Participant 002 (12.28.14) -------------------------- -------------------------- rm(list = ls()) ## Read in data dat=read.csv('pre002.csv') ## Designate "999" as missing dat[dat[,]==999] <- NA ## Load Psych package library(psych) ## Read in CFA loadings cfaload=read.table('loads.txt') ## Generate Factor Scores fs=factor.scores(dat[,c(13:14,18:23,24:27)],cfaload[,2:4],method='components') ts=as.data.frame(fs$scores) ## Create empty data frame "lag" lag=data.frame(lagf1=numeric(length(latfs[,1])),lagf2=numeric(length(latfs[,1])),lagf3=numeric(length(latfs[,1]))) ## Lag factors lagpad <- function(x, k) { c(rep(NA, k), x)[1 : length(x)] } lag[,1]=lagpad(latfs[,1]) lag[,2]=lagpad(latfs[,2]) lag[,3]=lagpad(latfs[,3]) lag[,4]=latfs[,1] lag[,5]=latfs[,2] lag[,6]=latfs[,3] colnames(lag) <- c("lagf1","lagf2","lagf3","f1","f2","f3") lag[is.na(lag[,])]<- -999 ## Export file for DFA write.table(lag,'lag.dat',row.names=F,col.names=F)