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What is psychometrics?

In physical science a first essential step in the direction of
learning any subject is to find principles of numerical reck-
oning and methods for practicably measuring some quality
connected with it. I often say that when you can measure
what you are speaking about and express it in numbers you
know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is
of a meagre and unsatisfactory kind; it may be the begin-
ning of knowledge, but you have scarcely in your thoughts
advanced to the stage of science, whatever the matter may
be. (Thomsom, 1891)

Taken from Michell (2003) in his critique of psychometrics: Michell, J. The Quantitative Imperative: Positivism,

Näıve Realism and the Place of Qualitative Methods in Psychology, Theory & Psychology, Vol. 13, No. 1, 5-31

(2003)
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What is psychometrics?

The character which shapes our conduct is a definite and
durable ‘something’, and therefore . . . it is reasonable to
attempt to measure it. (Galton, 1884)

The history of science is the history of measurement” (J.
M. Cattell, 1893)

Whatever exists at all exists in some amount. To know
it thoroughly involves knowing its quantity as well as its
quality (E.L. Thorndike, 1918)
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What is psychometrics?

We hardly recognize a subject as scientific if measurement
is not one of its tools (Boring, 1929)

There is yet another [method] so vital that, if lacking it,
any study is thought ... not be scientific in the full sense
of the word. This further an crucial method is that of
measurement. (Spearman, 1937)

One’s knowledge of science begins when he can mea-
sure what he is speaking about and express in numbers
(Eysenck, 1973)

Psychometrics: the assigning of numbers to observed psychological
phenomena and to unobserved concepts. Evaluation of the fit of
theoretical models to empirical data.
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Psychometric Theory: A conceptual Overview
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Observed Variables
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Latent Variables
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Theory
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A theory of data and fundamentals of scaling
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Correlation, Regression, Partial Correlation, Multiple Regression

X

X 1

X 2

X 3

X 4

X 5

X 6

X 7

X 8

X 9

Error

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9

Y

Y 1

Y 2

Y 3

Y 4

Y 5

Y 6

Y 7

Y 8

Error

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

βy .x

βx .y

rxy

rx4y4.x5

Ry .x6x7x8

11 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

Measurement: A latent variable approach.
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Reliability: How well does a test reflect one latent trait?
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Face, Concurrent, Predictive, Consruct
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Psychometric Theory: Data, Measurement, Theory
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Psychometric Theory: Data, Measurement, Theory
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Data = Model + Residual

• The fundamental equations of statistics are that
• Data = Model + Residual
• Residual = Data - Model

• The problem is to specify the model and then evaluate the fit
of the model to the data as compared to other models
• Fit = f(Data, Residual)
• Typically: Fit = f (1− Residual2

Data2 )

• Fit = f (1− (Data−Model)2

Data2 )

• Even for something as simple as the mean is a model of the
data. The residual left over after we remove the mean is the
variance.
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Psychometrics as model estimation and model fitting

We will explore a number of models

1. Modeling the process of data collection and of scaling
• X = f (θ)
• How to measure X, properties of the function f.

2. Correlation and Regression
• Y = βX
• Rxy =

σxy

σxσy

3. Factor Analysis and Principal Components Analysis
• R = FF ′ + U2 R = CC ′

4. Reliability ρxx =
σ2
θ

σ2
X

5. Item Response Theory
• p(X |θ, δ) = f (θ − δ)

6. Structural Equation Modeling
• ρyyY = βρxxX
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A theory of data and fundamentals of scaling
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Consider the following numbers, what do they represent?

Table: Numbers without context are meaningless. What do these number
represent? Which of these numbers represent the same thing?

2.7182818284590450908 3.141592653589793116
24 86,400
37 98.7

365.25 365.25636305
31,557,600 31,558,150
3,412.1416 .4046856422

299,792,458 6.022141 * 1023

42 X
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Clyde Coombs and the Theory of Data

1. O = the set of objects
• O = {oi , oj . . . on}

2. S = the set of Individuals
• S = {si , sj . . . sn}

3. Two comparison operations
• order ( x > y )
• proximity ( |x − y | < ε

4. Two types of comparisons
• Single dyads

• (si , sj) (si , oj) (oi , oj)

• Pairs of dyads
• (si , sj)(sk , sl) (si , oj)(sk , ol) (oi , oj)(ok , ol)

Coombs (1964)
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2 types of comparisons: Monotone ordering and single peak proximity
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Theory of Data and types of measures

Table: The theory of data provides a 3 x 2 x 2 taxonomy for various types
of measures

Elements of Dyad Number
of Dyads

Comparison Name Chapter

People x People 1 Order Tournament rankings Theory of Data ??
People x People 1 Proximity Social Networks Theory of Data ??
Objects x Objects 1 Order Scaling Thurstonian scaling ??
Objects x Objects 1 Proximity Similarities Multidimensional scaling ??
People x Objects 1 Order Ability Measurement Test Theory ??, ??
People x Objects 1 Proximity Attitude Measurement Attitudes ??
People x People 2 Order Tournament rankings
People x People 2 Proximity Social Networks Theory of Data ??
Objects x Objects 2 Order Scaling Theory of Data ??
Objects x Objects 2 Proximity Multidimensional scaling Theory of Data ??
People x Objects 2 Order Ability Comparisons
People x Objects 2 Proximity Preferential Choice Unfolding Theory ??
People x Objects x 2 Proximity Individual Differences in
Objects Multidimensional Scaling
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Tournaments to order people (or teams)

1. Goal is to order the players by outcome to predict future
outcomes

2. Complete Round Robin comparisons
• Everyone plays everyone
• Requires N ∗ (N − 1)/2 matches
• How do you scale the results?

3. Partial Tournaments – Seeding and group play
• World Cup
• NCAA basketball
• Is the winner really the best?
• Can you predict other matches
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Friendship as proximity

1. Chess or football provides a ranking based upon an ordering
relationship (pi > pj).

2. Alternatively, friendship groups are based upon closeness
(|pi − pj | < δ)

2.1 Do you know person j?
2.2 Do you like person j? or as an alternative:
2.3 Please list all your friends in this class (and is j included on the

list)
2.4 Would you be interested in having a date with person j?
2.5 Would you like to have sex with person j?
2.6 Would you marry person j?

3. Typically such data will be a rectangular matrix for there are
asymmetries in closeness.
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Moh’s hardness scale provides rank orders of hardness

Table: Mohs’ scale of mineral hardness. An object is said to be harder
than X if it scratches X. Also included are measures of relative hardness
using a sclerometer (for the hardest of the planes if there is a ansiotropy
or variation between the planes) which shows the non-linearity of the
Mohs scale (Burchard, 2004).

Mohs Hardness Mineral Scratch hardness
1 Talc .59
2 Gypsum .61
3 Calcite 3.44
4 Fluorite 3.05
5 Apaptite 5.2
6 Orthoclase Feldspar 37.2
7 Quartz 100
8 Topaz 121
9 Corundum 949

10 Diamond 85,300
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Ordering based upon external measures

Table: The Beaufort scale of wind intensity is an early example of a scale
with roughly equal units that is observationally based. Although the units
are roughly in equal steps of wind speed in nautical miles/hour (knots),
the force of the wind is not linear with this scale, but rather varies as the
square of the velocity.

Force Wind (Knots) WMO Classification Appearance of Wind Effects
0 Less than 1 Calm Sea surface smooth and mirror-like
1 1-3 Light Air Scaly ripples, no foam crests
2 4-6 Light Breeze Small wavelets, crests glassy, no breaking
3 7-10 Gentle Breeze Large wavelets, crests begin to break, scattered whitecaps
4 11-16 Moderate Breeze Small waves 1-4 ft. becoming longer, numerous whitecaps
5 17-21 Fresh Breeze Moderate waves 4-8 ft taking longer form, many whitecaps, some spray
6 22-27 Strong Breeze Larger waves 8-13 ft, whitecaps common more spray
7 28-33 Near Gale Sea heaps up, waves 13-20 ft, white foam streaks off breakers
8 34-40 Gale Moderately high (13-20 ft) waves of greater length, edges of crests begin to break

into spindrift, foam blown in streaks
9 41-47 Strong Gale High waves (20 ft), sea begins to roll, dense streaks of foam, spray

may reduce visibility
10 48-55 Storm Very high waves (20-30 ft) with overhanging crests, sea white with

densely blown foam, heavy rolling, lowered visibility
11 56-63 Violent Storm Exceptionally high (30-45 ft) waves, foam patches cover sea, visibility

more reduced
12 64+ Hurricane Air filled with foam, waves over 45 ft, sea completely white with driving

spray, visibility greatly reduced
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Models of scaling objects

1. Assume each object (a, b, ...z) has a scale value (A,B, ...Z )
with some noise for each measurement.

2. Probability of A > B increases with difference between a and b

3. P(A > B) = f (a− b)

4. Can we find a function, f, such that equal differences in the
latent variable (a, b, c) lead to equal differences in the
observed variable?

5. Several alternatives
• Direct scaling on some attribute dimension (simple but flawed)
• Indirect scaling by paired comparisons (more complicated but

probably better)
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Scaling of Objects: O x O comparisons

1. Typical object scaling is concerned with order or location of
objects

2. Subjects are assumed to be random replicates of each other,
differing only as a source of noise

3. Absolute scaling techniques
• Grant Proposals: 1 to 5
• ”On a scale from 1 to 10” this [object] is a X?
• If A is 1 and B is 10, then what is C?
• College rankings based upon selectivity
• College rankings based upon ”yield”
• Zagat ratings of restaurants
• A - F grading of papers
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Absolute scaling: difficulties

1. ”On a scale from 1 to 10” this [object] is a X?
• sensitive to context effects
• what if a new object appears?
• Need unbounded scale

2. If A is 1 and B is 10, then what is C?
• results will depend upon A, B
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Absolute scaling: artifacts

1. College rankings based upon selectivity
• accept/applied
• encourage less able to apply

2. College rankings based upon ”yield”
• matriculate/accepted
• early admissions guarantee matriculation
• don’t accept students who will not attend

3. Proposed solution: college choice as a tournament
• Consider all schools that accept a student
• Which school does he/she choose?

Avery, Glickman, Hoxby & Metrick (2013)
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A revealed preference ordering Avery et al. (2013)
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A revealed preference ordering Avery et al. (2013)
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Weber-Fechner Law and non-linearity of scales

1. Early studies of psychophysics by Weber (1834b,a) and
subsequently Fechner (1860) demonstrated that the human
perceptual system does not perceive stimulus intensity as a
linear function of the physical input.

2. The basic paradigm was to compare one weight with another
that differed by amount ∆, e.g., compare a 10 gram weight
with an 11, 12, and 13 gram weight, or a 10 kg weight with a
11, 12, or 13 kg weight.

3. What was the ∆ that was just detectable? The finding was
that the perceived intensity follows a logarithmic function.

4. Examining the magnitude of the “just noticeable difference” or
JND, Weber (1834b) found that

JND =
∆Intensity

Intensity
= constant. (1)
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Weber-Fechner Law and non-linearity of scales

1. An example of a logarithmic scale of intensity is the decibel
measure of sound intensity.

2. Sound Pressure Level expressed in decibels (dB) of the root
mean square observed sound pressure, Po (in Pascals) is

Lp = 20Log10
Po

Pref
(2)

3. where the reference pressure,Pref , in the air is 20µPa.

4. Just to make this confusing, the reference pressure for sound
measured in the ocean is 1µPa. This means that sound
intensities in the ocean are expressed in units that are 20 dB
higher than those units used on land.
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The Just Noticeable Difference in Person perception

1. Although typically thought of as just relevant for the
perceptual experiences of physical stimuli, Ozer (1993)
suggested that the JND is useful in personality assessment as
a way of understanding the accuracy and inter judge
agreement of judgments about other people.

2. In addition, Sinn (2003) has argued that the logarithmic
nature of the Weber-Fechner Law is of evolutionary
significance for preference for risk and cites Bernoulli (1738)
as suggesting that our general utility function is logarithmic.

36 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

Money and non linearity

... the utility resulting from any small increase in wealth
will be inversely proportionate to the quantity of goods
already possessed .... if ... one has a fortune worth a
hundred thousand ducats and another one a fortune worth
same number of semi-ducats and if the former receives
from it a yearly income of five thousand ducats while the
latter obtains the same number of semi-ducats, it is quite
clear that to the former a ducat has exactly the same sig-
nificance as a semi-ducat to the latter (Bernoulli, 1738, p
25).

Implies a log function for utility.

37 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

Econs and Humans

1. Simple expected value theory =⇒ value = probability of
event x value of event

2. Bernouli theory of expected utility came to dominate choice
theory and is fundamental to economics

3. Studied by comparing gambles and showing utility is non
linear with value
• Would you rather have $80 or a 80% chance of $100 + 20% of

$10?
• expected value is 80 versus .8 * 100 + .2 * 10 = 82

4. Bernouli value (from Kahneman, 2011)
Wealth (millions) 1 2 3 4 5 6 7 8 9 10
Utility units 10 30 48 60 70 78 84 90 96 100
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Kahneman and Tversky: Prospect Theory
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Four types of scales and their associated statistics

Table: Four types of scales and their associated statistics (Rossi, 2007;
Stevens, 1946) The statistics listed for a scale are invariant for that type
of transformation.

Scale Basic operations Transformations Invariant statistic Examples
Nominal equality Permutations Counts Detection

xi = xj Mode Species classification

χ2 and (φ) correlation Taxons

Ordinal order Monotonic Median Mhos Hardness scale
xi > xj (homeomorphic) Percentiles Beaufort Wind (intensity)

x’ =f(x) Spearman correlations* Richter earthquake scale
f is monotonic

Interval differences Linear Mean (µ) Temperature (°F, °C)
(Affine) Standard Deviation (σ) Beaufort Wind (velocity)

(xi − xj ) > (xk − xl ) x’ = a + bx Pearson correlation (r)
Regression (β)

Ratio ratios Multiplication Coefficient of variation ( σ
µ

) Length, mass, time

(Similiarity) Temperature (°K)
xi
xj
>

xk
xl

x’ = bx Heating degree days

The Beaufort wind speed scale is interval with respect to the velocity of the wind, but only ordinal with respect to

the effect of the wind. The Richter scale of earthquake intensity is a logarithmic scale of the energy released but

linear measure of the deflection on a seismometer.
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Graphical and tabular summaries of data

1. The Tukey 5 number summary shows the important
characteristics of a set of numbers
• Maximum
• 75th percentile
• Median (50th percentile)
• 25th percentile
• Minimum

2. Graphically, this is the box plot
• Variations on the box plot include confidence intervals for the

median
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The summary command gives the Tukey 5 numbers

> summary(sat.act)

gender education age ACT SATV SATQ
Min. :1.000 Min. :0.000 Min. :13.00 Min. : 3.00 Min. :200.0 Min. :200.0
1st Qu.:1.000 1st Qu.:3.000 1st Qu.:19.00 1st Qu.:25.00 1st Qu.:550.0 1st Qu.:530.0
Median :2.000 Median :3.000 Median :22.00 Median :29.00 Median :620.0 Median :620.0
Mean :1.647 Mean :3.164 Mean :25.59 Mean :28.55 Mean :612.2 Mean :610.2
3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:29.00 3rd Qu.:32.00 3rd Qu.:700.0 3rd Qu.:700.0
Max. :2.000 Max. :5.000 Max. :65.00 Max. :36.00 Max. :800.0 Max. :800.0

NA's :13
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A box plot of the first 4 sat.act variables

gender education age ACT

0
10

20
30

40
50

60

A Tukey Boxplot

boxplot(sat.act[1:4],main=”A Tukey Boxplot”)
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A violin or density plot of the first 5 epi.bfi variables

Density plot

O
bs
er
ve
d

epiE epiS epiImp epilie epiNeur

0
5

10
15

20

violinBy(epi.bfi[1:5],main=”A Tukey violin plot”)
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The describe function gives more descriptive statistics

> describe(sat.act)

vars n mean sd median trimmed mad min max range skew kurtosis se
gender 1 700 1.65 0.48 2 1.68 0.00 1 2 1 -0.61 -1.62 0.02
education 2 700 3.16 1.43 3 3.31 1.48 0 5 5 -0.68 -0.07 0.05
age 3 700 25.59 9.50 22 23.86 5.93 13 65 52 1.64 2.42 0.36
ACT 4 700 28.55 4.82 29 28.84 4.45 3 36 33 -0.66 0.53 0.18
SATV 5 700 612.23 112.90 620 619.45 118.61 200 800 600 -0.64 0.33 4.27
SATQ 6 687 610.22 115.64 620 617.25 118.61 200 800 600 -0.59 -0.02 4.41
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Multiple measures of central tendency

mode The most frequent observation. Not a very stable
measure, depends upon grouping. Can be used for
categorical data.

median The number with 50% above and 50% below. A
powerful, if underused, measure. Not sensitive to
transforms of the shape of the distribution, nor
outliers. Appropriate for ordinal data, and useful for
interval data.

mean One of at least seven measures that assume interval
properties of the data.
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Multiple ways to estimate the mean

Arithmetic mean X̄ = X. = (
∑N

i=1 Xi )/N mean(x)
Trimmed mean throws away the top and bottom t% of

observations. This follows the principle that all data
are normal at the middle. mean(x,trim=.1)

Winsorized mean Find the arithmetic mean after replacing the n
lowest observations with the nth value, and the N
largest values with the Nth largest.
winsor(x,trim=.2)

Geometric Mean X̄geometric = N

√∏N
i=1 Xi = eΣ(ln(x))/N (The

anti-log of the mean log score). geometric.mean(x)
Harmonic Mean X̄harmonic = N∑N

i=1 1/Xi
(The reciprocal of the mean

reciprocal). harmonic.mean(x)

Circular Mean x̄circular = tan−1
(∑

cos(x)∑
sin(x)

)
circular.mean(x)

(where x is in radians)
circadian.mean circular.mean(x) (where x is in hours)
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Class size from the students’ point of view.

Table: Class size from the students’ point of view. Most students are in
large classes; the median class size is 200 with a mean of 223.

Class size Number of classes number of students

10 12 120
20 4 80

100 2 200
200 1 200
400 1 400
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Time in therapy

A psychotherapist is asked what is the average length of time that
a patient is in therapy. This seems to be an easy question, for of
the 20 patients, 19 have been in therapy for between 6 and 18
months (with a median of 12) and one has just started. Thus, the
median client is in therapy for 52 weeks with an average (in weeks)
(1 * 1 + 19 * 52)/20 or 49.4.
However, a more careful analysis examines the case load over a
year and discovers that indeed, 19 patients have a median time in
treatment of 52 weeks, but that each week the therapist is also
seeing a new client for just one session. That is, over the year, the
therapist sees 52 patients for 1 week and 19 for a median of 52
weeks. Thus, the median client is in therapy for 1 week and the
average client is in therapy of ( 52 * 1 + 19 * 52 )/(52+19) =
14.6 weeks.
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Does teaching effect learning?

1. A leading research team in motivational and educational
psychology was interested in the effect that different teaching
techniques at various colleges and universities have upon their
students. They were particularly interested in the effect upon
writing performance of attending a very selective university, a
less selective university, or a two year junior college.

2. A writing test was given to the entering students at three
institutions in the Boston area. After one year, a similar
writing test was given again. Although there was some
attrition from each sample, the researchers report data only
for those who finished one year. The pre and post test scores
as well as the change scores were as shown below:
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Types of teaching affect student outcomes?

Table: Three types of teaching and their effect on student outcomes

School Pretest Posttest Change

Junior College 1 5 4
Non-selective university 5 27 22
Selective university 27 73 45

From these data, the researchers concluded that the quality of
teaching at the selective university was much better than that of
the less selective university or the junior college and that the
students learned a great deal more. They proposed to study the
techniques used there in order to apply them to the other
institutions.
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Teaching and math performance

Another research team in motivational and educational psychology
was interested in the effect that different teaching at various
colleges and universities affect math performance. They used the
same schools as the previous example with the same design.

Table: Three types of teaching and their effect on student outcomes

School Pretest Posttest Change

Junior College 27 73 45
Non-selective university 73 95 22
Selective university 95 99 4

They concluded that the teaching at the junior college was far
superior to that of the select university. What is wrong with this
conclusion?
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Effect of teaching, effect of students, or just scaling?
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The problem of scaling is ubiquitous

1. A leading cognitive developmentalist believed that there is a
critiical stage for learning spatial representations using maps.
Children younger than this stage are not helped by maps, nor
are children older than this stage.

2. He randomly assigned 3rd, 5th, and 7th grade students into
two conditions (nested within grade), control, and map use.
Performance was measures on a task of spatial recall (children
were shown toys at particular locations in a set of rooms and
then asked to find them again later.) Half the children were
shown a map of the rooms before doing the task.

3. Their scores were
No Map Maps Effect

3rd grade 5 27 22 Too young
5th grade 27 73 46 Critical period
7th grade 73 95 22 Too old
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Map use is most effective at a particular developmental stage

3 4 5 6 7
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Recall varies by age and exposure to maps
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Correlation and Regression

1. Developed in 1886 by Francis Galton
• Further developments by Karl Pearson and Charles Spearman

2. Correlation/regression are the root concept of psychometrics
• Other statistics, including factor analysis are ways of partioning

correlation matrices
• Reliability theory is merely an application of factor analysis

56 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

Francis Galton 1822-1911

Francis Galton (1822-1911) was among the most influential
psychologists of the 19th century. He did pioneering work on the
correlation coefficient, behavior genetics and the measurement of
individual differences. He introspectively examined the question of
free will and introduced the lexical hypothesis to the study of
personality and character. In addition to psychology, he did
pioneering work in meteorology and introduced the scientific use of
fingerprints. Whenever he could, he counted.
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Karl Pearson 1857-1936

Carl (Karl) Pearson was among the most influential statisticians of
the early 20th century. Founder of the statistics department at
University College London. He developed the Pearson Product
Moment Correlation Coefficient, its special case the φ coefficient,
and the tetrachoric correlation. Major behavior geneticist and
eugenicist.
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Charles Spearman 1863-1945

Charles Spearman (1863-1945) was the leading psychometrician of
the early 20th century. His work on the classical test theory, factor
analysis, and the g theory of intelligence continues to influence
psychometrics, statistics, and the study of intelligence. More than
100 years after their publication, his most influential papers remain
two of the most frequently cited articles in psychometrics and
intelligence.
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Galton’s height data

Table: The relationship between the average of both parents (mid parent)
and the height of their children. The basic data table is from Galton
(1886) who used these data to introduce reversion to the mean (and
thus, linear regression). The data are available as part of the UsingR or
psych packages.

> library(psych)
> data(galton)
> galton.tab <- table(galton)
> galton.tab[order(rank(rownames(galton.tab)),decreasing=TRUE),] #sort it by decreasing row values

child
parent 61.7 62.2 63.2 64.2 65.2 66.2 67.2 68.2 69.2 70.2 71.2 72.2 73.2 73.7
73 0 0 0 0 0 0 0 0 0 0 0 1 3 0
72.5 0 0 0 0 0 0 0 1 2 1 2 7 2 4
71.5 0 0 0 0 1 3 4 3 5 10 4 9 2 2
70.5 1 0 1 0 1 1 3 12 18 14 7 4 3 3
69.5 0 0 1 16 4 17 27 20 33 25 20 11 4 5
68.5 1 0 7 11 16 25 31 34 48 21 18 4 3 0
67.5 0 3 5 14 15 36 38 28 38 19 11 4 0 0
66.5 0 3 3 5 2 17 17 14 13 4 0 0 0 0
65.5 1 0 9 5 7 11 11 7 7 5 2 1 0 0
64.5 1 1 4 4 1 5 5 0 2 0 0 0 0 0
64 1 0 2 4 1 2 2 1 1 0 0 0 0 0
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Galton’s height data
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Bivariate Regression
X Y ε

X Y- ���
ε�

βy .x

ŷ = βy .xx + ε

βy .x =
σxy
σ2
x
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Bivariate Regression
X Y ε

X Y- ���
ε�

βy .x

ŷ = βy .xx + ε

βy .x =
σxy
σ2
x

δ

X Y���
δ - �

βx .y

x̂ = βx .yy + δ

βy .x =
σxy
σ2
y
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Bivariate Correlation is the geometric average of the two regressions
X Y

X Y

ŷ = βy .xx + ε

βy .x =
σxy
σ2
x

x̂ = βx .yy + δ

βy .x =
σxy
σ2
y

rxy =
σxy√
σ2
xσ

2
y
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The variance and the variance of a composite

1. If x1 and x2 are vectors of N observations centered around
their mean (that is, deviation scores) their variances are
Vx1 =

∑
x2
i1/(N − 1) and Vx2 =

∑
x2
i2/(N − 1), or, in matrix

terms Vx1 = x′1x1/(N − 1) and Vx2 = x′2x2/(N − 1).

2. The variance of the composite made up of the sum of the
corresponding scores, x + y is just

V(x1+x2) =

∑
(xi + yi )

2

N − 1
=

∑
x2
i +

∑
y2
i + 2

∑
xiyi

N − 1
=

(x + y)′(x + y)

N − 1
. (3)

Or, more generally,

S =


vx1 cx1x2 · · · cx1xn

cx1x2 vx2 cx2xn
...

. . .
...

cx1xn cx2xn · · · vxn
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Sums as matrix products

VX =
∑ X′X

N − 1
=

1′(X′X)1

N − 1
.

VY =
∑ Y′Y

N − 1
=

1′(Y′Y)1

N − 1

and

CXY =
∑ X′Y

N − 1
=

1′(X′Y)1

N − 1
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Use R
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Get the data from a remote data source

A nice feature of R is that you can read from remote data sets.
The example dataset is on the personality-project.org server. Get it
and describe it. R code
> datafilename="http://personality-project.org/r/datasets/psychometrics.prob2.txt"
> mydata =read.table(datafilename,header=TRUE) #read the data file
> describe(mydata,skew=FALSE)

var n mean sd median trimmed mad min max range se
ID 1 1000 500.50 288.82 500.50 500.50 370.65 1.0 1000.00 999.00 9.13
GREV 2 1000 499.77 106.11 497.50 498.75 106.01 138.0 873.00 735.00 3.36
GREQ 3 1000 500.53 103.85 498.00 498.51 105.26 191.0 914.00 723.00 3.28
GREA 4 1000 498.13 100.45 495.00 498.67 99.33 207.0 848.00 641.00 3.18
Ach 5 1000 49.93 9.84 50.00 49.88 10.38 16.0 79.00 63.00 0.31
Anx 6 1000 50.32 9.91 50.00 50.43 10.38 14.0 78.00 64.00 0.31
Prelim 7 1000 10.03 1.06 10.00 10.02 1.48 7.0 13.00 6.00 0.03
GPA 8 1000 4.00 0.50 4.02 4.01 0.53 2.5 5.38 2.88 0.02
MA 9 1000 3.00 0.49 3.00 3.00 0.44 1.4 4.50 3.10 0.02
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Plot it using the pairs.panels function.
Use the pairs.panels function to show a splom plot (use gap=0 and pch=’.’).

>pairs.panels(mydata,pch=”.”,gap=0) #pch=’.’ makes for a cleaner plot
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Plot a subset of the data using the c() function (concatenate).

Use the pairs.panels function to show a splom plot. Select a subset
of variables using the c() function.
>pairs.panels(mydata[c(2:4,6:8)],pch=’.’)
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Do this for the first 200 subjects

> pairs.panels(mydata[mydata$ID < 200,c(2:4,6:8)])
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0 center the data

In order to do interaction terms in regressions, it is necessary to 0
center the data. We need to turn the result into a data.frame in
order to use it in the regression function.

> cent <- data.frame(scale(mydata,scale=FALSE))
> describe(cent,skew=FALSE)

var n mean sd median trimmed mad min max range se
ID 1 1000 0 288.82 0.00 0.00 370.65 -499.50 499.50 999.00 9.13
GREV 2 1000 0 106.11 -2.27 -1.02 106.01 -361.77 373.23 735.00 3.36
GREQ 3 1000 0 103.85 -2.53 -2.02 105.26 -309.53 413.47 723.00 3.28
GREA 4 1000 0 100.45 -3.13 0.54 99.33 -291.13 349.87 641.00 3.18
Ach 5 1000 0 9.84 0.07 -0.05 10.38 -33.93 29.07 63.00 0.31
Anx 6 1000 0 9.91 -0.32 0.11 10.38 -36.32 27.68 64.00 0.31
Prelim 7 1000 0 1.06 -0.03 0.00 1.48 -3.03 2.97 6.00 0.03
GPA 8 1000 0 0.50 0.02 0.00 0.53 -1.50 1.38 2.88 0.02
MA 9 1000 0 0.49 0.00 0.00 0.44 -1.60 1.50 3.10 0.02

The standard deviations and ranges have not changed. However,
the means are all 0. We use the scale function with the
scale=FALSE option.
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The standardized data

Alternatively, we could standardize it.
> z.data <- data.frame(scale(my.data))
> describe(z.data)

var n mean sd median trimmed mad min max range skew kurtosis se
ID 1 1000 0 1 0.00 0.00 1.28 -1.73 1.73 3.46 0.00 -1.20 0.03
GREV 2 1000 0 1 -0.02 -0.01 1.00 -3.41 3.52 6.93 0.09 -0.07 0.03
GREQ 3 1000 0 1 -0.02 -0.02 1.01 -2.98 3.98 6.96 0.22 0.08 0.03
GREA 4 1000 0 1 -0.03 0.01 0.99 -2.90 3.48 6.38 -0.02 -0.06 0.03
Ach 5 1000 0 1 0.01 -0.01 1.05 -3.45 2.95 6.40 0.00 0.02 0.03
Anx 6 1000 0 1 -0.03 0.01 1.05 -3.67 2.79 6.46 -0.14 0.14 0.03
Prelim 7 1000 0 1 -0.02 0.00 1.40 -2.86 2.81 5.67 -0.02 -0.01 0.03
GPA 8 1000 0 1 0.03 0.01 1.06 -3.00 2.74 5.74 -0.07 -0.29 0.03
MA 9 1000 0 1 0.01 0.01 0.90 -3.23 3.04 6.27 -0.07 -0.09 0.03

Or, we can standardize it by dividing though by the standard
deviation. We use the scale function to do this for us.
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Show how the correlations do not change with standardization

Find the correlations using the lowerCor function. This, by
default, uses pairwise Pearson correlations and rounds to two
decimals. Compare with the standard cor function.

> lowerCor(my.data)
ID GREV GREQ GREA Ach Anx Prelm GPA MA

ID 1.00
GREV -0.01 1.00
GREQ 0.00 0.73 1.00
GREA -0.01 0.64 0.60 1.00
Ach 0.00 0.01 0.01 0.45 1.00
Anx -0.01 0.01 0.01 -0.39 -0.56 1.00
Prelim 0.02 0.43 0.38 0.57 0.30 -0.23 1.00
GPA 0.00 0.42 0.37 0.52 0.28 -0.22 0.42 1.00
MA -0.01 0.32 0.29 0.45 0.26 -0.22 0.36 0.31 1.00

> lowerCor(z.data)
ID GREV GREQ GREA Ach Anx Prelm GPA MA

ID 1.00
GREV -0.01 1.00
GREQ 0.00 0.73 1.00
GREA -0.01 0.64 0.60 1.00
Ach 0.00 0.01 0.01 0.45 1.00
Anx -0.01 0.01 0.01 -0.39 -0.56 1.00
Prelim 0.02 0.43 0.38 0.57 0.30 -0.23 1.00
GPA 0.00 0.42 0.37 0.52 0.28 -0.22 0.42 1.00
MA -0.01 0.32 0.29 0.45 0.26 -0.22 0.36 0.31 1.00
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Show that the two matrices do not differ using the lowerUpper

function

r <- lowerCor(my.data) #find the original correlations
z <- lowerCor(z.data) #find the z transformed correlations
lu <- lowerUpper(r,z,diff=TRUE) #combine into one matrix and take the difference

round(lu,2)

ID GREV GREQ GREA Ach Anx Prelim GPA MA
ID NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
GREV -0.01 NA 0.00 0.00 0.00 0.00 0.00 0.00 0
GREQ 0.00 0.73 NA 0.00 0.00 0.00 0.00 0.00 0
GREA -0.01 0.64 0.60 NA 0.00 0.00 0.00 0.00 0
Ach 0.00 0.01 0.01 0.45 NA 0.00 0.00 0.00 0
Anx -0.01 0.01 0.01 -0.39 -0.56 NA 0.00 0.00 0
Prelim 0.02 0.43 0.38 0.57 0.30 -0.23 NA 0.00 0
GPA 0.00 0.42 0.37 0.52 0.28 -0.22 0.42 NA 0
MA -0.01 0.32 0.29 0.45 0.26 -0.22 0.36 0.31 NA
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Scatter Plot Matrix showing correlation and LOESS regression
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The effect of selection on the correlation

UgradGPA

660 700 740 780

-0.08

3.
4

3.
6

3.
8

4.
0

4.
2

-0.25

66
0

70
0

74
0

78
0 GRE.Q

-0.12

3.4 3.6 3.8 4.0 4.2 600 650 700 750 800

60
0

65
0

70
0

75
0

80
0

GRE.V

• Consider what happens if we
select a subset
• The “Oregon” model
• (GPA + (V+Q)/200) > 11.6

• The range is truncated, but
even more important, by using
a compensatory selection
model, we have changed the
sign of the correlations.
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Regression and restriction of range
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Although the correlation is very sensitive, regression slopes are
relatively insensitive to restriction of range.
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R code for regression figures
gradq <- subset(gradf,gradf[2]>700) #choose the subset
with(gradq,lm(GRE.V ~ GRE.Q)) #do the regression
Call:
lm(formula = GRE.V ~ GRE.Q)
Coefficients:
(Intercept) GRE.Q

258.1549 0.4977

#show the graphic
op <- par(mfrow=c(1,2)) #two panel graph
with(gradf,{
plot(GRE.V ~ GRE.Q,xlim=c(200,800),main='Original data', pch=16)
abline(lm(GRE.V ~ GRE.Q))
})
text(300,500,'r = .46 b = .56')
with(gradq,{
plot(GRE.V ~ GRE.Q,xlim=c(200,800),main='GRE Q > 700',pch=16)
abline(lm(GRE.V ~ GRE.Q))
})
text(300,500,'r = .18 b = .50')

op <- par(mfrow=c(1,1)) #switch back to one panel
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Show many correlations with a heat map using cor.plot.
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Alternative versions of the correlation coefficient

Table: A number of correlations are Pearson r in different forms, or with
particular assumptions. If r =

∑
xiyi√∑
x2
i

∑
y2
i

, then depending upon the type

of data being analyzed, a variety of correlations are found.

Coefficient symbol X Y Assumptions
Pearson r continuous continuous
Spearman rho (ρ) ranks ranks
Point bi-serial rpb dichotomous continuous
Phi φ dichotomous dichotomous
Bi-serial rbis dichotomous continuous normality
Tetrachoric rtet dichotomous dichotomous bivariate normality
Polychoric rpc categorical categorical bivariate normality
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The φ coefficient is just a Pearson r on dichotomous data

Table: The basic table for a phi, φ coefficient, expressed in raw
frequencies in a four fold table is taken from Pearson & Heron (1913)

Success Failure Total

Accept A B R1 = A + B

Reject C D R2 = C + D

Total C1 = A + C C2=B + D n = A + B + C + D

In terms of the raw data coded 0 or 1, the phi coefficient can be
derived directly by direct substitution, recognizing that the only
non zero product is found in the A cell

n
∑

XiYi −
∑

Xi

∑
Yi = nA− R1C1

φ =
AD − BC√

(A + B)(C + D)(A + C )(B + D)
. (4)
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Correlation size 6= causal importance

Table: The relationship between sex and pregnancy (hypothetical data)

Pregnant Not Pregnant Total

Intercourse 2 1,041 1,043

No intercourse 0 6,257 6,257

Total 2 7,298 7,300

Phi .04

> sex <- c(2, 1041,0,6257)
> phi(sex)

[1] 0.04
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The biserial correlation estimates the latent correlation
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The tetrachoric correlation estimates the latent correlation
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Correlation size 6= causal importance – tetrachoric correlation

Table: The relationship between sex and pregnancy (hypothetical data)

Pregnant Not Pregnant Total

Intercourse 2 1,041 1,043

No intercourse 0 6,257 6,257

Total 2 7,298 7,300

Phi .04 ρtet .95

> sex <- c(2, 1041,0,6257)
> phi(sex)

[1] 0.04
> tetrachoric(sex,correct=FALSE)

Call: tetrachoric(x = sex, correct = FALSE)
tetrachoric correlation
[1] 0.95

with tau of
[1] -3.5 -1.1
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Pearson r versus tetrachoric correlation on dichotomous ability data

> tet <- tetrachoric(ability)
Loading required package: mvtnorm
Loading required package: parallel
> per <- lowerCor(ability)
> per.tet <- lowerUpper(tet$rho,per)
> per.tet.diff <- lowerUpper(tet$rho,per,diff=TRUE)
> round(per.tet[1:8,1:8],2)

reason.4 reason.16 reason.17 reason.19 letter.7 letter.33 letter.34 letter.58
reason.4 NA 0.28 0.40 0.30 0.28 0.23 0.29 0.29
reason.16 0.45 NA 0.32 0.25 0.27 0.20 0.26 0.21
reason.17 0.61 0.51 NA 0.34 0.29 0.26 0.29 0.29
reason.19 0.46 0.40 0.53 NA 0.25 0.25 0.27 0.25
letter.7 0.45 0.43 0.47 0.40 NA 0.34 0.40 0.33
letter.33 0.37 0.32 0.42 0.39 0.52 NA 0.37 0.28
letter.34 0.46 0.41 0.47 0.43 0.60 0.56 NA 0.32
letter.58 0.47 0.35 0.48 0.40 0.51 0.43 0.50 NA
> round(per.tet.diff[1:8,1:8],2)

reason.4 reason.16 reason.17 reason.19 letter.7 letter.33 letter.34 letter.58
reason.4 NA 0.17 0.21 0.17 0.16 0.14 0.17 0.18
reason.16 0.45 NA 0.19 0.15 0.16 0.13 0.16 0.14
reason.17 0.61 0.51 NA 0.19 0.18 0.16 0.18 0.19
reason.19 0.46 0.40 0.53 NA 0.14 0.14 0.15 0.15
letter.7 0.45 0.43 0.47 0.40 NA 0.18 0.20 0.18
letter.33 0.37 0.32 0.42 0.39 0.52 NA 0.19 0.15
letter.34 0.46 0.41 0.47 0.43 0.60 0.56 NA 0.18
letter.58 0.47 0.35 0.48 0.40 0.51 0.43 0.50 NA
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Pearson r versus polychoric correlation on 6 alternative BFI data
> poly <- polychoric(bfi[1:10])
> pearson <- cor(bfi[1:10],use="pairwise")
> poly.pear <- lowerUpper(poly$rho,pearson)
> poly.pear.diff <- lowerUpper(poly$rho,pearson,diff=TRUE)
> poly.pear

> round(poly.pear,2)
A1 A2 A3 A4 A5 C1 C2 C3 C4 C5

A1 NA -0.34 -0.27 -0.15 -0.18 0.03 0.02 -0.02 0.13 0.05
A2 -0.41 NA 0.49 0.34 0.39 0.09 0.14 0.19 -0.15 -0.12
A3 -0.32 0.56 NA 0.36 0.50 0.10 0.14 0.13 -0.12 -0.16
A4 -0.18 0.39 0.41 NA 0.31 0.09 0.23 0.13 -0.15 -0.24
A5 -0.23 0.45 0.57 0.36 NA 0.12 0.11 0.13 -0.13 -0.17
C1 0.00 0.12 0.12 0.11 0.16 NA 0.43 0.31 -0.34 -0.25
C2 0.01 0.16 0.16 0.27 0.14 0.48 NA 0.36 -0.38 -0.30
C3 -0.02 0.23 0.16 0.17 0.15 0.34 0.40 NA -0.34 -0.34
C4 0.15 -0.19 -0.16 -0.20 -0.17 -0.40 -0.43 -0.38 NA 0.48
C5 0.06 -0.16 -0.19 -0.28 -0.20 -0.29 -0.33 -0.38 0.53 NA
> round(poly.pear.diff,2)

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5
A1 NA -0.07 -0.06 -0.03 -0.05 -0.02 -0.01 0.00 0.02 0.01
A2 -0.41 NA 0.07 0.05 0.06 0.02 0.02 0.03 -0.05 -0.03
A3 -0.32 0.56 NA 0.05 0.07 0.03 0.02 0.03 -0.04 -0.03
A4 -0.18 0.39 0.41 NA 0.05 0.02 0.04 0.04 -0.04 -0.04
A5 -0.23 0.45 0.57 0.36 NA 0.04 0.03 0.02 -0.04 -0.03
C1 0.00 0.12 0.12 0.11 0.16 NA 0.06 0.04 -0.06 -0.04
C2 0.01 0.16 0.16 0.27 0.14 0.48 NA 0.04 -0.05 -0.03
C3 -0.02 0.23 0.16 0.17 0.15 0.34 0.40 NA -0.04 -0.04
C4 0.15 -0.19 -0.16 -0.20 -0.17 -0.40 -0.43 -0.38 NA 0.05
C5 0.06 -0.16 -0.19 -0.28 -0.20 -0.29 -0.33 -0.38 0.53 NA
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Spearman vs. Pearson on BFI data

> spear <- cor(bfi[1:10],use="pairwise",method="spearman")
> spear.pear <- lowerUpper(spear,pearson,diff=TRUE)
> round(spear.pear,2)

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5
A1 NA -0.03 -0.03 -0.01 -0.04 -0.05 -0.03 -0.02 0.02 0.01
A2 -0.37 NA 0.02 0.00 0.01 0.02 0.01 0.01 -0.03 -0.03
A3 -0.30 0.50 NA 0.00 0.03 0.02 0.01 0.02 -0.03 -0.02
A4 -0.16 0.34 0.36 NA 0.01 0.01 0.02 0.02 -0.03 -0.01
A5 -0.22 0.40 0.53 0.31 NA 0.02 0.02 0.01 -0.03 -0.02
C1 -0.02 0.11 0.12 0.10 0.15 NA 0.02 0.01 -0.04 -0.01
C2 -0.01 0.14 0.15 0.25 0.13 0.45 NA 0.01 -0.02 0.00
C3 -0.04 0.21 0.16 0.15 0.14 0.32 0.37 NA -0.01 -0.01
C4 0.15 -0.18 -0.16 -0.18 -0.16 -0.38 -0.40 -0.35 NA 0.01
C5 0.06 -0.15 -0.18 -0.26 -0.19 -0.26 -0.30 -0.35 0.49 NA
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Comments on these alternative correlations

1. The assumption is that there was an underlying bivariate,
normal distribution that was somehow artificially
dichotomized.

2. But some things are in fact dichotomous, not normally
distributed
• Alive/Dead
• Vacinated/Not vacinated

3. polychromic and tetrachoric correlations are found by
iteratively fitting bivariate normal distributions with varying
correlations until the best fit for a n x n table is found.

4. This is done using the tetrachoric or polychoric
functions. They are not fast! (In comparison to Pearson r).
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Cautions about correlations–The Anscombe data set

Consider the following 8 variables
var n mean sd median trimmed mad min max range skew kurtosis se

x1 1 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.20 1.00
x2 2 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.20 1.00
x3 3 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.20 1.00
x4 4 11 9.0 3.32 8.00 8.00 0.00 8.00 19.00 11.00 2.47 11.00 1.00
y1 5 11 7.5 2.03 7.58 7.49 1.82 4.26 10.84 6.58 -0.05 -0.53 0.61
y2 6 11 7.5 2.03 8.14 7.79 1.47 3.10 9.26 6.16 -0.98 0.85 0.61
y3 7 11 7.5 2.03 7.11 7.15 1.53 5.39 12.74 7.35 1.38 4.38 0.61
y4 8 11 7.5 2.03 7.04 7.20 1.90 5.25 12.50 7.25 1.12 3.15 0.61
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Cautions, Anscombe continued

With regressions of
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000909 1.1247468 2.667348 0.025734051
x1 0.5000909 0.1179055 4.241455 0.002169629

[[2]]
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.000909 1.1253024 2.666758 0.025758941
x2 0.500000 0.1179637 4.238590 0.002178816

[[3]]
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0024545 1.1244812 2.670080 0.025619109
x3 0.4997273 0.1178777 4.239372 0.002176305

[[4]]
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0017273 1.1239211 2.670763 0.025590425
x4 0.4999091 0.1178189 4.243028 0.002164602
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Cautions about correlations: Anscombe data set
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Further cautions about correlations–the problem of levels

1. Correlations taken at one level of analysis can be unrelated to
those at another level

2. rxy = ηxwg ∗ ηywg ∗ rxywg + ηxbg ∗ ηybg ∗ rxybg
3. Where η is the correlation of the data with the within group

values, or the group means.

4. The within group and between group correlations can even be
of different sign!

5. The withinBetween data set is an example of this problem.

6. The statsBy function will find the within and between group
correlations for this kind of multi-level design.
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Cautions about correlations: Within versus between groups
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Bias, or just Simpson’s Paradox?

Table: Hypothetical Admissions data showing sex discrimination

Admit Reject Total

Male 40 10 50
Female 10 40 50
Total 50 50 100

Phi =(VP - HR*SR) /sqrt(HR*(1-HR)*(SR)*(1-SR)= .60
polychoric rho = .81
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Calculate the φ and tetrachoric correlations

> admit <- c(40,10,10,40)
> phi(admit)

[1] 0.6

> phi2poly(.6,.5,.5)

[1] 0.8090178

> tetrachoric(admit)

Call: tetrachoric(x = admit)
tetrachoric correlation
[1] 0.81

with tau of
[1] 0 0

1. Input the four cell counts

2. Find the φ coefficient

3. Convert this to a tetrachoric
correlation by specifying the
marginals

4. Or, just call tetrachoric with
these cell entries
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Sex discrimination by department shows opposite effect

Table: Hypothetical Admissions data showing sex discrimination

Admit Reject Total

Male 40 10 50
Female 10 40 50
Total 50 50 100

Table: Males: unselective

Admit Reject Total

Male 40 5 45
Female 5 0 5
Total 45 5 50

φ -.11 ρ -.95

Table: Females: selective

Admit Reject Total

Male 0 5 5
Female 5 40 45
Total 5 45 50

φ -.11 ρ -.95
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The ubiquitous correlation coefficient

Table: Alternative Estimates of effect size. Using the correlation as a
scale free estimate of effect size allows for combining experimental and
correlational data in a metric that is directly interpretable as the effect of
a standardized unit change in x leads to r change in standardized y.

Statistic Estimate r equivalent as a function of r

Pearson correlation rxy =
Cxy

σxσy
rxy

Regression by.x = Cxy
σ2
x

r = by.x
σy
σx

by.x = r σx
σy

Cohen’s d d = X1−X2
σx

r = d√
d2+4

d = 2r√
1−r2

Hedge’s g g = X1−X2
sx

r = g√
g2+4(df /N)

g =
2r
√

df /N√
1−r2

t - test t = d
√
df

2
r =

√
t2/(t2 + df ) t =

√
r2df
1−r2

F-test F = d2df
4

r =
√

F/(F + df ) F = r2df
1−r2

Chi Square r =
√
χ2/n χ2 = r2n

Odds ratio d = ln(OR)
1.81

r = ln(OR)

1.81
√

(ln(OR)/1.81)2+4
ln(OR) = 3.62r√

1−r2

requivalent r with probability p r = requivalent
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Correlation as the average of regressions

Galton’s insight was that if both x and y were on the same scale
with equal variability, then the slope of the line was the same for
both predictors and was measure of the strength of their
relationship. Galton (1886) converted all deviations to the same
metric by dividing through by half the interquartile range, and
Pearson (1896) modified this by converting the numbers to
standard scores (i.e., dividing the deviations by the standard
deviation). Alternatively, the geometric mean of the two slopes
(bxy and byx) leads to the same outcome:

rxy =
√

bxybyx =

√
(CovxyCovyx

σ2
xσ

2
y

=
Covxy√
σ2
xσ

2
y

=
Covxy
σxσy

(5)

which is the same as the covariance of the standardized scores of X
and Y.

rxy = Covzxzy = Cov x
σx

y
σy

=
Covxy
σxσy

(6)
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Error of correlation

The slope by .x was found so that it minimizes the sum of the
squared residual, but what is it? That is, how big is the variance of
the residual?

Vr =
n∑

i=1

(y − ŷ)2/n =
n∑

i=1

(y − by .xx)2/n

Vr =
n∑

i=1

(y 2 + b2
y .xx2 − 2by .xxy)/n

Vr = Vy +
Cov 2

xy

Vx
− 2

Cov 2
xy

Vx
= Vy −

Cov 2
xy

Vx

Vr = Vy − r 2
xyVy = Vy (1− r 2

xy ) (7)

That is, the variance of the residual in Y or the variance of the
error of prediction of Y is the product of the original variance of Y
and one minus the squared correlation between X and Y. The
squared correlation between x and y is thus an index of the amount
of variance in Y that is linearly predicted by X. This squared
correlation is known as the index of determination.
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Variance and correlations

The various relationships between correlations, predicted scores,
the variance of the predicted scores, and the variances of the
residuals may be seen in the following table (19).

Table: The basic relationships between Variance, Covariance, Correlation
and Residuals

Variance Covariance with X Covariance with Y Correlation with X Correlation with Y
X Vx Vx Cxy 1 rxy
Y Vy Cxy Vy rxy 1

Ŷ r2
xyVy Cxy = rxyσxσy rxyVy 1 rxy

Yr = Y − Ŷ (1− r2
xy )Vy 0 (1− r2

xy )Vy 0
√

1− r2
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Set theoretic approach: Partitioning the variance in Y

X1 Y ε1
βy .x

X1

Y

βy .x =
σxy
σ2
x

ŷ = βy .xx
rxy =

σxy√
σ2
xσ

2
y

Vr = Vy +
Cov2

xy

Vx
− 2

Cov2
xy

Vx

Vr = Vy −
Cov2

xy

Vx

Vr = Vy − r 2
xyVy

Vr = Vy (1− r 2
xy )

Variance in Y predicted by X = r 2
xyσ

2
y
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Distance in the observational space

Because X and Y are vectors in the space defined by the
observations, the covariance between them may be thought of in
terms of the average squared distance between the two vectors in
that same space. That is, following Pythagorus, the distance, d, is
simply the square root of the sum of the squared distances in each
dimension (for each pair of observations), or, if we find the average
distance, we can find the square root of the sum of the squared
distances divided by n:

d2
xy =

1

n

n∑
i=1

(xi − yi )
2.

which is the same as

d2
xy = Vx + Vy − 2Cxy

dxy =
√

2 ∗ (1− rxy ). (8)
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Distance, correlations, and the law of cosines

Compare this to the trigonometric law of cosines,

c2 = a2 + b2 − 2ab · cos(ab),

and we see that the distance between two vectors is the sum of
their variances minus twice the product of their standard deviations
times the cosine of the angle between them. That is, the
correlation is the cosine of the angle between the two vectors. The
next figure shows these relationships for two Y vectors. The
correlation, r1, of X with Y1 is the cosine of θ1 = the ratio of the
projection of Y1 onto X. From the Pythagorean Theorem, the
length of the residual Y with X removed (Y .x) is σy

√
1− r 2.
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A geometric version of correlation
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The Ideal model of predicting Y from X1 and X2

X1 X2

Y

Variance in Y predicted by X1 and X2 if X1 and X2 are
independent. V̂y = Vy r 2

x1y + Vy r 2
x2y
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The usual case of predicting Y from X1 and X2

X1 X2

Y

Variance in Y predicted by X1 and X2 if X1 and X2 - overlapping
predictions V̂y = Vy r 2

x1y + Vy r 2
x2y− overlap

But what is the overlap?
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Multiple correlations
X Y

X1

X2

Y

rx1y

rx2y

rx1x2
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Multiple Regression
X Y ε

X1

X2

Y-

���
���

���
��

���
���

��:
���
ε�βy .x1

βy .x2

rx1x2

110 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

Multiple Regression: decomposing correlations
X Y ε

X1

X2

Y-

���
���

���
��

���
���

��:
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rx2y
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Multiple Regression: decomposing correlations
X Y ε

X1

X2

Y-

���
���

���
��

���
���

��:

rx1y

rx2y

βy .x1

βy .x2

rx1x2

���
ε�

rx1y = +

direct︷︸︸︷
βy .x1

indirect︷ ︸︸ ︷
rx1x2βy .x2

rx2y = +βy .x2︸︷︷︸
direct

rx1x2βy .x1︸ ︷︷ ︸
indirect
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Multiple Regression: decomposing correlations
X Y ε

X1

X2

Y-

���
���

���
��

���
���

��:

rx1y

rx2y

βy .x1

βy .x2

rx1x2

���
ε�

rx1y = +

direct︷︸︸︷
βy .x1

indirect︷ ︸︸ ︷
rx1x2βy .x2

rx2y = +βy .x2︸︷︷︸
direct

rx1x2βy .x1︸ ︷︷ ︸
indirect

βy .x1 =
rx1y−rx1x2 rx2y

1−r2
x1x2

βy .x2 =
rx2y−rx1x2 rx1y

1−r2
x1x2
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Multiple Regression: decomposing correlations
X Y ε
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���
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rx1y = +

direct︷︸︸︷
βy .x1

indirect︷ ︸︸ ︷
rx1x2βy .x2

rx2y = +βy .x2︸︷︷︸
direct

rx1x2βy .x1︸ ︷︷ ︸
indirect

βy .x1 =
rx1y−rx1x2 rx2y

1−r2
x1x2

βy .x2 =
rx2y−rx1x2 rx1y

1−r2
x1x2

R2 = rx1yβy .x1 + rx2yβy .x2
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What happens with 3 predictors? The correlations
X Y

rx1y

rx2y

rx3y

rx1x2

rx2x3

rx1x3

X1

X2

X3

Y
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What happens with 3 predictors? β weights
X Y ε

βy .x1

βy .x2

βy .x3

rx1x2

rx2x3

rx1x3

X1

X2

X3

Y

XXXXXXXXXXXXXXXXXXXz
-

���
���

���
���

���
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What happens with 3 predictors?
X Y ε

rx1y

rx2y

rx3y

βy .x1

βy .x2

βy .x3

rx1x2

rx2x3

rx1x3

X1

X2

X3

Y

XXXXXXXXXXXXXXXXXXXz
-

���
���

���
���

���
���

�: ���
ε3�

rx1y = +βy .x1︸︷︷︸
direct

rx1x2βy .x1 + rx1x3βy .x3︸ ︷︷ ︸
indirect

rx2y = . . . rx3y = . . .

The math gets tedious
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Multiple regression and linear algebra

• Multiple regression requires solving multiple, simultaneous
equations to estimate the direct and indirect effects.
• Each equation is expressed as a rxiy in terms of direct and

indirect effects.
• Direct effect is βy .xi
• Indirect effect is

∑
j 6=i betay .xj rxjy

• How to solve these equations?

• Tediously, or just use linear algebra.
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3 special cases of regression
Orthogonal predictors

X1

X2

Y

rx1y

rx2y

Correlated predictors

X1

X2

Y

rx1y

rx2y

rx1x2

Suppressive predictors

X1

X2

Y

rx1y

rx1x2
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Three basic cases

X1 X2

Y

Independent

X1 X2

Y

Correlated

X2 Y

X1

Suppressor
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3 special cases of regression
Orthogonal predictors

X1

X2

Y

HH
HHHHj

��
�
��
�*

rx1y

rx2y

βy .x1

βy .x2

Correlated predictors

X1

X2

Y
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HHHHj

��
�
��
�*

rx1y

rx2y

rx1x2

βy .x1

βy .x2

Suppressive predictors

X1

X2

Y

H
HHH

HHj

rx1y

rx1x2

βy .x1

βy .x2

βy .x1 =
rx1y−rx1x2 rx2y

1−r2
x1x2

βy .x2 =
rx2y−rx1x2 rx1y

1−r2
x1x2

R2 = rx1yβy .x1 + rx2yβy .x2
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Three basic cases: Theoretical examples

PA NA

Depression

Independent

Anxiety NA

Depression

Correlated

Tension Depression

Anxiety

Suppressor
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Find the regression of rated Prelim score on GREV
> mod1 <- lm(GPA~GREV,data=mydata)
> summary(mod1)

Call:
lm(formula = GPA ~ GREV, data = mydata)

Residuals:
Min 1Q Median 3Q Max

-1.45807 -0.32322 0.00107 0.32811 1.44850

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0117292 0.0694343 43.38 <2e-16 ***
GREV 0.0019839 0.0001359 14.60 <2e-16 ***
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.4558 on 998 degrees of freedom
Multiple R-squared: 0.176, Adjusted R-squared: 0.1751
F-statistic: 213.1 on 1 and 998 DF, p-value: < 2.2e-16
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Regression on z transformed data
> mod2 <- lm(GPA~GREV,data=z.data)
> summary(mod2)

Call:
lm(formula = GPA ~ GREV, data = z.data)

Residuals:
Min 1Q Median 3Q Max

-2.90526 -0.64404 0.00213 0.65377 2.88619

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.888e-17 2.872e-02 0.00 1
GREV 4.195e-01 2.873e-02 14.60 <2e-16 ***
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.9082 on 998 degrees of freedom
Multiple R-squared: 0.176, Adjusted R-squared: 0.1751
F-statistic: 213.1 on 1 and 998 DF, p-value: < 2.2e-16

Note that the slope is the same as the correlation.
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> mod3 <- lm(GPA~GREV,data=cent)
> summary(mod3)

Call:
lm(formula = GPA ~ GREV, data = cent)

Residuals:
Min 1Q Median 3Q Max

-1.45807 -0.32322 0.00107 0.32811 1.44850

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.332e-17 1.441e-02 0.00 1
GREV 1.984e-03 1.359e-04 14.60 <2e-16 ***
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.4558 on 998 degrees of freedom
Multiple R-squared: 0.176, Adjusted R-squared: 0.1751
F-statistic: 213.1 on 1 and 998 DF, p-value: < 2.2e-16

Note that the slope of the centered data is in the same units as the
raw data, just the intercept has changed.
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Multiple Regression: decomposing correlations
X Y ε

X1

X2

Y-
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���
���
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rx1y

rx2y

βy .x1

βy .x2

rx1x2

���
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rx1y = +

direct︷︸︸︷
βy .x1

indirect︷ ︸︸ ︷
rx1x2βy .x2

rx2y = +βy .x2︸︷︷︸
direct

rx1x2βy .x1︸ ︷︷ ︸
indirect

βy .x1 =
rx1y−rx1x2 rx2y

1−r2
x1x2

βy .x2 =
rx2y−rx1x2 rx1y

1−r2
x1x2

R2 = rx1yβy .x1 + rx2yβy .x2
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2 predictors

> summary(lm(GPA ~ GREV + GREQ , data= cent))

Call:
lm(formula = GPA ~ GREV + GREQ, data = cent)

Residuals:
Min 1Q Median 3Q Max

-1.42442 -0.33228 0.00616 0.32465 1.43765

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.651e-17 1.435e-02 0.000 1.00000
GREV 1.534e-03 1.976e-04 7.760 2.10e-14 ***
GREQ 6.314e-04 2.019e-04 3.127 0.00182 **
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.4538 on 997 degrees of freedom
Multiple R-squared: 0.184, Adjusted R-squared: 0.1823
F-statistic: 112.4 on 2 and 997 DF, p-value: < 2.2e-16
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Multiple R with z transformed data
Do the same regression, but on the z transformed data. The units
are now in correlation units.
> z.data <- data.frame(scale(my.data))
> summary(lm(GPA ~ GREV + GREQ , data= z.data))

Call:
lm(formula = GPA ~ GREV + GREQ, data = z.data)

Residuals:
Min 1Q Median 3Q Max

-2.83821 -0.66208 0.01228 0.64688 2.86457

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.205e-17 2.860e-02 0.000 1.00000
GREV 3.242e-01 4.179e-02 7.760 2.10e-14 ***
GREQ 1.306e-01 4.179e-02 3.127 0.00182 **
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.9043 on 997 degrees of freedom
Multiple R-squared: 0.184, Adjusted R-squared: 0.1823
F-statistic: 112.4 on 2 and 997 DF, p-value: < 2.2e-16
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The 3 correlations produce the beta weights

> R.small <- cor(my.data[c(2,3,8)])
> round(R.small,2)

GREV GREQ GPA
GREV 1.00 0.73 0.42
GREQ 0.73 1.00 0.37
GPA 0.42 0.37 1.00
> solve(R.small[1:2,1:2])

GREV GREQ
GREV 2.133188 -1.554768
GREQ -1.554768 2.133188
> beta <- solve(R.small[1:2,1:2],

R.small[3,1:2])
> beta

GREV GREQ
0.3242492 0.1306439
> beta.1 <- (.42 - .73*.37)/(1-.73^2)
> beta.1
[1] 0.3209163
> beta.2 <- (.37 - .73 * .42)/(1-.73^2)
> beta.2
[1] 0.1357311

• Find the correlation matrix

• Display it to two decimals

• Find the inverse of GREV
and GREQ correlations

• Show them

• Find the beta weights by
solving the matrix equation

• show them

• Find the beta weights by
using the formula

• Show them
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3 predictors, no interactions
Use three predictors, but print it with only 2 decimals
> print(summary(lm(GPA ~ GREV + GREQ + GREA , data= cent)),digits=3)

Call:
lm(formula = GPA ~ GREV + GREQ + GREA, data = cent)

Residuals:
Min 1Q Median 3Q Max

-1.2668 -0.3038 0.0073 0.3051 1.3022

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.89e-17 1.35e-02 0.00 1.00000
GREV 6.66e-04 2.00e-04 3.32 0.00092 ***
GREQ 7.75e-05 1.96e-04 0.40 0.69233
GREA 2.08e-03 1.81e-04 11.52 < 2e-16 ***
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.427 on 996 degrees of freedom
Multiple R-squared: 0.28, Adjusted R-squared: 0.278
F-statistic: 129 on 3 and 996 DF, p-value: <2e-16

130 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

3 predictors, no interactions

Use three predictors, but just the middle 200 subjects
> mod4 <- lm(GPA ~ GREV + GREQ + GREA , data= cent[400:600,])
> summary(mod4)

Call:
lm(formula = GPA ~ GREV + GREQ + GREA, data = cent[400:600, ])

Residuals:
Min 1Q Median 3Q Max

-1.03553 -0.30799 -0.00889 0.29320 1.20228

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0397399 0.0310412 1.280 0.202
GREV 0.0004706 0.0004530 1.039 0.300
GREQ 0.0005236 0.0004515 1.160 0.248
GREA 0.0017904 0.0004360 4.107 5.88e-05 ***
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.4394 on 197 degrees of freedom
Multiple R-squared: 0.2259, Adjusted R-squared: 0.2141
F-statistic: 19.16 on 3 and 197 DF, p-value: 6.051e-11
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Interaction terms are just products in regression

• To interpret all effects, the data need to be 0 centered.
• This makes the main effects orthogonal to the interaction term.
• Otherwise, need to compare model with and without

interactions

• Graph the results in non-standardized form

• Consider a real data set of SAT V, SAT Q and Gender
> data(sat.act)
> colors=c("black","red") #choose some nice colors
> symb=c(19,25)
> colors=c("black","red") #choose some nice colors
> with(sat.act,plot(SATQ~SATV,pch=symb[gender], col=colors[gender],

bg=colors[gender],cex=.6,main="SATQ varies by SATV and gender"))
> by(sat.act,sat.act$gender,function(x)

abline(lm(SATQ~SATV,data=x)))
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An example of an interaction plot
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> data(sat.act)
> c.sat <- data.frame(scale(sat.act,scale=FALSE))
> summary(lm(SATQ~SATV * gender,data=c.sat))

Call:
lm(formula = SATQ ~ SATV * gender, data = c.sat)

Residuals:
Min 1Q Median 3Q Max

-294.423 -49.876 5.577 53.210 291.100

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.26696 3.31211 -0.081 0.936
SATV 0.65398 0.02926 22.350 < 2e-16 ***
gender -36.71820 6.91495 -5.310 1.48e-07 ***
SATV:gender -0.05835 0.06086 -0.959 0.338
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 86.79 on 683 degrees of freedom
(13 observations deleted due to missingness)

Multiple R-squared: 0.4391, Adjusted R-squared: 0.4367
F-statistic: 178.3 on 3 and 683 DF, p-value: < 2.2e-16
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Interaction of Anxiety with Verbal
> mod5 <- lm(GPA ~ GREV * Anx,data=cent)
> summary(mod5)

Call:
lm(formula = GPA ~ GREV * Anx, data = cent)

Residuals:
Min 1Q Median 3Q Max

-1.49677 -0.31527 -0.00054 0.31223 1.32156

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.375e-04 1.395e-02 -0.017 0.986
GREV 1.996e-03 1.316e-04 15.167 < 2e-16 ***
Anx -1.131e-02 1.414e-03 -7.997 3.51e-15 ***
GREV:Anx 2.219e-05 1.377e-05 1.612 0.107
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.4412 on 996 degrees of freedom
Multiple R-squared: 0.2294, Adjusted R-squared: 0.227
F-statistic: 98.81 on 3 and 996 DF, p-value: < 2.2e-16
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Testing for the significance of correlations
> corr.test(sat.act)

Call:corr.test(x = sat.act)
Correlation matrix

gender education age ACT SATV SATQ
gender 1.00 0.09 -0.02 -0.04 -0.02 -0.17
education 0.09 1.00 0.55 0.15 0.05 0.03
age -0.02 0.55 1.00 0.11 -0.04 -0.03
ACT -0.04 0.15 0.11 1.00 0.56 0.59
SATV -0.02 0.05 -0.04 0.56 1.00 0.64
SATQ -0.17 0.03 -0.03 0.59 0.64 1.00
Sample Size

gender education age ACT SATV SATQ
gender 700 700 700 700 700 687
education 700 700 700 700 700 687
age 700 700 700 700 700 687
ACT 700 700 700 700 700 687
SATV 700 700 700 700 700 687
SATQ 687 687 687 687 687 687
Probability values (Entries above the diagonal are adjusted for multiple tests.)

gender education age ACT SATV SATQ
gender 0.00 0.17 1.00 1.00 1 0
education 0.02 0.00 0.00 0.00 1 1
age 0.58 0.00 0.00 0.03 1 1
ACT 0.33 0.00 0.00 0.00 0 0
SATV 0.62 0.22 0.26 0.00 0 0
SATQ 0.00 0.36 0.37 0.00 0 0
>
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Various tests of significance

1. Is the correlation different from 0? cor.test, corr.test (for
more than two variables)

2. Does a correlation differ from another correlation, r.test
with or without a third variable.

3. Does a correlation matrix differ from an Identity matrix?
cortest

4. Bootstrapping confidence intervals for correlations cor.ci
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The correlation coefficient

1. Perhaps the most powerful and useful statistic ever developed

2. Special cases of the correlation are used throughout statistics.

3. The basic concepts of correlation are very straight forward

4. Many ways to be misled with correlations.

137 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

Avery, C. N., Glickman, M. E., Hoxby, C. M., & Metrick, A.
(2013). A revealed preference ranking of u.s. colleges and
universities. The Quarterly Journal of Economics, 128(1),
425–467.

Bernoulli, D. (1954/1738). Exposition of a new theory on the
measurement of risk (“Specimen theoriae novae de mensura
sortis,” Commentarii Academiae Scientiarum Imperialis
Petropolitanae 5, St. Petersburg 175-92.) translated by Louise
C. Sommer. Econometrica, 22(1), 23–36.

Burchard, U. (2004). The sclerometer and the determination of
the hardness of minerals. Mineralogical Record, 35, 109–120.

Coombs, C. (1964). A Theory of Data. New York: John Wiley.

Fechner, Gustav Theodor (H.E. Adler, T. (1966/1860). Elemente
der Psychophysik (Elements of psychophysics). Leipzig:
Breitkopf & Hartel.

Galton, F. (1886). Regression towards mediocrity in hereditary
137 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

stature. Journal of the Anthropological Institute of Great Britain
and Ireland, 15, 246–263.

Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and
Giroux.

Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis
of decision under risk. Econometrica, 47, 263–291.

Ozer, D. J. (1993). Classical psychophysics and the assessment of
agreement and accuracy in judgments of personality. Journal of
Personality, 61(4), 739–767.

Pearson, K. (1896). Mathematical contributions to the theory of
evolution. iii. regression, heredity, and panmixia. Philisopical
Transactions of the Royal Society of London. Series A, 187,
254–318.

Pearson, K. & Heron, D. (1913). On theories of association.
Biometrika, 9(1/2), 159–315.

Rossi, G. B. (2007). Measurability. Measurement, 40(6), 545 –
562.

137 / 137



Intro Model Fitting Scales Scales µandσ2 Correlation R for r r, ρ, rtet Alternative views Multiple R Advanced R References

Sinn, H. W. (2003). Weber’s law and the biological evolution of
risk preferences: The selective dominance of the logarithmic
utility function, 2002 geneva risk lecture. Geneva Papers on Risk
and Insurance Theory, 28(2), 87–100.

Stevens, S. (1946). On the theory of scales of measurement.
Science, 103(2684), 677–680.

Weber, E. H. (1834b). De pulsu, resorptione, auditu et tactu.
Annotationes anatomicae et physiologicae. Leipzig: Kohler.

Weber, E. H. (1948/1834a). Concerning touch, 1834. In
W. Dennis (Ed.), Readings in the history of psychology (pp.
155–156). East Norwalk, CT: Appleton-Century-Crofts
Appleton-Century-Crofts Print.

137 / 137


	What is psychometrics?
	An overview
	A latent variable approach to measurement

	Science as Model fitting
	Model fitting
	Data and scaling

	Ordering objects
	Difficulties and artifacts of scaling

	Types of scales and how to describe data
	Describing data graphically

	Central Tendency and variance
	Shape

	Correlation
	History
	Math

	Using R for correlations
	Getting the data and describing it
	Complications

	The many forms of r
	Comments on alterntives

	Alternative views of correlation
	Correlation and regression
	Yet more ways to view the correlation

	Multivariate Regression
	Multiple regression

	Multiple R with interaction terms
	SIgnificance tests

	References

