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Outline: Part I: Classical Test Theory

Classical test theory

Reliability and internal structure
Estimating reliability by split halves
Coefficients based upon the internal structure of a test

Problems with α

Types of reliability
Calculating reliabilities

Congeneric measures
Hierarchical structures
Multiple dimensions - falsely labeled as one

Using score.items to find reliabilities of multiple scales

Other reliabities
Intraclass correlations

ICC of judges

Cohen’s kappa
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Observed Variables
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Latent Variables
ξ η
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Theory: A regression model of latent variables
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���

���

ξ1

ξ2

���

���

η1

η2

-

-

@
@
@
@
@
@
@@R

mζ1

�
�	

mζ2
@
@I

5 / 101



Classical test theory Internal structure α, λ3, omegah Types of reliability Other reliabities

A measurement model for X – Correlated factors
δ X ξ
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A measurement model for Y - uncorrelated factors
η Y ε
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A complete structural model
δ X ξ η Y ε
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All data are befuddled with error

Now, suppose that we wish to ascertain the correspon-
dence between a series of values, p, and another series,
q. By practical observation we evidently do not obtain the
true objective values, p and q, but only approximations
which we will call p’ and q’. Obviously, p’ is less closely
connected with q’, than is p with q, for the first pair only
correspond at all by the intermediation of the second pair;
the real correspondence between p and q, shortly rpq has
been ”attenuated” into rp′q′ (?, p 90).
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All data are befuddled by error: Observed Score = True score +
Error score
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Spearman’s parallell test theory
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Classical True score theory

Let each individual score, x, reflect a true value, t, and an error
value, e, and the expected score over multiple observations of x is
t, and the expected score of e for any value of p is 0. Then,
because the expected error score is the same for all true scores, the
covariance of true score with error score (σte) is zero, and the
variance of x, σ2

x , is just

σ2
x = σ2

t + σ2
e + 2σte = σ2

t + σ2
e .

Similarly, the covariance of observed score with true score is just
the variance of true score

σxt = σ2
t + σte = σ2

t

and the correlation of observed score with true score is

ρxt =
σxt√

(σ2
t + σ2

e )(σ2
t )

=
σ2
t√
σ2
xσ

2
t

=
σt
σx
. (1)
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Classical Test Theory

By knowing the correlation between observed score and true score,
ρxt , and from the definition of linear regression predicted true
score, t̂, for an observed x may be found from

t̂ = bt.xx =
σ2
t

σ2
x

x = ρ2
xtx . (2)

All of this is well and good, but to find the correlation we need to
know either σ2

t or σ2
e . The question becomes how do we find σ2

t or
σ2
e?.
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Regression effects due to unreliability of measurement

Consider the case of air force instructors evaluating the effects of
reward and punishment upon subsequent pilot performance.
Instructors observe 100 pilot candidates for their flying skill. At the
end of the day they reward the best 50 pilots and punish the worst
50 pilots.
• Day 1

• Mean of best 50 pilots 1 is 75
• Mean of worst 50 pilots is 25

• Day 2
• Mean of best 50 has gone down to 65 ( a loss of 10 points)
• Mean of worst 50 has gone up to 35 (a gain of 10 points)

• It seems as if reward hurts performance and punishment helps
performance.

• If there is no effect of reward and punishment, what is the
expected correlation from day 1 to day 2?
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Correcting for attenuation
To ascertain the amount of this attenuation, and thereby
discover the true correlation, it appears necessary to make
two or more independent series of observations of both p
and q. (?, p 90)

Spearman’s solution to the problem of estimating the true
relationship between two variables, p and q, given observed scores
p’ and q’ was to introduce two or more additional variables that
came to be called parallel tests. These were tests that had the
same true score for each individual and also had equal error
variances. To Spearman (1904b p 90) this required finding “the
average correlation between one and another of these
independently obtained series of values” to estimate the reliability
of each set of measures (rp′p′ , rq′q′), and then to find

rpq =
rp′q′√

rp′p′rq′q′
. (3)
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Two parallel tests

The correlation between two parallel tests is the squared
correlation of each test with true score and is the percentage of
test variance that is true score variance

ρxx =
σ2
t

σ2
x

= ρ2
xt . (4)

Reliability is the fraction of test variance that is true score
variance. Knowing the reliability of measures of p and q allows us
to correct the observed correlation between p’ and q’ for the
reliability of measurement and to find the unattenuated correlation
between p and q.

rpq =
σpq√
σ2
pσ

2
q

(5)

and

rp′q′ =
σp′q′√
σ2
p′σ

2
q′

=
σp+e′1

σq+e′2√
σ2
p′σ

2
q′

=
σpq√
σ2
p′σ

2
q′

(6)
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Modern “Classical Test Theory”

Reliability is the correlation between two parallel tests where tests
are said to be parallel if for every subject, the true scores on each
test are the expected scores across an infinite number of tests and
thus the same, and the true score variances for each test are the
same (σ2

p′1
= σ2

p′2
= σ2

p′), and the error variances across subjects for

each test are the same (σ2
e′1

= σ2
e′2

= σ2
e′) (see Figure 19), (??).

The correlation between two parallel tests will be

ρp′1p′2 = ρp′p′ =
σp′1p′2√
σ2
p′1
σ2
p′2

=
σ2
p + σpe1 + σpe2 + σe1e2

σ2
p′

=
σ2
p

σ2
p′
. (7)
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Classical Test Theory

but from Eq 4,
σ2
p = ρp′p′σ

2
p′ (8)

and thus, by combining equation 5 with 6 and 8 the unattenuated
correlation between p and q corrected for reliability is Spearman’s
equation 3

rpq =
rp′q′√

rp′p′rq′q′
. (9)

As Spearman recognized, correcting for attenuation could show
structures that otherwise, because of unreliability, would be hard to
detect.
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Spearman’s parallell test theory
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When is a test a parallel test?

But how do we know that two tests are parallel? For just knowing
the correlation between two tests, without knowing the true scores
or their variance (and if we did, we would not bother with
reliability), we are faced with three knowns (two variances and one
covariance) but ten unknowns (four variances and six covariances).
That is, the observed correlation, rp′1p′2 represents the two known

variances s2
p′1

and s2
p′2

and their covariance sp′1p′2 . The model to

account for these three knowns reflects the variances of true and
error scores for p′1 and p′2 as well as the six covariances between
these four terms. In this case of two tests, by defining them to be
parallel with uncorrelated errors, the number of unknowns drop to
three (for the true scores variances of p′1 and p′2 are set equal, as
are the error variances, and all covariances with error are set to
zero) and the (equal) reliability of each test may be found.
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The problem of parallel tests

Unfortunately, according to this concept of parallel tests, the
possibility of one test being far better than the other is ignored.
Parallel tests need to be parallel by construction or assumption and
the assumption of parallelism may not be tested. With the use of
more tests, however, the number of assumptions can be relaxed
(for three tests) and actually tested (for four or more tests).
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But what if we don’t have three or more tests?

Unfortunately, with rare exceptions, we normally are faced with
just one test, not two, three or four. How then to estimate the
reliability of that one test? Defined as the correlation between a
test and a test just like it, reliability would seem to require a
second test. The traditional solution when faced with just one test
is to consider the internal structure of that test. Letting reliability
be the ratio of true score variance to test score variance
(Equation 1), or alternatively, 1 - the ratio of error variance to true
score variance, the problem becomes one of estimating the amount
of error variance in the test. There are a number of solutions to
this problem that involve examining the internal structure of the
test. These range from considering the correlation between two
random parts of the test to examining the structure of the items
themselves.
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Split halves

ΣXX ′ =

 Vx
... Cxx′

. . . . . . . . . . . . .

Cxx′
... Vx′

 (10)

and letting Vx = 1Vx1′ and CXX′ = 1CXX ′1
′ the correlation

between the two tests will be

ρ =
Cxx ′√
VxVx ′

But the variance of a test is simply the sum of the true covariances
and the error variances:

Vx = 1Vx1′ = 1Ct1
′ + 1Ve1′ = Vt + Ve
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Split halves

and the structure of the two tests seen in Equation 10 becomes

ΣXX ′ =

 VX = Vt + Ve
... Cxx′ = Vt

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt = Cxx′
... Vt′ + Ve′ = VX ′


and because Vt = Vt′ and Ve = Ve′ the correlation between each
half, (their reliability) is

ρ =
CXX ′

VX
=

Vt

VX
= 1− Ve

Vt
.
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Split halves

The split half solution estimates reliability based upon the
correlation of two random split halves of a test and the implied
correlation with another test also made up of two random splits:

ΣXX ′ =



Vx1

... Cx1x2 Cx1x′1

... Cx1x′2
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cx1x2

... Vx2 Cx2x′1

... Cx2x′1

Cx1x′1

... Cx2x′1
Vx′1

... Cx′1x′2

Cx1x′2

... Cx2x′2
Cx′1x′2

... Vx′2
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Split halves

Because the splits are done at random and the second test is
parallel with the first test, the expected covariances between splits
are all equal to the true score variance of one split (Vt1), and the
variance of a split is the sum of true score and error variances:

ΣXX ′ =



Vt1 + Ve1

... Vt1 Vt1

... Vt1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vt1

... Vt1 + Ve1 Vt1

... Vt1

Vt1

... Vt1 Vt′1
+ Ve′1

... Vt′1

Vt1

... Vt1 Vt′1

... Vt′1
+ Ve′1


The correlation between a test made of up two halves with
intercorrelation (r1 = Vt1/Vx1) with another such test is

rxx ′ =
4Vt1√

(4Vt1 + 2Ve1)(4Vt1 + 2Ve1)
=

4Vt1

2Vt1 + 2Vx1

=
4r1

2r1 + 2

and thus

rxx ′ =
2r1

1 + r1
(11)
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The Spearman Brown Prophecy Formula

The correlation between a test made of up two halves with
intercorrelation (r1 = Vt1/Vx1) with another such test is

rxx ′ =
4Vt1√

(4Vt1 + 2Ve1)(4Vt1 + 2Ve1)
=

4Vt1

2Vt1 + 2Vx1

=
4r1

2r1 + 2

and thus

rxx ′ =
2r1

1 + r1
(12)
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6,435 possible eight item splits of the 16 ability items

Split Half reliabilities of a test with 16 ability items

Split Half reliability
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Figure: There are 6,435 possible eight item splits of the 16 ability items
of the ability data set. Of these, the maximum split half reliability is
.87, the minimum is .73 and the average is .83. All possible splits were
found using the splitHalf function.
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Coefficient α

Find the correlation of a test with a test just like it based upon the
internal structure of the first test. Basically, we are just estimating
the error variance of the individual items.

α = rxx =
σ2
t

σ2
x

=
k2 σ

2
x−
∑
σ2
i

k(k−1)

σ2
x

=
k

k − 1

σ2
x −

∑
σ2
i

σ2
x

(13)
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Alpha varies by the number of items and the inter item correlation
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Signal to Noise Ratio

The ratio of reliable variance to unreliable variance is known as the
Signal/Noise ratio and is just

S

N
=

ρ2

1− ρ2

, which for the same assumptions as for α, will be

S

N
=

nr̄

1− r̄
. (14)

That is, the S/N ratio increases linearly with the number of items
as well as with the average intercorrelation
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Alpha vs signal/noise: and r and n
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Find alpha using the alpha function
> alpha(bfi[16:20])
Reliability analysis
Call: alpha(x = bfi[16:20])

raw_alpha std.alpha G6(smc) average_r mean sd
0.81 0.81 0.8 0.46 15 5.8

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

N1 0.75 0.75 0.70 0.42
N2 0.76 0.76 0.71 0.44
N3 0.75 0.76 0.74 0.44
N4 0.79 0.79 0.76 0.48
N5 0.81 0.81 0.79 0.51

Item statistics
n r r.cor mean sd

N1 990 0.81 0.78 2.8 1.5
N2 990 0.79 0.75 3.5 1.5
N3 997 0.79 0.72 3.2 1.5
N4 996 0.71 0.60 3.1 1.5
N5 992 0.67 0.52 2.9 1.6
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What if items differ in their direction?
> alpha(bfi[6:10],check.keys=FALSE)

Reliability analysis
Call: alpha(x = bfi[6:10], check.keys = FALSE)

raw_alpha std.alpha G6(smc) average_r mean sd
-0.28 -0.22 0.13 -0.038 3.8 0.58

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

C1 -0.430 -0.472 -0.020 -0.0871
C2 -0.367 -0.423 -0.017 -0.0803
C3 -0.263 -0.295 0.094 -0.0604
C4 -0.022 0.123 0.283 0.0338
C5 -0.028 0.022 0.242 0.0057

Item statistics
n r r.cor r.drop mean sd

C1 2779 0.56 0.51 0.0354 4.5 1.2
C2 2776 0.54 0.51 -0.0076 4.4 1.3
C3 2780 0.48 0.27 -0.0655 4.3 1.3
C4 2774 0.20 -0.34 -0.2122 2.6 1.4
C5 2784 0.29 -0.19 -0.1875 3.3 1.6
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But what if some items are reversed keyed?
alpha(bfi[6:10])
Reliability analysis
Call: alpha(x = bfi[6:10])

raw_alpha std.alpha G6(smc) average_r mean sd
0.73 0.73 0.69 0.35 3.8 0.58

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

C1 0.69 0.70 0.64 0.36
C2 0.67 0.67 0.62 0.34
C3 0.69 0.69 0.64 0.36
C4- 0.65 0.66 0.60 0.33
C5- 0.69 0.69 0.63 0.36
Item statistics

n r r.cor r.drop mean sd
C1 2779 0.67 0.54 0.45 4.5 1.2
C2 2776 0.71 0.60 0.50 4.4 1.3
C3 2780 0.67 0.54 0.46 4.3 1.3
C4- 2774 0.73 0.64 0.55 2.6 1.4
C5- 2784 0.68 0.57 0.48 3.3 1.6
Warning message: In alpha(bfi[6:10]) :

Some items were negatively correlated with total scale and were automatically reversed

35 / 101



Classical test theory Internal structure α, λ3, omegah Types of reliability Other reliabities

Guttman’s alternative estimates of reliability
Reliability is amount of test variance that is not error variance. But
what is the error variance?

rxx =
Vx − Ve

Vx
= 1−

Ve

Vx
. (15)

λ1 = 1−
tr(Vx)

Vx
=

Vx − tr(Vx )

Vx
. (16)

λ2 = λ1 +

√
n

n−1
C2

Vx
=

Vx − tr(Vx ) +
√

n
n−1

C2

Vx
. (17)

λ3 = λ1 +

VX−tr(VX )
n(n−1)

VX
=

nλ1

n − 1
=

n

n − 1

(
1−

tr(V)x

Vx

)
=

n

n − 1

Vx − tr(Vx )

Vx
= α (18)

λ4 = 2
(

1−
VXa + VXb

VX

)
=

4cab

Vx
=

4cab

VXa + VXb
+ 2cabVXaVXb

. (19)

λ6 = 1−
∑

e2
j

Vx
= 1−

∑
(1− r2

smc)

Vx
(20)
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Four different correlation matrices, one value of α
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Decomposing a test into general, Group, and Error variance

Total = g + Gr + E
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total variance
into general,
group, specific,
and error

2. α < total

3. α > general
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Two additional alternatives to α: ωhierarchical and omegatotal
If a test is made up of a general, a set of group factors, and
specific as well as error:

x = cg + Af + Ds + e (21)

then the communality of itemj , based upon general as well as
group factors,

h2
j = c2

j +
∑

f 2
ij (22)

and the unique variance for the item

u2
j = σ2

j (1− h2
j ) (23)

may be used to estimate the test reliability.

ωt =
1cc′1′ + 1AA′1′

Vx
= 1−

∑
(1− h2

j )

Vx
= 1−

∑
u2

Vx
(24)
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? introduced two different forms for ω

ωt =
1cc′1′ + 1AA′1′

Vx
= 1−

∑
(1− h2

j )

Vx
= 1−

∑
u2

Vx
(25)

and

ωh =
1cc′1

Vx
=

(
∑

Λi )
2∑∑

Rij
. (26)

These may both be find by factoring the correlation matrix and
finding the g and group factor loadings using the omega function.
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Using omega on the Thurstone data set to find alternative reliability
estimates

> lower.mat(Thurstone)
> omega(Thurstone)

Sntnc Vcblr Snt.C Frs.L 4.L.W Sffxs Ltt.S Pdgrs Ltt.G
Sentences 1.00
Vocabulary 0.83 1.00
Sent.Completion 0.78 0.78 1.00
First.Letters 0.44 0.49 0.46 1.00
4.Letter.Words 0.43 0.46 0.42 0.67 1.00
Suffixes 0.45 0.49 0.44 0.59 0.54 1.00
Letter.Series 0.45 0.43 0.40 0.38 0.40 0.29 1.00
Pedigrees 0.54 0.54 0.53 0.35 0.37 0.32 0.56 1.00
Letter.Group 0.38 0.36 0.36 0.42 0.45 0.32 0.60 0.45 1.00

Omega
Call: omega(m = Thurstone)
Alpha: 0.89
G.6: 0.91
Omega Hierarchical: 0.74
Omega H asymptotic: 0.79
Omega Total 0.93
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Two ways of showing a general factor

Omega

Sentences

Vocabulary

Sent.Completion

First.Letters

4.Letter.Words

Suffixes

Letter.Series

Letter.Group

Pedigrees

F1*

0.6
0.6
0.5

0.2

F2*
0.6
0.5

0.4

F3*
0.6
0.5
0.3

g

0.7
0.7
0.7
0.6
0.6
0.6
0.6
0.5
0.6

Hierarchical (multilevel) Structure

Sentences

Vocabulary

Sent.Completion

First.Letters

4.Letter.Words

Suffixes

Letter.Series

Letter.Group

Pedigrees

F1

0.9
0.9
0.8

0.4

F2
0.9
0.7

0.6

0.2

F3
0.8
0.6
0.5

g

0.8

0.8

0.7
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omega function does a Schmid Leiman transformation
> omega(Thurstone,sl=FALSE)
Omega
Call: omega(m = Thurstone, sl = FALSE)
Alpha: 0.89
G.6: 0.91
Omega Hierarchical: 0.74
Omega H asymptotic: 0.79
Omega Total 0.93
Schmid Leiman Factor loadings greater than 0.2

g F1* F2* F3* h2 u2 p2
Sentences 0.71 0.57 0.82 0.18 0.61
Vocabulary 0.73 0.55 0.84 0.16 0.63
Sent.Completion 0.68 0.52 0.73 0.27 0.63
First.Letters 0.65 0.56 0.73 0.27 0.57
4.Letter.Words 0.62 0.49 0.63 0.37 0.61
Suffixes 0.56 0.41 0.50 0.50 0.63
Letter.Series 0.59 0.61 0.72 0.28 0.48
Pedigrees 0.58 0.23 0.34 0.50 0.50 0.66
Letter.Group 0.54 0.46 0.53 0.47 0.56
With eigenvalues of:

g F1* F2* F3*
3.58 0.96 0.74 0.71
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Types of reliability

• Internal consistency
• α
• ωhierarchical

• ωtotal

• β
• Intraclass

• Agreement

• Test-retest, alternate
form

• Generalizability

• Internal consistency
• alpha,
score.items

• omega
• iclust

• icc

• wkappa,
cohen.kappa

• cor

• aov
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Alpha and its alternatives

• Reliability = σ2
t
σ2
x

= 1− σ2
e
σ2
x

• If there is another test, then σt = σt1t2 (covariance of test X1

with test X2 = Cxx)
• But, if there is only one test, we can estimate σ2

t based upon
the observed covariances within test 1
• How do we find σ2

e ?
• The worst case, (Guttman case 1) all of an item’s variance is

error and thus the error variance of a test X with
variance-covariance Cx
• Cx = σ2

e = diag(Cx)
• λ1 = Cx−diag(Cx )

Cx

• A better case (Guttman case 3, α) is that that the average
covariance between the items on the test is the same as the
average true score variance for each item.
• Cx = σ2

e = diag(Cx)
• λ3 = α = λ1 ∗ n

n−1 = (Cx−diag(Cx ))∗n/(n−1)
Cx

45 / 101



Classical test theory Internal structure α, λ3, omegah Types of reliability Other reliabities

Guttman 6: estimating using the Squared Multiple Correlation

• Reliability = σ2
t
σ2
x

= 1− σ2
e
σ2
x

• Estimate true item variance as squared multiple correlation
with other items
• λ6 = (Cx−diag(Cx )+Σ(smci )

Cx

• This takes observed covariance, subtracts the diagonal, and
replaces with the squared multiple correlation

• Similar to α which replaces with average inter-item covariance

• Squared Multiple Correlation is found by smc and is just
smci = 1− 1/R−1

ii
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Alpha and its alternatives: Case 1: congeneric measures

First, create some simulated data with a known structure
> set.seed(42)
> v4 <- sim.congeneric(N=200,short=FALSE)
> str(v4) #show the structure of the resulting object
List of 6
$ model : num [1:4, 1:4] 1 0.56 0.48 0.4 0.56 1 0.42 0.35 0.48 0.42 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"
.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"
$ pattern : num [1:4, 1:5] 0.8 0.7 0.6 0.5 0.6 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"
.. ..$ : chr [1:5] "theta" "e1" "e2" "e3" ...
$ r : num [1:4, 1:4] 1 0.546 0.466 0.341 0.546 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"
.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"
$ latent : num [1:200, 1:5] 1.371 -0.565 0.363 0.633 0.404 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:5] "theta" "e1" "e2" "e3" ...
$ observed: num [1:200, 1:4] -0.104 -0.251 0.993 1.742 -0.503 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "V1" "V2" "V3" "V4"
$ N : num 200
- attr(*, "class")= chr [1:2] "psych" "sim"
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A congeneric model

> f1 <- fa(v4$model)
> fa.diagram(f1)

Four congeneric tests

V1 V2 V3 V4

F1

0.9 0.8 0.7 0.6

> v4$model
V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00

> round(cor(v4$observed),2)
V1 V2 V3 V4

V1 1.00 0.55 0.47 0.34
V2 0.55 1.00 0.38 0.30
V3 0.47 0.38 1.00 0.31
V4 0.34 0.30 0.31 1.00
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Find α and related stats for the simulated data

> alpha(v4$observed)

Reliability analysis
Call: alpha(x = v4$observed)

raw_alpha std.alpha G6(smc) average_r mean sd
0.71 0.72 0.67 0.39 -0.036 0.72

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

V1 0.59 0.60 0.50 0.33
V2 0.63 0.64 0.55 0.37
V3 0.65 0.66 0.59 0.40
V4 0.72 0.72 0.64 0.46

Item statistics
n r r.cor r.drop mean sd

V1 200 0.80 0.72 0.60 -0.015 0.93
V2 200 0.76 0.64 0.53 -0.060 0.98
V3 200 0.73 0.59 0.50 -0.119 0.92
V4 200 0.66 0.46 0.40 0.049 1.09
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A hierarchical structure

cor.plot(r9)

Correlation plot

V1 V2 V3 V4 V5 V6 V7 V8 V9

V9

V8

V7

V6

V5

V4

V3

V2

V1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

> set.seed(42)
> r9 <- sim.hierarchical()
> lower.mat(r9)

V1 V2 V3 V4 V5 V6 V7 V8 V9
V1 1.00
V2 0.56 1.00
V3 0.48 0.42 1.00
V4 0.40 0.35 0.30 1.00
V5 0.35 0.30 0.26 0.42 1.00
V6 0.29 0.25 0.22 0.35 0.30 1.00
V7 0.30 0.26 0.23 0.24 0.20 0.17 1.00
V8 0.25 0.22 0.19 0.20 0.17 0.14 0.30 1.00
V9 0.20 0.18 0.15 0.16 0.13 0.11 0.24 0.20 1.00
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α of the 9 hierarchical variables
> alpha(r9)

Reliability analysis
Call: alpha(x = r9)

raw_alpha std.alpha G6(smc) average_r
0.76 0.76 0.76 0.26

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

V1 0.71 0.71 0.70 0.24
V2 0.72 0.72 0.71 0.25
V3 0.74 0.74 0.73 0.26
V4 0.73 0.73 0.72 0.25
V5 0.74 0.74 0.73 0.26
V6 0.75 0.75 0.74 0.27
V7 0.75 0.75 0.74 0.27
V8 0.76 0.76 0.75 0.28
V9 0.77 0.77 0.76 0.29

Item statistics
r r.cor

V1 0.72 0.71
V2 0.67 0.63
V3 0.61 0.55
V4 0.65 0.59
V5 0.59 0.52
V6 0.53 0.43
V7 0.56 0.46
V8 0.50 0.39
V9 0.45 0.32
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An example of two different scales confused as one

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Factor Analysis

MR1

M
R
2

12
3

456

7

8

9

1011
12

> set.seed(17)
> two.f <- sim.item(8)
> lowerCor(two.f)

cor.plot(cor(two.f))

V1 V2 V3 V4 V5 V6 V7 V8
V1 1.00
V2 0.29 1.00
V3 0.05 0.03 1.00
V4 0.03 -0.02 0.34 1.00
V5 -0.38 -0.35 -0.02 -0.01 1.00
V6 -0.38 -0.33 -0.10 0.06 0.33 1.00
V7 -0.06 0.02 -0.40 -0.36 0.03 0.04 1.00
V8 -0.08 -0.04 -0.39 -0.37 0.05 0.03 0.37 1.00
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Rearrange the items to show it more clearly

Correlation plot

V1 V2 V5 V6 V3 V4 V7 V8

V8

V7

V4

V3

V6

V5

V2

V1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

> cor.2f <- cor(two.f)
> cor.2f <- cor.2f[c(1:2,5:6,3:4,7:8),

c(1:2,5:6,3:4,7:8)]
> lowerCor(two.f)
>cor.plot(cor.2f)

V1 V2 V5 V6 V3 V4 V7 V8
V1 1.00
V2 0.29 1.00
V5 -0.38 -0.35 1.00
V6 -0.38 -0.33 0.33 1.00
V3 0.05 0.03 -0.02 -0.10 1.00
V4 0.03 -0.02 -0.01 0.06 0.34 1.00
V7 -0.06 0.02 0.03 0.04 -0.40 -0.36 1.00
V8 -0.08 -0.04 0.05 0.03 -0.39 -0.37 0.37 1.00
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α of two scales confused as one
Note the use of the keys parameter to specify how some items
should be reversed.
> alpha(two.f,keys=c(rep(1,4),rep(-1,4)))

Reliability analysis
Call: alpha(x = two.f, keys = c(rep(1, 4), rep(-1, 4)))

raw_alpha std.alpha G6(smc) average_r mean sd
0.62 0.62 0.65 0.17 -0.0051 0.27

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

V1 0.59 0.58 0.61 0.17
V2 0.61 0.60 0.63 0.18
V3 0.58 0.58 0.60 0.16
V4 0.60 0.60 0.62 0.18
V5 0.59 0.59 0.61 0.17
V6 0.59 0.59 0.61 0.17
V7 0.58 0.58 0.61 0.17
V8 0.58 0.58 0.60 0.16

Item statistics
n r r.cor r.drop mean sd

V1 500 0.54 0.44 0.33 0.063 1.01
V2 500 0.48 0.35 0.26 0.070 0.95
V3 500 0.56 0.47 0.36 -0.030 1.01
V4 500 0.48 0.37 0.28 -0.130 0.97
V5 500 0.52 0.42 0.31 -0.073 0.97
V6 500 0.52 0.41 0.31 -0.071 0.95
V7 500 0.53 0.44 0.34 0.035 1.00
V8 500 0.56 0.47 0.36 0.097 1.02 54 / 101
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Score as two different scales

First, make up a keys matrix to specify which items should be
scored, and in which way
> keys <- make.keys(two.f,keys.list=list(one=c(1,2,-5,-6),two=c(3,4,-7,-8)))
> keys

one two
[1,] 1 0
[2,] 1 0
[3,] 0 1
[4,] 0 1
[5,] -1 0
[6,] -1 0
[7,] 0 -1
[8,] 0 -1
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Now score the two scales and find α and other reliability estimates

> scoreItems(keys,two.f)
Call: score.items(keys = keys, items = two.f)
(Unstandardized) Alpha:

one two
alpha 0.68 0.7
Average item correlation:

one two
average.r 0.34 0.37
Guttman 6* reliability:

one two
Lambda.6 0.62 0.64
Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

one two
one 0.68 0.08
two 0.06 0.70
Item by scale correlations:
corrected for item overlap and scale reliability

one two
V1 0.57 0.09
V2 0.52 0.01
V3 0.09 0.59
V4 -0.02 0.56
V5 -0.58 -0.05
V6 -0.57 -0.05
V7 -0.05 -0.58
V8 -0.09 -0.59
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Score the bfiR code
keys.list <-
list(agree=c("-A1","A2","A3","A4","A5"),
conscientious=c("C1","C2","C3","-C4","-C5"),

extraversion=c("-E1","-E2","E3","E4","E5"),
neuroticism=c("N1","N2","N3","N4","N5"),
openness = c("O1","-O2","O3","O4","-O5"))
scores <- scoreItems(keys.list,bfi,min=1,max=6) #specify the minimum and maximum values

scores $examine the output

Call: scoreItems(keys = keys.list, items = bfi, min = 1, max = 6)

(Unstandardized) Alpha:
agree conscientious extraversion neuroticism openness

alpha 0.7 0.72 0.76 0.81 0.6

Standard errors of unstandardized Alpha:
agree conscientious extraversion neuroticism openness

ASE 0.014 0.014 0.013 0.011 0.017

Average item correlation:
agree conscientious extraversion neuroticism openness

average.r 0.32 0.34 0.39 0.46 0.23

Guttman 6* reliability:
agree conscientious extraversion neuroticism openness

Lambda.6 0.7 0.72 0.76 0.81 0.6

Signal/Noise based upon av.r :
agree conscientious extraversion neuroticism openness

Signal/Noise 2.3 2.6 3.2 4.3 1.5

Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

agree conscientious extraversion neuroticism openness
agree 0.70 0.36 0.63 -0.245 0.23
conscientious 0.26 0.72 0.35 -0.305 0.30
extraversion 0.46 0.26 0.76 -0.284 0.32
neuroticism -0.18 -0.23 -0.22 0.812 -0.12
openness 0.15 0.19 0.22 -0.086 0.60

In order to see the item by scale loadings and frequency counts of the data
print with the short option = FALSE

>
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scoreItems output (continued

Guttman 6* reliability:
agree conscientious extraversion neuroticism openness

Lambda.6 0.7 0.72 0.76 0.81 0.6

Signal/Noise based upon av.r :
agree conscientious extraversion neuroticism openness

Signal/Noise 2.3 2.6 3.2 4.3 1.5

Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

agree conscientious extraversion neuroticism openness
agree 0.70 0.36 0.63 -0.245 0.23
conscientious 0.26 0.72 0.35 -0.305 0.30
extraversion 0.46 0.26 0.76 -0.284 0.32
neuroticism -0.18 -0.23 -0.22 0.812 -0.12
openness 0.15 0.19 0.22 -0.086 0.60

In order to see the item by scale loadings and frequency counts of the data
print with the short option = FALSE
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Types of reliability

• Internal consistency
• α
• ωhierarchical

• ωtotal

• β
• Intraclass

• Agreement

• Test-retest, alternate
form

• Generalizability

• Internal consistency
• alpha,
score.items

• omega
• iclust

• icc

• wkappa,
cohen.kappa

• cor

• aov
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Reliability of judges

• When raters (judges) rate targets, there are multiple sources
of variance
• Between targets
• Between judges
• Interaction of judges and targets

• The intraclass correlation is an analysis of variance
decomposition of these components
• Different ICC’s depending upon what is important to consider

• Absolute scores: each target gets just one judge, and judges
differ

• Relative scores: each judge rates multiple targets, and the
mean for the judge is removed

• Each judge rates multiple targets, judge and target effects
removed
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Ratings of judges

What is the reliability of ratings of different judges across ratees?
It depends. Depends upon the pairing of judges, depends upon the
targets. ICC does an Anova decomposition.

> Ratings
J1 J2 J3 J4 J5 J6

1 1 1 6 2 3 6
2 2 2 7 4 1 2
3 3 3 8 6 5 10
4 4 4 9 8 2 4
5 5 5 10 10 6 12
6 6 6 11 12 4 8

> describe(Ratings,skew=FALSE)

var n mean sd median trimmed mad min max range se
J1 1 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76
J2 2 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76
J3 3 6 8.5 1.87 8.5 8.5 2.22 6 11 5 0.76
J4 4 6 7.0 3.74 7.0 7.0 4.45 2 12 10 1.53
J5 5 6 3.5 1.87 3.5 3.5 2.22 1 6 5 0.76
J6 6 6 7.0 3.74 7.0 7.0 4.45 2 12 10 1.53
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Sources of variances and the Intraclass Correlation Coefficient

Table: Sources of variances and the Intraclass Correlation Coefficient.

(J1, J2) (J3, J4) (J5, J6) (J1, J3) (J1, J5) (J1 ... J3) (J1 ... J4) (J1 ... J6)
Variance estimates

MSb 7 15.75 15.75 7.0 5.2 10.50 21.88 28.33
MSw 0 2.58 7.58 12.5 1.5 8.33 7.12 7.38
MSj 0 6.75 36.75 75.0 0.0 50.00 38.38 30.60
MSe 0 1.75 1.75 0.0 1.8 0.00 .88 2.73

Intraclass correlations
ICC(1,1) 1.00 .72 .35 -.28 .55 .08 .34 .32
ICC(2,1) 1.00 .73 .48 .22 .53 .30 .42 .37
ICC(3,1) 1.00 .80 .80 1.00 .49 1.00 .86 .61
ICC(1,k) 1.00 .84 .52 -.79 .71 .21 .67 .74
ICC(2,k) 1.00 .85 .65 .36 .69 .56 .75 .78
ICC(3,k) 1.00 .89 .89 1.00 .65 1.00 .96 .90
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ICC is done by calling anova

aov.x <- aov(values ~ subs + ind, data = x.df)
s.aov <- summary(aov.x)
stats <- matrix(unlist(s.aov), ncol = 3, byrow = TRUE)
MSB <- stats[3, 1]
MSW <- (stats[2, 2] + stats[2, 3])/(stats[1, 2] + stats[1,

3])
MSJ <- stats[3, 2]
MSE <- stats[3, 3]
ICC1 <- (MSB - MSW)/(MSB + (nj - 1) * MSW)
ICC2 <- (MSB - MSE)/(MSB + (nj - 1) * MSE + nj * (MSJ - MSE)/n.obs)
ICC3 <- (MSB - MSE)/(MSB + (nj - 1) * MSE)
ICC12 <- (MSB - MSW)/(MSB)
ICC22 <- (MSB - MSE)/(MSB + (MSJ - MSE)/n.obs)
ICC32 <- (MSB - MSE)/MSB
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Intraclass Correlations using the ICC function
> print(ICC(Ratings),all=TRUE) #get more output than normal
$results

type ICC F df1 df2 p lower bound upper bound
Single_raters_absolute ICC1 0.32 3.84 5 30 0.01 0.04 0.79
Single_random_raters ICC2 0.37 10.37 5 25 0.00 0.09 0.80
Single_fixed_raters ICC3 0.61 10.37 5 25 0.00 0.28 0.91
Average_raters_absolute ICC1k 0.74 3.84 5 30 0.01 0.21 0.96
Average_random_raters ICC2k 0.78 10.37 5 25 0.00 0.38 0.96
Average_fixed_raters ICC3k 0.90 10.37 5 25 0.00 0.70 0.98

$summary
Df Sum Sq Mean Sq F value Pr(>F)

subs 5 141.667 28.3333 10.366 1.801e-05 ***
ind 5 153.000 30.6000 11.195 9.644e-06 ***
Residuals 25 68.333 2.7333
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

$stats
[,1] [,2] [,3]

[1,] 5.000000e+00 5.000000e+00 25.000000
[2,] 1.416667e+02 1.530000e+02 68.333333
[3,] 2.833333e+01 3.060000e+01 2.733333
[4,] 1.036585e+01 1.119512e+01 NA
[5,] 1.800581e-05 9.644359e-06 NA

$MSW
[1] 7.377778

$Call
ICC(x = Ratings)

$n.obs
[1] 6

$n.judge
[1] 6
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Cohen’s kappa and weighted kappa

• When considering agreement in diagnostic categories, without
numerical values, it is useful to consider the kappa coefficient.
• Emphasizes matches of ratings
• Doesn’t consider how far off disagreements are.

• Weighted kappa weights the off diagonal distance.

• Diagnostic categories: normal, neurotic, psychotic
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Cohen kappa and weighted kappa

cohen
normal neurotic psychotic

normal 0.44 0.07 0.09
neurotic 0.05 0.20 0.05
psychotic 0.01 0.03 0.06

> cohen.weights
[,1] [,2] [,3]

[1,] 0 1 3
[2,] 1 0 6
[3,] 3 6 0
> cohen.kappa(cohen,w=cohen.weights,n.obs=200)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
lower estimate upper

unweighted kappa 0.39 0.49 0.59
weighted kappa -0.34 0.35 1.00

Number of subjects = 200

see the other examples in ?cohen.kappa
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Outline of Part II: the New Psychometrics

Two approaches

Various IRT models

Polytomous items
Ordered response categories
Differential Item Functioning

Factor analysis & IRT
Non-monotone Trace lines

(C) A T
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Classical Reliability

1. Classical model of reliability
• Observed = True + Error
• Reliability = 1− σ2

error

σ2
observed

• Reliability = rxx = r 2
xdomain

• Reliability as correlation of a test with a test just like it

2. Reliability requires variance in observed score

• As σ2
x decreases so will rxx = 1− σ2

error

σ2
observed

3. Alternate estimates of reliability all share this need for
variance

3.1 Internal Consistency
3.2 Alternate Form
3.3 Test-retest
3.4 Between rater

4. Item difficulty is ignored, items assumed to be sampled at
random
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The “new psychometrics”

1. Model the person as well as the item
• People differ in some latent score
• Items differ in difficulty and discriminability

2. Original model is a model of ability tests
• p(correct|ability , difficulty , ...) = f (ability − difficulty)
• What is the appropriate function?

3. Extensions to polytomous items, particularly rating scale
models
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Classic Test Theory as 0 parameter IRT

Classic Test Theory considers all items to be random replicates of
each other and total (or average) score to be the appropriate
measure of the underlying attribute. Items are thought to be
endorsed (passed) with an increasing probability as a function of
the underlying trait. But if the trait is unbounded (just as there is
always the possibility of someone being higher than the highest
observed score, so is there a chance of someone being lower than
the lowest observed score), and the score is bounded (from p=0 to
p=1), then the relationship between the latent score and the
observed score must be non-linear. This leads to the most simple
of all models, one that has no parameters to estimate but is just a
non-linear mapping of latent to observed:

p(correctij |θi ) =
1

1 + e−θi
. (27)
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Classical Theory as a “Whipping Wall” (Lumsden, 1976)
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Rasch model – All items equally discriminating, differ in difficulty

Slightly more complicated than the zero parameter model is to
assume that all items are equally good measures of the trait, but
differ only in their difficulty/location. The one parameter logistic
(1PL) Rasch model (?) is the easiest to understand:

p(correctij |θi , δj) =
1

1 + eδj−θi
. (28)

That is, the probability of the i th person being correct on (or
endorsing) the j th item is a logistic function of the difference
between the person’s ability (latent trait) (θi ) and the item
difficulty (or location) (δj). The more the person’s ability is greater
than the item difficulty, the more likely the person is to get the
item correct.
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Estimating the model

The probability of missing an item, q, is just 1 - p(correct) and
thus the odds ratio of being correct for a person with ability, θi , on
an item with difficulty, δj is

ORij =
p

1− p
=

p

q
=

1

1+e
δj−θi

1− 1

1+e
δj−θi

=

1

1+e
δj−θi

e
δj−θi

1+e
δj−θi

=
1

eδj−θi
= eθi−δj .

(29)
That is, the odds ratio will be a exponential function of the
difference between a person’s ability and the task difficulty. The
odds of a particular pattern of rights and wrongs over n items will
be the product of n odds ratios

ORi1ORi2 . . .ORin =
n∏

j=1

eθi−δj = enθi e−
∑n

j=1 δj . (30)
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Estimating parameters

Substituting P for the pattern of correct responses and Q for the
pattern of incorrect responses, and taking the logarithm of both
sides of equation 30 leads to a much simpler form:

ln
P

Q
= nθi +

n∑
j=1

δj = n(θi + δ̄). (31)

That is, the log of the pattern of correct/incorrect for the i th

individual is a function of the number of items * (θi - the average
difficulty). Specifying the average difficulty of an item as δ̄ = 0 to
set the scale, then θi is just the logarithm of P/Q divided by n or,
conceptually, the average logarithm of the p/q

θi =
ln P

Q

n
. (32)
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Difficulty is just a function of probability correct

Similarly, the pattern of the odds of correct and incorrect responses
across people for a particular item with difficulty δj will be

OR1jOR2j . . .ORnj =
P

Q
=

N∏
i=1

eθi−δj = e
∑N

i=1(θi )−Nδj (33)

and taking logs of both sides leads to

ln
P

Q
=

N∑
i=1

(θi )− Nδj . (34)

Letting the average ability θ̄ = 0 leads to the conclusion that the
difficulty of an item for all subjects, δj , is the logarithm of Q/P
divided by the number of subjects, N,

δj =
lnQ

P

N
. (35)
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Rasch model in words

That is, the estimate of ability (Equation 32) for items with an
average difficulty of 0 does not require knowing the difficulty of
any particular item, but is just a function of the pattern of corrects
and incorrects for a subject across all items.
Similarly, the estimate of item difficulty across people ranging in
ability, but with an average ability of 0 (Equation 35) is a function
of the response pattern of all the subjects on that one item and
does not depend upon knowing any one person’s ability. The
assumptions that average difficulty and average ability are 0 are
merely to fix the scales. Replacing the average values with a
non-zero value just adds a constant to the estimates.
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Rasch as a high jump

The independence of ability from difficulty implied in equations 32
and 35 makes estimation of both values very straightforward.
These two equations also have the important implication that the
number correct (np̄ for a subject, Np̄ for an item) is monotonically,
but not linearly related to ability or to difficulty.
That the estimated ability is independent of the pattern of rights
and wrongs but just depends upon the total number correct is seen
as both a strength and a weakness of the Rasch model. From the
perspective of fundamental measurement, Rasch scoring provides
an additive interval scale: for all people and items, if θi < θj and
δk < δl then p(x |θi , δk) < p(x |θj , δl). But this very additivity
treats all patterns of scores with the same number correct as equal
and ignores potential information in the pattern of responses.
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Rasch estimates from ltm
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The LSAT example from ltm

data(bock)
> ord <- order(colMeans(lsat6),decreasing=TRUE)
> lsat6.sorted <- lsat6[,ord]
> describe(lsat6.sorted)
> Tau <- round(-qnorm(colMeans(lsat6.sorted)),2) #tau = estimates of threshold
> rasch(lsat6.sorted,constraint=cbind(ncol(lsat6.sorted)+1,1.702))

var n mean sd median trimmed mad min max range skew kurtosis se
Q1 1 1000 0.92 0.27 1 1.00 0 0 1 1 -3.20 8.22 0.01
Q5 2 1000 0.87 0.34 1 0.96 0 0 1 1 -2.20 2.83 0.01
Q4 3 1000 0.76 0.43 1 0.83 0 0 1 1 -1.24 -0.48 0.01
Q2 4 1000 0.71 0.45 1 0.76 0 0 1 1 -0.92 -1.16 0.01
Q3 5 1000 0.55 0.50 1 0.57 0 0 1 1 -0.21 -1.96 0.02

> Tau
Q1 Q5 Q4 Q2 Q3

-1.43 -1.13 -0.72 -0.55 -0.13

Call:
rasch(data = lsat6.sorted, constraint = cbind(ncol(lsat6.sorted) +

1, 1.702))

Coefficients:
Dffclt.Q1 Dffclt.Q5 Dffclt.Q4 Dffclt.Q2 Dffclt.Q3 Dscrmn

-1.927 -1.507 -0.960 -0.742 -0.195 1.702
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Item information

When forming a test and evaluating the items within a test, the
most useful items are the ones that give the most information
about a person’s score. In classic test theory, item information is
the reciprocal of the squared standard error for the item or for a
one factor test, the ratio of the item communality to its uniqueness:

Ij =
1

σ2
ej

=
h2
j

1− h2
j

.

When estimating ability using IRT, the information for an item is a
function of the first derivative of the likelihood function and is
maximized at the inflection point of the icc.
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Estimating item information

The information function for an item is

I (f , xj) =
[P ′j (f )]2

Pj(f )Qj(f )
(36)

For the 1PL model, P ′, the first derivative of the probability
function Pj(f ) = 1

1+eδ−θ
is

P ′ =
eδ−θ

(1 + eδ−θ)2
(37)

which is just PjQj and thus the information for an item is

Ij = PjQj . (38)

That is, information is maximized when the probability of getting
an item correct is the same as getting it wrong, or, in other words,
the best estimate for an item’s difficulty is that value where half of
the subjects pass the item.
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Elaborations of Rasch

1. Logistic or cumulative normal function
• Logistic treats any pattern of responses the same
• Cumulative normal weights extreme scores more

2. Rasch and 1PN models treat all items as equally
discriminating
• But some items are better than others
• Thus, the two parameter model

p(correctij |θi , αj , δj) =
1

1 + eαi (δj−θi )
(39)
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2PL and 2PN models

p(correctij |θi , αj , δj) =
1

1 + eαi (δj−θi )
(40)

while in the two parameter normal ogive (2PN) model this is

p(correct|θ, αj , δ) =
1√
2π

∫ α(θ−δ)

− inf
e−

u2

2 du (41)

where u = α(θ − δ).
The information function for a two parameter model reflects the
item discrimination parameter, α,

Ij = α2PjQj (42)

which, for a 2PL model is

Ij = α2
j PjQj =

α2
j

(1 + eαj (δj−θj ))2
. (43)
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The problem of non-parallel trace lines

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2PL models differing in their discrimination parameter

Ability (logit units)

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 |a

bi
lit

y 
an

d 
di

ffi
cu

lty

α = 0.5

α = 1

α = 2

P(x) =
1

1 + eα(θ−δ)

84 / 101



Two approaches Various IRT models Polytomous items Factor analysis & IRT (C) A T

Parameter explosion – better fit but at what cost

The 3 parameter model adds a guessing parameter.

p(correctij |θi , αj , δj , γj) = γj +
1− γj

1 + eαi (δj−θi )
(44)

And the four parameter model adds an asymtotic parameter

P(x |θi , α, δj , γj , ζj) = γj +
ζj − γj

1 + eαj (δj−θi )
. (45)
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3 and 4 PL
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Personality items with monotone trace lines

A typical personality item might ask “How much do you enjoy a
lively party” with a five point response scale ranging from “1: not
at all” to “5: a great deal” with a neutral category at 3. An
alternative response scale for this kind of item is to not have a
neutral category but rather have an even number of responses.
Thus a six point scale could range from “1: very inaccurate” to “6:
very accurate” with no neutral category
The assumption is that the more sociable one is, the higher the
response alternative chosen. The probability of endorsing a 1 will
increase monotonically the less sociable one is, the probability of
endorsing a 5 will increase monotonically the more sociable one is.
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Threshold models

For the 1PL or 2PL logistic model the probability of endorsing the
kth response is a function of ability, item thresholds, and the
discrimination parameter and is

P(r = k|θi , δk , δk−1, αk ) = P(r|θi , δk−1, αk )−P(r|θi , δk , αk ) =
1

1 + e
αk (δk−1−θi )

−
1

1 + eαsk (δk−θi )

(46)

where all bk are set to bk = 1 in the 1PL Rasch case.
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Responses to a multiple choice polytomous item
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Differences in the response shape of mulitple choice items
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Differential Item Functioning

1. Use of IRT to analyze item quality
• Find IRT difficulty and discrimination parameters for different

groups
• Compare response patterns
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FA and IRT

If the correlations of all of the items reflect one underlying latent
variable, then factor analysis of the matrix of tetrachoric
correlations should allow for the identification of the regression
slopes (α) of the items on the latent variable. These regressions
are, of course just the factor loadings. Item difficulty, δj and item
discrimination, αj may be found from factor analysis of the
tetrachoric correlations where λj is just the factor loading on the
first factor and τj is the normal threshold reported by the
tetrachoric function (???).

δj =
Dτ√
1− λ2

j

, αj =
λj√

1− λ2
j

(47)

where D is a scaling factor used when converting to the
parameterization of logistic model and is 1.702 in that case and 1
in the case of the normal ogive model.
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FA and IRT

IRT parameters from FA

δj =
Dτ√
1− λ2

j

, αj =
λj√

1− λ2
j

(48)

FA parameters from IRT

λj =
αj√

1 + α2
j

, τj =
δj√

1 + α2
j

.
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the irt.fa function

> set.seed(17)
> items <- sim.npn(9,1000,low=-2.5,high=2.5)$items
> p.fa <-irt.fa(items)

Summary information by factor and item
Factor = 1

-3 -2 -1 0 1 2 3
V1 0.61 0.66 0.21 0.04 0.01 0.00 0.00
V2 0.31 0.71 0.45 0.12 0.02 0.00 0.00
V3 0.12 0.51 0.76 0.29 0.06 0.01 0.00
V4 0.05 0.26 0.71 0.54 0.14 0.03 0.00
V5 0.01 0.07 0.44 1.00 0.40 0.07 0.01
V6 0.00 0.03 0.16 0.59 0.72 0.24 0.05
V7 0.00 0.01 0.04 0.21 0.74 0.66 0.17
V8 0.00 0.00 0.02 0.11 0.45 0.73 0.32
V9 0.00 0.00 0.01 0.07 0.25 0.55 0.44
Test Info 1.11 2.25 2.80 2.97 2.79 2.28 0.99
SEM 0.95 0.67 0.60 0.58 0.60 0.66 1.01
Reliability 0.10 0.55 0.64 0.66 0.64 0.56 -0.01

94 / 101



Two approaches Various IRT models Polytomous items Factor analysis & IRT (C) A T

Item Characteristic Curves from FA
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Item information from FA
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Test Information Curve
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Comparing three ways of estimating the parameters

set.seed(17)
items <- sim.npn(9,1000,low=-2.5,high=2.5)$items
p.fa <- irt.fa(items)$coefficients[1:2]
p.ltm <- ltm(items~z1)$coefficients
p.ra <- rasch(items, constraint = cbind(ncol(items) + 1, 1))$coefficients
a <- seq(-2.5,2.5,5/8)
p.df <- data.frame(a,p.fa,p.ltm,p.ra)
round(p.df,2)

a Difficulty Discrimination X.Intercept. z1 beta.i beta
Item 1 -2.50 -2.45 1.03 5.42 2.61 3.64 1
Item 2 -1.88 -1.84 1.00 3.35 1.88 2.70 1
Item 3 -1.25 -1.22 1.04 2.09 1.77 1.73 1
Item 4 -0.62 -0.69 1.03 1.17 1.71 0.98 1
Item 5 0.00 -0.03 1.18 0.04 1.94 0.03 1
Item 6 0.62 0.63 1.05 -1.05 1.68 -0.88 1
Item 7 1.25 1.43 1.10 -2.47 1.90 -1.97 1
Item 8 1.88 1.85 1.01 -3.75 2.27 -2.71 1
Item 9 2.50 2.31 0.90 -5.03 2.31 -3.66 1
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Attitudes might not have monotone trace lines

1. Abortion is unacceptable under any circumstances.
2. Even if one believes that there may be some

exceptions, abortions is still generally wrong.
3. There are some clear situations where abortion

should be legal, but it should not be permitted in all
situations.

4. Although abortion on demand seems quite extreme,
I generally favor a woman’s right to choose.

5. Abortion should be legal under any circumstances.
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Ideal point models of attitutude
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Attitudes reflect an unfolding (ideal point) model
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IRT and CTT don’t really differ except

1. Correlation of classic test scores and IRT scores > .98.

2. Test information for the person doesnt’t require people to vary

3. Possible to item bank with IRT
• Make up tests with parallel items based upon difficulty and

discrimination
• Detect poor items

4. Adaptive testing
• No need to give a person an item that they will almost

certainly pass (or fail)
• Can tailor the test to the person
• (Problem with anxiety and item failure)
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