile points" in anthropology
Clusters of zipcodes in marketing

What is a a cluster?
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What is a cluster?

What is a cluster?
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Clustering rules

1. What is the measure of distance between clusters?
® Nearest neighbor
® Farthest neighbor
® Centroid distance
2. Methods
® Hierarchical
® Agglomerative (e.g., hc oriclust)
® Divisive(e.g., diana)
® Non-hierarchical (e.g., k-means)
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hclust of arrests

Cluster Dendrogram
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Wards method for cities based upon distances

Cluster Dendrogram Cluster Dendrogram
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Clustering issues

1. Cluster Objects/people

® similarities or distances?
® can objects be reversed? (not usually)

2. Cluster items (unusual, but see ICLUST)

® can be reversed (-happy)
® results are similar to factor analysis

3. Stopping rules for cluster
4. number of cluster problem
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Do people form clusters

1. The types of Theophrasus (Theophrastus, 1909)

2. Galen’s Typology of the four temperaments (Stelmack and
Stalikas, 1991)

3. Asendorf, Robbins, and Caspi (ARC) model (Asendorf et al.,
2001)

4. Gerlach with modern clustering (Gerlach et al., 2018)
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The ARC model

Figure 1
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Gerlach et al, 2018 the cluster problem
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Gerlach et al, 2018
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Problems with types

1. Multidimensional space is amazingly empty (Del Giudice,
2021)

2. Itis normal to be abnormal
3. Itis unusual to be average
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Types as “lumps in the batter"

. Although people like to think in terms of discrete types, this is

probably a mistake

High dimensional space is remarkably empty and we should
think of them as mere lumps in the batter
Think about the distribution of people in the US.

Although there are increases in density in NY, Chicago,
Houston, and LA, to say all Americans live in one of 4 cities is
clearly wrong.
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Similarity and distance

. Given a set of scores on multiple tests (a subject profile) how
should we measure similarity between different profiles?

2. What does it mean to have a similar profile?

. What metric to use?

. Minkowski distances Dy = (X(X; — Y;)")!/"

® [fr =2 thatis the normal Euclidian distance (diagonals are
shorter than sums)

e if r =1 that is a city block distance (all distances are equally
important)

e if r > 2is non-Euclidean (emphasizes the biggest difference

® if r = oo, non-Euclidean (distance is the biggest dififference)

® The central square in Stockholm (Sergels square) designed by
Piet Hein is a “super ellipse" with r =2.5
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Similarity and correlation

D= V(X Vi
let My = mean(X), M, = mean(Y) L= My—M,
Xx=X-My, y=Y-M,

D = V(= Y = VE((X = M) — (V= My) + L
D= /(x=y)° = /02 + 0% — 200 + L2

Level is distance of the means

Scatter is variances of x and y
Patten is covariance of x and y

For standardized variables, then distance is a function of the
correlation between two profiles. D? = 2(1 — ryy)
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How useful are items?
. Common observation is that items have low correlations with
other items.

. From a classical reliability perspective: Item variance =
general + group + specific + error.

. The “gospel” is that items are mainly error variance.

. This is true from a latent variable perspective, but less true if
we actually examine item variance.

. Perhaps 20% of an item is general factor variance, another
10-20% group variance but about 40% is specific and reliable
variance.

. We can see this by doing a variance decomposition of items
that are repeated across time.

7. So what?

. Lets look at the correlates of items.
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Items as analogous to SNPs in GWAS studies

. In Genome Wide Association Studies one examines
phenotypic variation as it correlates with differences in SNP
frequencies across the genome.

. Do the same by examining phenotypic variation and
correlation across the persome (stus et al., 201)
. A typical approach is to show the correlations and their
probability values (corrected for multiple tests)
® Typically displayed in “Manhattan Plots" across the genome.
We do this across the “Persome”.
. First show plots for an open source data set (spi) available in
the psych package.
® This is a set of 135 temperament items with 10 criteria for
4,000 subjects.
. Then do the same for items from the Big 5, then an extend set
(the little 27), then for a bigger data set with even more items.
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More predictors: 3 criteria big 5 + spi 27, N =4000

sex age health

Correlations

(absolute
values)
Log p values
(Holm
) corrected for
multiple
: % : tests)

23/80



References

Multiple levels
0000
fele}

255,000

0000000000000 00
education

big 5, N

0000000000000

Individual models

%00 ovcce0 0 @

3
.
-

1a

T T T T

SZ0 020 SL0 0LO SO0 000

UoREONpe YyiM SUONE[LIOD

R R

3 criter

Sources of data
00000000
0000

gender

ltems
00000e00
0000000

SZ0 020 SL0 0LO SO0 000

19pUSB UM SUOERLOD

More subjects

age

Distance
000

,
i

. 0 oo @ IJ
e el

|

o o ces wesse o |

Cluster analysis

0000000
000000

T T T T T

SZ0 020 SL0 0LO SO0 000

6% Ui suoneleL)

uado

e

oineN

9500

s0iby

uado

e

oineN

9500

01y

uado

e

omneN

9500

01y

education

T T T T
00€ 0SZ 00 OSL

uopeanpe Jo d (01)60l -

gender

° © 00w om
'

. . PYSRPIPY S

T T T T T T i
00€ 0S5z 002 OGL 00L 05 0O

Japuab Jo d (0})60) -

age

e o lIJ
v
. R

T T T T T T i
00€ 0SZ 00z OGL 00L 05 0O

@be jo d (o4)6o| -

uado

eng

oinan

95u00

a1y

usdo

eng

omnaN

95u00

oaiby

uado

eng

omnaN

9su0Q

oaiby

24/80



References
255,000

Multiple levels
0000
00600000606060000 fele}
5 + little 27 items, N
education

Individual models
0000000000000

Sources of data

00000000

60060

ia - Big
gender

Items
00000080
O000000

3 criter

Distance
000
age

More subjects

Cluster analysis

0000000
000000

. . .
:
c
S
2 .
g
H
2 .
H
P o
.
o
o
———
0 o0e 0sz o0z osi o0
uoneonpa Jod (4)6oj -
£ Rl
W%m
E flb
3
£ -} .
E g
E 2
E H
E )
E .o
E o o
E us
E &
E .
E o
F .
—
0 zo 1o 00 to zo o0e 05z 00z 0st o0
18pusb LM suopefeLIoD 1epusb Jo d (1)6o) -
E e g
E E up sof
E E :Ewnmm,
E H_mmmm:
E E %@W
E E Busalane
E E Aiefl
E o | e E Aty
= -3 E Wﬁw‘&m
E o £ R
E .
E Sl Y
F &
—
00 05z 00z oSk 0oL
obe yum suoejeLod) @be jod(01)6ol -

25/80



Items

0000000e

More subjects: 3 criteria - 904 items (temperament, abilities, interests)

Correlations with age

~log(10) p of age

100 150 200 250 300

50

0

gender

education

Correlations with gender

Correlations with education

gender

education

~log(10) p of gender
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0
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Profile correlations are analogous to the “genetic correlation™

1. For any set of criteria or grouping variables we can find a
vector of validity correlations across our predictor set.

2. We can then correlate these vectors. This is analogous to the
genetic correlation across SNPs.

3. Basically, we are correlating the profiles of the Manhattan
plots

4. | show this using the 10 criteria in the spi data set
5. First the raw correlations, then the profile correlations
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10 criteria from the SPI data set, raw correlations

Correlations of 10 SPI criteria
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10 criteria from the SPI data set, profile correlations

Profile correlations of 10 SPI criteria across 135 items
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Comparing raw and profile correlations from the SPI dataset

Comparing raw to profile correlations
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Recent paper demonstrating the power of items

1. Hofmann et al. (2025) used several large data sets of items.
2. Examined the items that correlated with sex/gender.

3. No clear structure, but strong benefit of using items over
facets over trait (big Few) dimensions
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R. Hofmann et al. Journal of Research in Personality 115 (2025) 104582
10
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Fig. 1. Area Under the Curve estimates across personality levels and inventories. Note. ROC AUC = Area Under the Receiver Operating Curve. The 300-item version of the
IPIP-NEO only included participants who identified with an English-speaking country. Colours and point shapes represent trait levels. Residuals represent item scores
after removing facet-specific variance.
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Predicting gender by country by method
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Cattell and the data box: Subjects x Measures x Time

Subjects
S
Sz
O,-,/
Sr O;  Time (Occasions)
Ty To Tk

Tests - "

Cattell (1946, 1966)
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Cattell and the Data Box

1. One occasion
® R: Correlate measures across persons : standard personality
traits
® Q: Correlate Persons across measures: Personality typology
2. One Person
® P: Correlate Measures across Occasions; Individual
personality structure
® O: Correlate Occasions across measures: Individual
psychological environment
3. One Measure

® T: Correlate Occasions across Persons: Anxiety arousing
situations
® S: Correlate Persons across Occasions: Anxious person types

Cattell (1946, 1966b,a); Revelle (2009, 2015) (Note that Cattell
changed his notation from paper to paper).
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Taking Cattell seriously

. Is personality ergodic?

® No (Nesselroade and Molenaar, 2016)

® Every person has a different measurement model
Revelle and Wilt (2016)

® Same factors, different structural relations
The power of within subject measurement across time:

Experience Sampling Method/ Event based sampling
methodology (ESM) as a powerful within subject tool.

® Beck and Jackson, 2021, 2020, 2022)
® Revelle and Wilt (2019a,b); Wilt and Revelle (2019)
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Beck and Jackson (2022) Idiosyncratic prediction models
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The psychological spectrum

107% 1072 107! 10° 10! 10® 10®° 10* 105 105 107 108 10°  Seconds

110 100 1 10 <2 17 3 112 4 3 32 Conventional
Ms Ms Ms Sec Sec Min Min Hrs Day Days Mons Yrs Yrs Units
Meaning Processing Life Span Development
Cumulative Performance
Insight (Ah Hal) Stability and Change

Maturational Changes

Developmental Stages

Learning and Skill Development
Feedback Effects
Trial by Trial
Direction of Attention Arml}stalsthythms
Working Memory " Cireadian

Attentional Shlfts Arousal Shifts

Sustained Performance

Signal Processing  Affective Response Physical Development
Reaction Time h-avoid

Level of integration

d' and 8 motivation

Neural Transmission Mood Variation
Average Evoked Response

Neural Firing Emotional Response Hormonal Cycles
Single Cell Recordi Skin Cond
Heart Rate Response
Breathing Rate Response

(Revelle, 1995; Revelle and Wilt, 2019a)
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Methods of data collection

. Self report of identiy — how do you normally feel, act, think,

want (The ABCDs)

® Traits/states (normally versus in the moment)

® adjectives/sentences/narratives
Other reports of reputation (peer, supervisor, subordinate)
Ability tests —what is the best you can do
Behavioral observation - what is the subject doing?
Physiology

® above the neck EEG/MRI/fIMRI/PET
® below the neck HR/SC/BP/blood/urine

Telemetric

® active: web/big EAR/text messaging
® passive: appearance of webpages, facebook

7. Large scale national and international surveys

Animal — lesion/drug/observation
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Methods of data collection

. Self Report
® Direct subjective
® empirical scales: MMPI/Strong-Campbell
® factorial scales: EPI/16PF/NEOPI-R
® rational scales: PRF
. Indirect/projective (access to subconscious?)
o TAT
® Rorschach
. Indirect/objective
® Cattell objective test battery
® |mplicit Attitudes Test (RT measures)
® Emotional “Stroop”

. Indirect/other

® Kelly Construct Repetory Grid (Kelly, 1955)
® Carroll INDSCAL (Carroll and Chang, 1970)
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George Kelly and the theory of personal constructs

Kelly (1955)
1. People as scientists:

2. “each man contemplates in his own personal way the stream
of events upon which he finds himself so swiftly borne"

3. “Man looks at his world through transparent patterns or
templates which he creates and then attempts to fit over the
realities of which the world is composed. The fit is not always
very good. Yet without such patterns the world appears to be
such an undifferentiated homogeneity that man is unable to
make any sense out of it. Even a poor fit is more helpful to
him than nothing at all.
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George Kelly (1955) and the theory of personal constructs

1. Fundamental postulate:
“A person’s processes are psychological channelized by the
ways in which he anticipates events."

2. Measurement:
The role construct repertory test (REP test).

3. Analysis:
What are the fundamental constructs with which one views the
world? This can be the entire set of constructs elicited by the
REP test, or some clustering or grouping of these constructs.
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A Kelly Rep test

self

O

lover

mother

father

sib

teacher

Best friend

Boss

coworker

construct
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Problems with the Rep Test

. Completely idiosyncratic. There is no concern with any
fundamental dimensions.

. However, it is possible to apply same group space and still
detect individual construct dimensions

. But consider a similar model: individuals as having unique
distortions of shared space.

. The INDSCAL and ALSCAL algorithms are available to solve
for joint and individual spaces.
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Multidimensional Scaling

1. Application of metric or non-metric scaling
2. Metric scaling:

. Find dimensional representation of observed distances (e.g.,
latitude and longitude)

. Strong assumption of data and metric
. Non-metric scaling

. Scaling to minimize a criterion insensitive to ordinal
transformations
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Multidimensional Scaling: (jo; — 0| < |ox — 0/])

Distancey, =

Individual models
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i=1

Consider the cities data set of airline distances.

> cities

ATL
BOS
ORD
DCA
DEN
LAX
MIA
JFK
SEA
SFO
MSY

ATL

934
585
542
1209
1942
605
751
2181
2139
424

934

853
392
1769
2601
1252
183
2492
2700
1356

ORD
585
853

598
918
1748
1187
720
1736
1857
830

DCA
542
392
598
0
1493
2305
922
209
2328
2442
964

DEN
1209
1769

918
1493

0

836
1723
1636
1023

951
1079

LAX
1942
2601
1748
2305

836

0
2345
2461

957

341
1679

MIA
605
1252
1187
922
1723
2345
0
1092
2733
2594
669

JFK
751
183
720
209
1636
2461
1092
0
2412
2577
1173

SEA
2181
2492
1736
2328
1023

957
2733
2412

0

681

2101

SFO MSY
2139 424
2700 1356
1857 830
2442 964
951 1079
341 1679
2594 669
2577 1173
681 2101
0 1925
1925 0
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A two dimensional solution of the airline distances

> city.location <- cmdscale(cities , k=2)
plot(city.location ,type="n", xlab="Dimension{1"|Jse the cmdscale
ylab="Dimension_2",main ="cmdscale(cities)")

\

> text(city.location ,labels=names(cities)) function to do
> round(city . location ,0) multidimensional
scaling, ask for a 2
(1] [.2] dimensional solution
ATL -571 248 ,
BOS 1061 —548 2. Plot the results (don'’t

ORD -264 -251 actually show the
DCA -861 -211

points)
DEN 616 10
LAX 1370 376 3. Add the names of the
MIA -959 708 "
JFK  -970 -389 citles
SEA 1438 -607 4. Show the numeric

SFO 1563 88
MSY -301 577 results
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Original solution for 11 US cities. What is wrong with this figure?
Axes of solutions are not necessarily directly interpretable.

Multidimensional Scaling of 11 cities

MIA

g |

© MSY

g |

< LAX
Cg ATL
R
j SFO
i o - DEN
g

N DCA ORD

4 Uk

o |

8 {B0s SEA

' T T T T T T

-1000 -500 0 500 1000 1500

Dimension 1
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Revised solution for 11 US cities after making

city.location <- -city.location and adding a US map.
The correct locations of the cities are shown with circles. The MDS solution is the center of
each label. The central cities (Chicago, Atlanta, and New Orleans are located very precisely,
but Boston, New York and Washington, DC are north and west of their correct locations.

MultiDimensional Scaling of US cities
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Individual differences in multidimensional scaling

1. Add individual differences to the basic MDS equation:

Distancey, =

2. There exists a group space for everyone, and an individual set
of weights (w) for each person

n
Distancepx, = ,| > wip(X; — yi)?. (3)
i—

3. People differ in they way they see the world
4. Most classic is how New Yorkers see the world
(Carroll and Chang, 1970)
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How mathematiciians distort the world

ANew Yorker's View

‘Square root azuthal'prjio_, with bious-.distortion“
e |

ines il ’

,f'cl""rll /. Q',%r
WNiglilgey-

e .li
U ]

E\Y

g
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The German Health care system view
C THE GERMAN
HEALTH CARE

SYSTEM

e 7
. L a

P " Kivabom

References
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Myron Wish and the perceptions of nations

How do people view other countries wisn etal, 1970; ruskal and wish, 1978)
A four dimensional solution at the group level
Asked attitudes towards the Viet Nam War

Could reproduce attitudes from the weights applied to two of
the world view dimensions.

Eal O
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Wish and the structure of nations
o
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o
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OIM I: POLITICAL ALIGNMENT AND [DEOLOGY.

F1c. 2. Dimensions 1 and 3 of three-dimensional INDSCAL configuration for

12 nations.
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Individual weights

s DOVES 2 g
g DO
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Q
6
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g
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D @
® ® &

DIM I: POLITICAL ALIGNMENT AND IDEOLOGY

Fic. 3. Plot of subjects’ weights on Dimensions 1 and 2 of three-dimensional
INDSCAL configuration for 12 nations.
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Distance Items Sources of data Individual models Multiple levels
000 00000000 00000000 0000000000008 0000
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wesy U5
GERMANY o
.
SOUTH ENGLAND
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.
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o .
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~ .
w
>
w
a
e SPAIN
g .
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INDIA ® . o ETHIOPIA
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DIM 1: POLITICAL ALIGNMENT AND IDEOLOGY

F16. S. Dimensions 1 and 2 of four-dimensional INDSCAL configuration for
21 nations.
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Even more sources of data

1. Performance tests

® OSS stress tests

® New faculty job talks

® Clinical graduate applicant interviews Internships

® Probationary Periods
2. Web based instrumentation

® self report

® indirect (IAT) (Greenwald and Banaji, 1995; Schimmack, 2021)
3. Archival and Longitudinal data sets

* MIDUS (Mroczek, 2007)

® Project Talent (Damian et al., 2019; Major et al., 2012;

Spengler et al., 2018)
® Large public domain data sets (Hofmann et al., 2025)

But all need evidence for reliability and valildity.
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Using time as a variable: the measurement of mood

1. Between subjects at one time
2. Within subjects over time
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The example of introversion-Extraversion in affective space

1. Personality trait description

® |ntroversion/Extraversion
® Neuroticism Stability

2. Affective Space (moods)

® Positive Affect
® Negative Affect

3. Behavior

® Activation and Approach
® |nhibition and Avoidance
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Standard model of personality and emotions

1. Dimensional model of personality Particularly Extraversion
and Neuroticism

Dimensional model of emotions
Positive Affect and Negative Affect
Dimensional congruence
Extraversion and Positive Affectivity

I LI S A

Neuroticism and Negative Affectivity
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Measuring the dimensions of affect

1. Motivational state questionnaire (MSQ) 70-72 items given as
part of multiple studies on personality and cognitive
performance item ltems taken from

® Thayer’s Activation-Deactivation Adjective Check list (ADACL)
(Thayer, 1970, 1978, 1989)

® Watson and Clark Positive Affect Negative Affect Scale
(PANAS) (Watson et al., 1988)

® | arsen and Diener adjective circumplex (piener and Larsen, 1984; Larsen
and Ketelaar, 1989)

® MSQ given before and after various mood manipulations (revelle
and Anderson, 1998)

2. Structural data is from before

3. Structural results based upon factor analyses of correlation
matrix to best summarize data
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MR2
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Factor Analysis
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Personality Measurement: snapshot or movie

1. Cross sectional measurement of a person is similar to a
photograph— a snapshot of a person at an instant.

2. Appropriate measurement requires the integration of affect,

behavior, and cognition across time

References
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Personality and affect: within subject measurement

1. High frequency sampling: physiology
® Physiological assays
e Cortisol
® Body temperature

® Core body temperature collected for 2 weeks

® Data taken by aggregating subjects from multiple studies
conducted by Eastman and Baehr on phase shifting by light and
EXErcise (Baehr et al., 2000)

2. Low frequency sampling: cell phone sampling of affect (Wilt
et al., 2016a,b)
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Within subjects: diary studies

Measures

Check lists

Rating scales

High frequency sampling <—— Multiple samples per day
Low frequency sampling — Once a day

Sometimes at different times

References
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High frequency measures of affect

. Measures taken every 3 hours during waking day for 6-14
days

. Paper and pencil mood ratings

. Short form of the MSQ — Visual Analog Scale — Sampled
every 3 hours

. Portable computer (Palm and later cell phone) mood ratings
<—— Short form of the MSQ

. Sampled every 3 hours
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Traditional measures

1. Mean level

Energetic arousal
Tense arousal
Positive affect
Negative affect

2. Variability
3. Correlation across measures (Synchrony)

70/80



Cluster analysis Distance Items Sources of data Individual models Multiple levels References
0000000 000 00000000 00000000 0000000000000 0000
0006000 0060000 60060 0000000000008000 fele}

Phasic measures of affect

1. Fit 24 hour cosine to data

® [terative fit for best fitting cosine

® Permutation test of significance of fit
2. Measure

® Fit (coherence)
* Amplitude
® Phase
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Simulating mood

" & File Edit Parameters 525PM |

Energetic Arousal Alpha= 0.00 AcroPhase= 24.0 fit (r)= 1.00

References
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Simulating mood across 2 weeks
& File Edit Parameters 5:23PM |

Energetic Arousal Alpha= 0.00 AcroPhase= 24.0 fit (r)= 1.00

Tense Arousal Alpha= 0.00 AcroPhase= 6.0 fit (r)=rlh@@ngle=0.00 r EAxTA=-0.41
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Fitting mood

& File Edit Parameters
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Personality as coherence over time and space

1. Personality is an abstraction used to describe and explain the
coherent patterning over time and space of affect, cognition,
and desire as they result in behavior for an individual.

® Reputation: How others see our behavior.
® |dentity: How we interpret our behavior as the result of our
affects and our cognitions.

2. This unique patterning or individual signature reflects a
complex set of dynamic processes that can be described at
three levels of analysis: within individuals, between
individuals, and between groups of individuals.

3. It can be measured at different levels of temporal resolution
and different levels of specificity.
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Observing and explaining the stream of behavior

To all observers, the dynamic processes of the stream of
feelings, thoughts, motives and behavior show a unique
temporal signature for each individual.

To an individual differences theorist, the how and why
individuals differ in their patterns is the domain of study.

To a biologically minded psychologist, these dynamic
processes reflect genetic bases of biological sensitivities to
the reinforcement contingencies of the environment.

To a mathematically oriented psychologist, these dynamic
processes may be modeled in terms of the differential
equations of the Dynamics of Action and its
reparameterization (ainson and Birch, 1970; Revelle and Gondon, 2015).
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A more complicated model
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Simulation of four individuals in a conversation

Action tendencies over time
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Multilevel analysis can yield surprising results

Although it is well known that the structure within a level does not
imply anything about the structure at a different level, this
distinction is frequently forgotten.
1. Various names for the phenomena:
® Yule-Simpson paradox (simpson, 1951; Yule, 1903)
® The fallacy of ecological correlations (robinson, 1950)
® The within group—between group problem (pedhazur, 1997)
® Ergodicity (Molenaar, 2004)
2. This distinction will be important as we consider models of
coherency and differences within-individuals,
between-individuals, and between groups of individuals.
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Thinking by analogy
. Anna Baumert and colleagues considered the many
theoretical problems facing those of us who want to propose
integrative theories aumertetal, 2017).
. In a commentary on that article David Condon and | have
suggested that it useful when searching for explanations at
these multiple levels to consider the physical analogy of
weather, climate, and climate change which are all driven by
the same underlying cause (the balance of solar radiation and
re-radiation) but have complex lower level drivers that have
larger immediate effects (revelle and condon, 2017).
. We argued that weather:climate:climate change ::
emotion:personality:personality development
. Thus we search for general models that can be applied at
these multiple levels.
. One such model is the Dynamics of ACtion (atinson and Birch, 1970; Revelle

and Condon, 2015)
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