Preliminaries	The basic concepts	PCA and EFA	Rotations and Transformations	How many factors?	References
00000000	000	0000 000	000000000000 0000	00	

Psychology 360: Personality Research Psychometric Theory – Data reduction

William Revelle

Department of Psychology Northwestern University Evanston, Illinois USA

October, 2022

Preliminaries 00000000 basic concepts

PCA and EF

otations and Transformation

How many factors

References

Outline

Preliminaries Models

The basic concepts An example correlation matrix

PCA and EFA Principal Components: An observed Variable Model Factor Analysis: A Latent Variable Model

Rotations and Transformations Hierarchical structure

How many factors?

 Preliminaries
 The basic concepts
 PCA and EFA
 Rotations and Transformations
 How many factors?
 References

 00000000
 000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</t

Models of data

(MacCallum, Browne & Cai, 2007) "A factor analysis model is not an exact representation of real-world phenomena.

Always wrong to some degree, even in population.

At best, model is an approximation of real world."

Box (1979): "Models, of course, are never true, but fortunately it is only necessary that they be useful. For this it is usually needful only that they not be grossly wrong."

Tukey (1961): "In a single sentence, the moral is: Admit that complexity always increases, first from the model you fit to the data, thence to the model you use to think and plan about the experiment and its analysis, and thence to the true situation."

(From MacCallum, 2004); http://www.fa100.info/maccallum2.pdf

eliminaries	The	ba
000000	0	
	00	

Pre

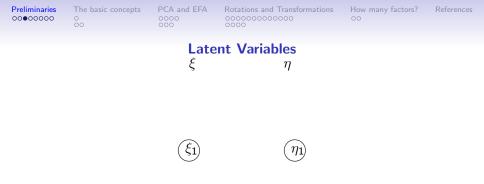
0.

References

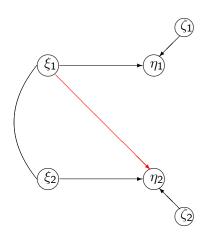
Observed Variables

Х

Y



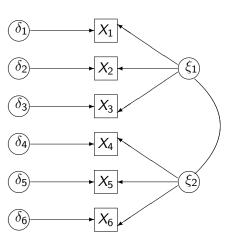
Theory: A regression model of latent variables ξ η



 Preliminaries
 The basic concepts
 PCA and EFA
 Rotations and Transformations
 How many factors?

 00000000
 0
 0000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

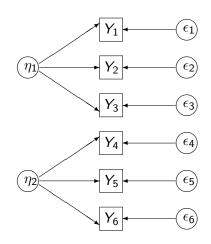
A measurement model for X ξ



Х

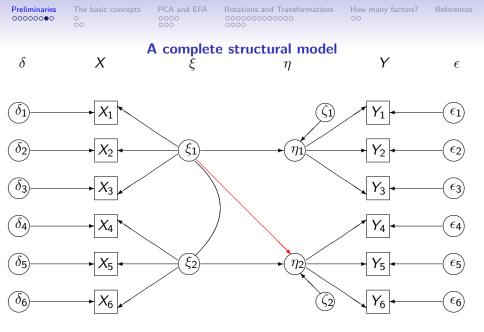
δ

 η



Y

 ϵ



Various measurement models

1. Observed variables models

Preliminaries 0000000

- Singular Value Decomposition
- Eigen Value Eigen Vector decomposition
- **Principal Components**
- First k principal components as an approximation
- 2. Latent variable models
 - Factor analysis
- 3. Interpretation of models
 - Choosing the appropriate number of components/factors
 - Transforming/rotating towards interpretable structures

Factor Analysis/Components Analysis/Cluster Analysis

- 1. Data simplification and Ockham's Razor: "do not multiple entities beyond necessity"
- 2. Can we describe a data set with a simpler representation of the data.
- 3. Is it possible to combine subjects and or variables that are redundant?
- 4. Or almost redundant (without losing very much information)
- 5. This is a problem in projective geometry. Can we project from a high dimensional space into a lower order space.

The basic concepts

0

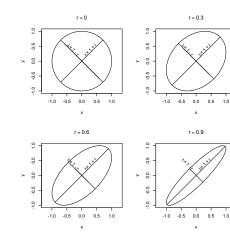
An example correlation matrix

Consider the following correlation matrix

V1 V3 V5 V2 V4V6 0.72 0.63 0.54 0.45 V11.00 0.36 V2 0 72 1 0 0 0 56 0 48 0 4 0 0.32 V3 0.63 0.56 1.00 0.42 0.35 0.28 V4 0.54 0.48 0.42 1.00 0.30 0.24 V5 0 45 0 40 0 35 0.30 1 00 0.20 V6 0.36 0.32 0.28 0.24 0.20 1.00

Is it possible to model these 36 correlations and variances with fewer terms? Yes, of course. The diagonal elements are all 1 and the off diagonal elements are symmetric. Thus, we have n * (n-1)correlations we want to model.

Eigen vectors of a 2 x 2 correlation matrix



Although the length (eigen values) of the axes differ, their orientation (eigen vectors) are the same.

> r2 <- matrix (c(1,.6,.6,1),2 > print(eigen(r2),2)

```
$values
[1] 1.6 0.4
$vectors
      [,1] [,2]
[1,] 0.71 -0.71
[2,] 0.71 0.71
```

eliminaries The basic concepts PCA and EFA Rotations and Transformations How many facto

From eigen vectors to Principal Components

- $1. \ \mbox{For n variables, there are n eigen vectors}$
 - There is no parsimony in thinking of the eigen vectors
 - Except that the vectors provide the orthogonal basis for the variables
- 2. Principal components are formed from the eigen vectors and eigen values

•
$$\mathbf{R} = \mathbf{V}\lambda\mathbf{V}' = \mathbf{C}\mathbf{C}'$$

•
$$\mathbf{C} = \mathbf{V} \sqrt{\lambda}$$

- 3. But there will still be as many Principal Components as variables, so what is the point?
- 4. Take just the first k Principal Components and see how well this reduced model fits the data.

The first principal component.

#show the model > pc1 <- principal(**R**,1) > round(pc1\$loadings %*% t(pc1\$loadings),2) > pc1V1 V2 V3 V4V5 V6 V1 0.77 0.73 0.68 0.61 0.53 Uniquenesses : 0.44 0 7 3 0 6 9 0.64 0.57 0.50 V_2 0 42 V1 V2 V3 V4 V3 0.68 0.64 0.59 0.53 0.46 0.38 V5 V6 V4 0.61 0.57 0.53 0.48 0.41 0.34 0.635 0.7485 0.53 0.50 0.46 0.41 0.36 0.30 0 220 0 307 0 4 0 8 0 519 V6 0.44 0.42 0.38 0.34 0.30 0.25 Loadings: PC1 #find the residuals V1 0 88 > Rresid <-V2 0.83 R - pc1\$loadings %*% t(pc1\$loadings) > round (*Rresid*, 2) V3 0.77 V4 0 69 V1 V2 V3 V4 V5 V6 V5 0.60 0.23 - 0.01 - 0.05 - 0.07 - 0.08 - 0.08V1 V6 0 50 V2 -0.01 0.31 -0.08 -0.09 -0.10 -0.09 PC1 V3 -0.05 -0.08 0.41 - 0.11 - 0.11 - 0.10V4 -0.07 -0.09 -0.11 0.52 -0.11 -0.10 SS loadings 3.142V5 -0.08 -0.10 -0.11 -0.11 0.64 - 0.10Proportion Var 0.524 V6 -0.08 -0.09 -0.10 -0.10 -0.10 0.75

The model fits pretty well, except that the diagonal is underestimated and the other correlations are over estimated. Preliminaries T 00000000 C basic concepts

PCA and EFA

Rotations and Transformatior

How many factors

References

Consider the following matrix

Correlations between 6 variables

Variable	V1	V2	V3	V4	V5	V6
V1	1.00	0.72	0.63	0.54	0.45	0.36
V2	0.72	1.00	0.56	0.48	0.40	0.32
V3	0.63	0.56	1.00	0.42	0.35	0.28
V4	0.54	0.48	0.42	1.00	0.30	0.24
V5	0.45	0.40	0.35	0.30	1.00	0.20
V6	0.36	0.32	0.28	0.24	0.20	1.00

Can we represent this in a simpler way?

$$R = FF' + U^2$$

or

$$R = CC'$$

Preliminaries	The basic concepts	PCA and EFA	Rotations and Transformations	How many factors?	References
00000000	000	0000	000000000000000000000000000000000000000	00	

Representing a correlation matrix with factors or components

Correlatio	Correlations between o variables							
Variable	V1	V2	V3	V4	V5	V6		
V1	1.00	0.72	0.63	0.54	0.45	0.36		
V2	0.72	1.00	0.56	0.48	0.40	0.32		
V3	0.63	0.56	1.00	0.42	0.35	0.28		
V4	0.54	0.48	0.42	1.00	0.30	0.24		
V5	0.45	0.40	0.35	0.30	1.00	0.20		
V6	0.36	0.32	0.28	0.24	0.20	1.00		

Correlations between 6 variables

Tab	le:	R	=	FF	' +	U^2
-----	-----	---	---	----	-----	-------

Table: R = CC'

Variable	loading	Variab	le
V1	0.9	V1	0.88
V2	0.8	V2	0.83
V3	0.7	V3	0.77
V4	0.6	V4	0.69
V5	0.5	V5	0.60
V6	0.4	V6	0.50

PCA and EFA

.00

Factors vs. components

Originally developed by Spearman (1904) for the case of one common factor, and then later generalized by Thurstone (1947) and others to the case of multiple factors, factor analysis is probably the most frequently used and sometimes the most controversial psychometric procedure. The factor model, although seemingly very similar to the components model, is in fact very different. For rather than having components as linear sums of variables, in the factor model the variables are themselves linear sums of the unknown factors. That is, while components can be solved for by doing an *eigenvalue* or *singular value decomposition*, factors are estimated as best fitting solutions (Eckart & Young, 1936; Householder & Young, 1938), normally through iterative methods (Jöreskog, 1978; Lawley & Maxwell, 1963). Cattell (1965) referred to components analysis as a closed model and factor analysis as an open model, in that by explaining just the common variance, there was still more variance to explain.

Preliminaries 00000000 ic concepts PCA and EFA

Rotations and Transformation

How many factors?

References

Iterative principal axes factor analysis

Principal components represents a n * n matrix in terms of the first k components. It attempts to reproduce all of the **R** matrix. Factor analysis on the other hand, attempts to model just the common part of the matrix, which means all of the off-diagonal elements and the common part of the diagonal (the communalities). The non-common part, the uniquenesses, are simply that which is left over. An easy to understand procedure is principal axes factor analysis. This is similar to principal components, except that it is done with a reduced matrix where the diagonals are the communalities. The communalities can either be specified a priori, estimated by such procedures as multiple linear regression, or found by iteratively doing an eigenvalue decomposition and repeatedly replacing the original 1s on the diagonal with the the value of 1 - u^2 where

$$\mathbf{U}^2 = diag(\mathbf{R} - \mathbf{F}\mathbf{F}').$$

 Preliminaries
 The basic concepts
 PCA and EFA
 Rotations and Transformations
 How many factors?
 Reference

 00000000
 0
 0000
 0000
 00
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <

Principal axes as eigen values of a reduced matrix

That is, starting with the original correlation or covariance matrix, **R**, find the k largest principal components, reproduce the matrix using those principal components. Find the resulting residual matrix, \mathbf{R}^* and uniqueness matrix, \mathbf{U}^2 by

$$\mathbf{R}^* = \mathbf{R} - \mathbf{F}\mathbf{F}' \tag{1}$$
$$\mathbf{U}^2 = diag(\mathbf{R}^*)$$

and then, for iteration *i*, find \mathbf{R}_i by replacing the diagonal of the original \mathbf{R} matrix with 1 - diag(\mathbf{U}^2) found on the previous step. Repeat this process until the change from one iteration to the next is arbitrarily small. Rotations and Transformations • 0000000000 • 000 How many factors?

References

Simple Structure

The original solution of a principal components or principal axes factor analysis is a set of vectors that best account for the observed covariance or correlation matrix, and where the components or factors account for progressively less and less variance. But such a solution, although maximally efficient in describing the data, is rarely easy to interpret. But what makes a structure easy to interpret? Thurstone's answer, *simple structure*, consists of five rules (Thurstone, 1947, p 335):

(1) Each row of the oblique factor matrix V should have at least one zero.

(2) For each column p of the factor matrix **V** there should be a distinct set of r linearly independent tests whose factor loadings v_{ip} are zero.

(3) For every pair of columns of **V** there should be several tests whose entries v_{ip} vanish in one column but not in the other.

(4) For every pair of columns of V, a large proportion of the tests should have zero entries in both columns. This applies to factor problems with four or five or more common factors.

(5) For every pair of columns there should preferably be only a small number of tests with non-vanishing entries in both columns.

Thurstone proposed to rotate the original solution to achieve simple structure.

The basic concepts

PCA and El 0000 000 Rotations and Transformations

How many factors?

References

Harman 8 physical measures

- > data (Harman23.cor)
- > lower.mat(Harman23.cor\$cov)

	heght	arm.s	forrm	lwr.l	weght	btr.d	chst.g	chst.w
height	1.00							
arm.span	0.85	1.00						
forearm	0.80	0.88	1.00					
lower.leg	0.86	0.83	0.80	1.00				
weight	0.47	0.38	0.38	0.44	1.00			
bitro.diameter	0.40	0.33	0.32	0.33	0.76	1.00		
chest.girth	0.30	0.28	0.24	0.33	0.73	0.58	1.00	
chest.width	0.38	0.42	0.34	0.36	0.63	0.58	0.54	1.00

 Preliminaries
 The basic concepts
 PCA and EFA
 Rotations and Transformations
 How many factors?
 References

 00000000
 0
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Two solutions – loadings change, goodness of fits do not

> f2 <- fa(Harman23.cor\$cov,2,rotate="none") > f2 <- fa(Harman23.cor\$cov,2,rotate="varimax > f2 > f2

	Factor Analysis using method = minres
	s = 2, Call: fa(r = Harman23.cor\$cov, nfactors = 2,
rotate = "none")	rotate = "varimax")
Standardized loadings (pattern matrix)	
MR1 MR2 h2 u2	MR1 MR2 h2 u2
height 0.89 -0.19 0.83 0.17	height 0.86 0.30 0.83 0.17
arm.span 0.89 -0.31 0.89 0.11	arm.span 0.92 0.20 0.89 0.11
forearm 0.86 -0.30 0.83 0.17	forearm 0.89 0.19 0.83 0.17
lower.leg 0.87 -0.22 0.80 0.20	lower.leg 0.86 0.26 0.80 0.20
weight 0.67 0.67 0.89 0.11	weight 0.22 0.92 0.89 0.11
bitro.diameter 0.56 0.58 0.65 0.35	bitro.diameter 0.18 0.78 0.65 0.35
chest.girth 0.50 0.59 0.59 0.41	chest.girth 0.12 0.76 0.59 0.41
chest.width 0.56 0.40 0.47 0.53	chest.width 0.27 0.63 0.47 0.53
MR1 MR2	MR1 MR2
SS loadings 4.40 1.56	SS loadings 3.30 2.66
Proportion Var 0.55 0.19	Proportion Var 0.41 0.33
Cumulative Var 0.55 0.74	Cumulative Var 0.41 0.74
Test of the hypothesis that 2 factors	are sufficient.
The root mean square of the residuals	(RMSR) is
0.02	The root mean square of the residuals (RMSR)
The df corrected root mean square of the	
is 0.03	The df corrected root mean square of the resident
Fit based upon ${f off}$ diagonal values $= 1$	

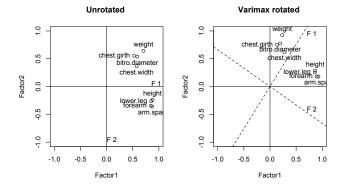
Preliminaries 00000000 he basic concepts

PCA and E 0000 000 Rotations and Transformations

How many factor

References

Alternative rotations



Rotations and Transformations

How many factor

References

Oblique transfomations

Many of those who use factor analysis use it to identify theoretically meaningful constructs which they have no reason to believe are orthogonal. This has lead to the use of *oblique transformations* which allow the factors to be correlated. Although the term rotation is sometimes used for both *orthogonal* and *oblique* solutions, in the oblique case the factor matrix is not rotated so much as *transformed*.

Oblique transformations lead to the distinction between the *factor* pattern and *factor structure* matrices. The *factor pattern* matrix is the set of *regression weights* (loadings) from the latent factors to the observed variables. The *factor structure* matrix is the matrix of *correlations* between the factors and the observed variables. If the factors are uncorrelated, structure and pattern are identical. But, if the factors are correlated, the structure matrix (**S**) is the pattern matrix (**F**) times the factor intercorrelations ϕ $\mathbf{S} = \mathbf{F}\phi <=> \mathbf{F} = \mathbf{S}\phi^{-1}$:

An oblique transformation of the Harman 8 physical variables

```
> f2t <- fa(Harman23.cor$cov,2,rotate="oblimin",n.obs=305)
> print(f2t)
```

Factor Analysis	usin	g meth	nod =	minre	es				
Call : fa(r = Har	rman2	23. cors	Scov,	nfacto	rs =	2,	rotate	=	"oblimin",
i	item	MR1	MR2	h2	u2				
height	1	0.87	0.08	0.84	0.16				
arm.span	2	0.96	-0.05	0.89	0.11				
forearm	3	0.93	-0.04	0.83	0.17				
			0.04						
			0.94						
bitro.diameter	6	0.00	0.80	0.64	0.36				
chest.girth	7	-0.06	0.79	0.59	0.41				
chest.width	8	0.13	0.62	0.47	0.53				
	MR1	MR2							
SS loadings 3									
Proportion Var (
Cumulative Var (0.42	0.74							
With factor co	rrela	tions	of						
MR1 MR2			. .						
MR1 1.00 0.46									
MR2 0.46 1.00									26 / 39

Preliminaries

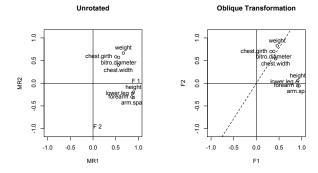
he basic concepts

PCA and El 0000 000 Rotations and Transformations

How many factors

References

Oblique Transformations



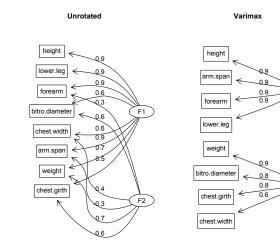
Rotations and Transformations 0000000000000

F1

F2

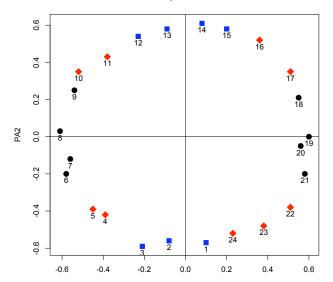
Another way to show simple structure

simp24 <- sim.item(24,circum=FALSE)</pre> >> cor . plot (cor (simp24), main="A_simple_structure")



Preliminaries	The basic concepts	PCA and EFA	Rotations and Transformations	How many factors?	References
00000000	000	0000 000	000000000000 0000	00	

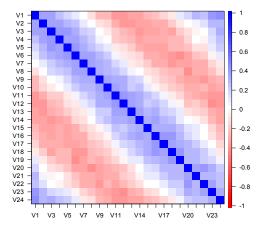
A circumplex is one alternative to simple structure



Circumplex structure

Another way of showing a circumplex - cor.plot

> circ24 <- sim.item(24, circum=TRUE)
> cor.plot(cor(circ24), main="A_circumplex_structure")



The Thurstone 9 variable problem – 9 measures of intellectual ability

> lower.mat(Thurstone)

	Sntnc	Vcblr	Snt.C	Frs.L	4.L.W	$Sff \times s$	Ltt.S	Pdgrs	Lt
Sentences	1.00								
Vocabulary	0.83	1.00							
Sent. Completion	0.78	0.78	1.00						
First.Letters	0.44	0.49	0.46	1.00					
4. Letter . Words	0.43	0.46	0.42	0.67	1.00				
Suffixes	0.45	0.49	0.44	0.59	0.54	1.00			
Letter . Series	0.45	0.43	0.40	0.38	0.40	0.29	1.00		
Pedigrees	0.54	0.54	0.53	0.35	0.37	0.32	0.56	1.00	
Letter.Group 1.00	0.38	0.36	0.36	0.42	0.45	0.32	0.60	0.45	

eliminaries The basic concepts PCA and EFA **Rotations and Transformations** How many factors?

Three factors from Thurstone 9 variables

```
> f3 <- fa (Thurstone, 3)
> f3
```

```
Factor Analysis using method = minres
Call: fa(r = Thurstone, nfactors = 3)
Standardized loadings (pattern matrix) based upon correlation matrix
                  MR1
                         MR2
                               MR3
                                     h2
                                          u2
Sentences
                 0.91 - 0.04
                              0.04 0.82 0.18
Vocabulary
                 0.89
                        0.06
                             -0.03 0.84 0.16
Sent. Completion
                 0.83
                        0.04
                              0.00 0.73 0.27
                        0.86
First Letters
                 0 00
                              0.00 0.73 0.27
4. Letter Words
                 -0.01
                        0.74
                              0.10 0.63 0.37
Suffixes
                        0 63
                             -0.08 0.50 0.50
                 0 18
Letter. Series
                 0.03 - 0.01
                             0.84 0.72 0.28
Pedigrees
                 0.37 - 0.05
                             0.47 0.50 0.50
Letter, Group
                -0.06
                        0.21
                              0.64 0.53 0.47
                MR1 MR2
                          MR3
SS loadings
               2.64 1.86 1.50
Proportion Var 0.29 0.21 0.17
Cumulative Var 0.29 0.50 0.67
 With factor correlations of
     MR1 MR2 MR3
MR1 1.00 0.59 0.54
MR2 0 59 1 00 0 52
MR3 0.54 0.52 1.00
```

 The basic concepts
 PCA and EFA
 Rotations and Transformations
 How many

 0
 0000
 00000000000
 00

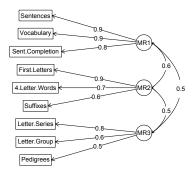
 000
 0000
 0000000000
 00

ow many factors?

References

A factor diagram of the Thurstone data

fa3 <- fa(Thurstone, 3, n. obs=213)

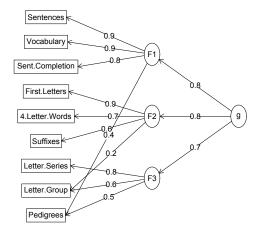


 Preliminaries
 The basic concepts
 PCA and EFA
 Rotations and Transformations
 How many factors?
 References

 00000000
 0
 0000
 0000000000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00<

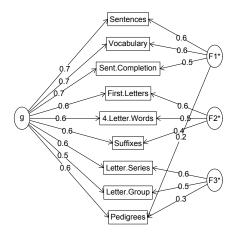
A hierarchical/multilevel solution to the Thurstone 9 variables

Hierarchical (multilevel) Structure



A bifactor solution using the Schmid Leiman transformation

Omega with Schmid Leiman Transformation



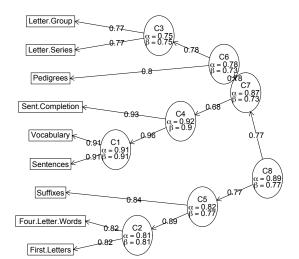
Hierarchical Clustering (e.g., iclust)

- 1. Find the proximity (e.g. correlation) matrix,
- 2. Identify the most similar pair of items
- 3. Combine this most similar pair of items to form a new variable (cluster),
- 4. Find the similarity of this cluster to all other items and clusters,
- 5. Repeat steps 2 and 3 until some criterion is reached (e.g., typically, if only one cluster remains or in ICLUST if there is a failure to increase reliability coefficients α or β).
- 6. Purify the solution by reassigning items to the most similar cluster center.

 Preliminaries
 The basic concepts
 PCA and EFA
 Retations and Transformations
 How many factors?
 Reference

 00000000
 0
 0000000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<

Yet another way to organize the data: cluster analysis ICLUST



How many factors - no right answer, one wrong answer

1. Statistical

- Extracting factors until the χ^2 of the residual matrix is not significant.
- Extracting factors until the change in χ^2 from factor n to factor n+1 is not significant.
- 2. Rules of Thumb
 - Parallel Extracting factors until the eigenvalues of the real data are less than the corresponding eigenvalues of a random data set of the same size (*parallel analysis*)
 - Plotting the magnitude of the successive eigenvalues and applying the *scree test*.
- 3. Interpretability
 - Extracting factors as long as they are interpretable.
 - Using the Very Simple Structure Criterion (VSS)
 - Using the Minimum Average Partial criterion (MAP).
- 4. Eigen Value of 1 rule

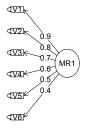
 Preliminaries
 The basic concepts
 PCA and EFA
 Rotations and Transformations
 How many factors?
 Refere

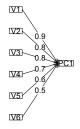
 00000000
 00
 0000
 0000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td

The factor model versus the components model

Factor model

Components model





Preliminaries 00000000 c concepts PCA at 0000

Rotations and Transformations

How many factors? References

Box, G. E. P. (1979). Some problems of statistics and everyday life. Journal of the American Statistical Association, 74(365), 1–4.
Cattell, R. B. (1965). A biometrics invited paper. factor analysis: An introduction to essentials i. the purpose and underlying

models. *Biometrics*, 21(1), 190–215.

- Eckart, C. & Young, G. (1936). The approximation of one matrix by another of lower rank. *Psychometrika*, 1(3), 211–218.
- Householder, A. S. & Young, G. (1938). Matrix approximation and latent roots. *The American Mathematical Monthly*, 45(3), 165–171.
- Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. *Psychometrika*, 43(4), 443–477.
- Lawley, D. N. & Maxwell, A. E. (1963). *Factor analysis as a statistical method*. London: Butterworths.
- MacCallum, R. C., Browne, M. W., & Cai, L. (2007). Factor analysis models as approximations. In R. Cudeck & R. C. MacCallum (Eds.), *Factor analysis at 100: Historical*

Preliminaries 00000000 ic concepts PCA

Rotations and Transformation

w many factors?

References

developments and future directions (pp. 153–175). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

Spearman, C. (1904). "General Intelligence," objectively determined and measured. American Journal of Psychology, 15(2), 201–292.

Thurstone, L. L. (1947). *Multiple-factor analysis: a development and expansion of The vectors of the mind*. Chicago, III.: The University of Chicago Press.

Tukey, J. W. (1961). Discussion, emphasizing the connection between analysis of variance and spectrum analysis. *Technometrics*, 3(2), 191–219.