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Latent Variables
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Theory: A regression model of latent variables
n
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All data are befuddled with error

Now, suppose that we wish to ascertain the correspon-
dence between a series of values, p, and another series,
q. By practical observation we evidently do not obtain the
true objective values, p and q, but only approximations
which we will call p’ and q’. Obviously, p’ is less closely
connected with q’, than is p with q, for the first pair only
correspond at all by the intermediation of the second pair;
the real correspondence between p and q, shortly r,q has
been "attenuated” into ry o (Spearman, 1904, p 90).
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All data are befuddled by error: Observed Score = True score +
Error score

Reliability = .80
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Spearman’s parallell test theory

1. Correlation between two latent
variables

One measure per latent variable

Two observed variables

One observed covariance

Three unknown covariances

Can not be solved

2. Correlation between two latent
variables

® Four observable variables

6 observable covariances

5 unknown covariances
Assumption of “parallel” tests =
6 equations with 6 unknowns
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Classical True score theory

Let each individual score, X, reflect a true value, t, and an error
value, e, and the expected score over multiple observations of x is
t, and the expected score of e for any value of p is 0. Then,
because the expected error score is the same for all true scores, the
covariance of true score with error score (o) is zero, and the

2 is just

variance of x, og,

2

02 =02 + 02+ 204 = 02 + 02

Similarly, the covariance of observed score with true score is just

the variance of true score

2 2
Oxt = 0¢ + Ote = Oy
and the correlation of observed score with true score is

2
O xt O't - Ot

Pxt = = = .
(0f +02)(0F) okoi  Ox
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Classical Test Theory

By knowing the correlation between observed score and true score,
pxt, and from the definition of linear regression predicted true
score, t, for an observed x may be found from

t= biyx = Tty = PoX. (2)

All of this is well and good, but to find the correlation we need to

know either o2 or o2. The question becomes how do we find 2 or
27

os?l.

13/113



Classical test theory Internal structure «, A3, omegay, Types of reliability

ICC and Kappa
90 Q00000
00

Regression effects due to unreliability of measurement

Consider the case of air force instructors evaluating the effects of
reward and punishment upon subsequent pilot performance.
Instructors observe 100 pilot candidates for their flying skill. At the
end of the day they reward the best 50 pilots and punish the worst
50 pilots.
® Day 1
® Mean of best 50 pilots 1 is 75
® Mean of worst 50 pilots is 25
® Day 2
® Mean of best 50 has gone down to 65 ( a loss of 10 points)
® Mean of worst 50 has gone up to 35 (a gain of 10 points)
® |t seems as if reward hurts performance and punishment helps
performance.

® |f there is no effect of reward and punishment, what is the .
expected correlation from day 1 to day 27 =2
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Correcting for attenuation
To ascertain the amount of this attenuation, and thereby
discover the true correlation, it appears necessary to make
two or more independent series of observations of both p
and q. (Spearman, 1904, p 90)

Spearman’s solution to the problem of estimating the true
relationship between two variables, p and q, given observed scores
p' and g’ was to introduce two or more additional variables that
came to be called parallel tests. These were tests that had the
same true score for each individual and also had equal error
variances. To Spearman (1904b p 90) this required finding “the
average correlation between one and another of these
independently obtained series of values” to estimate the reliability
of each set of measures (ry/p, rqq), and then to find

_ rplq/ (3) 7
TopTad =
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Two parallel tests

The correlation between two parallel tests is the squared
correlation of each test with true score and is the percentage of

test variance that is true score variance
2

O't 2
= —= = P 4
pXX 0_2 pxt ( )

X
Reliability is the fraction of test variance that is true score
variance. Knowing the reliability of measures of p and q allows us
to correct the observed correlation between p' and q' for the
reliability of measurement and to find the unattenuated correlation
between p and q.

g
_ pq
fpg = (5)
0202
p%q
and o o
Op' g pte!Yq+e; o
rp, , = pq _ 1 2 Pq (6)

q = = = .
\/O'I%,O'sl \/0—123/0—3’ 0—/23/0—3/ R
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Modern “Classical Test Theory”

Reliability is the correlation between two parallel tests where tests

are said to be parallel if for every subject, the true scores on each

test are the expected scores across an infinite number of tests and

thus the same, and the true score variances for each test are the
2 2

same (ap, =0y = 0;2,,), and the error variances across subjects for
1 2

each test are the same (UE{ = Uﬁg = 02,) (see Figure 19), (Lord &

Novick, 1968; McDonald, 1999). The correlation between two
parallel tests will be

2 2
Tpipy Op + Opey + Ope; + Tere;  0p
p ’ o= p /o = = = — (7)
P1P2 PP 2 o 0.2 0.2 :
O'p,O'p/ p’ p’
1 2

=
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Classical Test Theory

but from Eq 4,
2 _ 2
Op = Pp'p'Op (8)
and thus, by combining equation 5 with 6 and 8 the unattenuated
correlation between p and q corrected for reliability is Spearman'’s
equation 3
Fn A7
P'q
fpg = ——. 9
Ve ©
As Spearman recognized, correcting for attenuation could show
structures that otherwise, because of unreliability, would be hard to
detect.

=
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Spearman’s parallell test theory

1. Correlation between two latent
variables

One measure per latent variable

Two observed variables

One observed covariance

Three unknown covariances

Can not be solved

2. Correlation between two latent
variables

® Four observable variables

6 observable covariances

5 unknown covariances
Assumption of “parallel” tests =
6 equations with 6 unknowns
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When is a test a parallel test?

But how do we know that two tests are parallel? For just knowing
the correlation between two tests, without knowing the true scores
or their variance (and if we did, we would not bother with
reliability), we are faced with three knowns (two variances and one
covariance) but ten unknowns (four variances and six covariances).
That is, the observed correlation, rp,p, fepresents the two known
variances sp/ and s2 : and their covariance Sp!ph- The model to
account for these three knowns reflects the variances of true and
error scores for pj and p) as well as the six covariances between
these four terms. In this case of two tests, by defining them to be
parallel with uncorrelated errors, the number of unknowns drop to
three (for the true scores variances of pj and p} are set equal, as
are the error variances, and all covariances with error are set to
zero) and the (equal) reliability of each test may be found.

R
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The problem of parallel tests

Unfortunately, according to this concept of parallel tests, the
possibility of one test being far better than the other is
ignored. Parallel tests need to be parallel by construction or
assumption and the assumption of parallelism may not be
tested. With the use of more tests, however, the number of
assumptions can be relaxed (for three tests) and actually
tested (for four or more tests).

This leads to 2 more advanced models: “Tau equivalance”
(meaning true scores are the same, error variances can differ)
and “congeneriic’ (meaning the tests measure the same thing
but perhaps differ in how well they measure it).

This increases the number of equations and number of

unknowns, but produces (with 4 tests) a set of equations that

can be solved with no assumptions. P
PX
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Four congeneric tests — 1 latent factor

Four congeneric tests

‘9 0.8 0\7

V1]

V2] [V3]

ICC and Kappa
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Observed variables and estimated parameters of a congeneric test

Observed correlations and modeled parameters

Variable Testy Testy Tests Testy
Test; 0%, = oj +e

Test, Oxyxp = A109g 209 0')2(2 = )\20’% + E%

Tests Oxpx3 = A1OgA309  Oxoxz = A209A30¢ 0')2(3 = )\305 + e%

Testy Oxixg = A109A40¢t Oxoxg = AN209 409 Oxzxy = A309A409 0’>2<4 = )\40‘5 + Eﬁ

@
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Observed variables and estimated parameters of a congeneric test

Vi V2 V3 V4 | V1 V2 V3 v
\%E sf Alo? + a?l
V2 12 2 AAgo? Xof + 0%,
V3 s13 23 2 A1Azo? AoAz0? X307 + o2,
V4 s1a 4 s34 s A1 Ago? AoAz02 A3rg0? Ago?

@
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But what if we don’t have three or more tests?

Unfortunately, with rare exceptions, we normally are faced with
just one test, not two, three or four. How then to estimate the
reliability of that one test? Defined as the correlation between a
test and a test just like it, reliability would seem to require a
second test. The traditional solution when faced with just one test
is to consider the internal structure of that test. Letting reliability
be the ratio of true score variance to test score variance

(Equation 1), or alternatively, 1 - the ratio of error variance to true
score variance, the problem becomes one of estimating the amount
of error variance in the test. There are a number of solutions to
this problem that involve examining the internal structure of the
test. These range from considering the correlation between two
random parts of the test to examining the structure of the items
themselves. P’
PX
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Split halves
Vx Cxx’
St = | oo (10)
cxx’ Vx’

and letting Vi = 1V,1" and Cxx» = 1Cxx:1’ the correlation
between the two tests will be

- CXX’
= VL
But the variance of a test is simply the sum of the true covariances

and the error variances:

Vi = 1V, = 1C, 1 + 1Vl = V, + V., o
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Split halves

and the structure of the two tests seen in Equation 10 becomes

Vt = Cxx’ Vt’ + Ve’ = VX’

and because V; = V¢ and V. = V. the correlation between each
half, (their reliability) is

_ Cxx _ W _1 Ve
Vx Vx Ve

=
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Split halves

The split half solution estimates reliability based upon the
correlation of two random split halves of a test and the implied
correlation with another test also made up of two random splits:

ZXX’ = Cxle Vx2 szx' szxl
Cxlx; szx' in : Cx;xé
cxlxé szx' cxixé Vxé

R
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Split halves
Because the splits are done at random and the second test is
parallel with the first test, the expected covariances between splits
are all equal to the true score variance of one split (Vy,), and the
variance of a split is the sum of true score and error variances:

th + Vel th th th
Y xx: = Vi, : Vi + Ve Vi, : Vi,
Vi : Vi, Vt; + Ve{ Vy

th th Vti Vti + Vei

The correlation between a test made of up two halves with
intercorrelation (r; = V4, / Vi, ) with another such test is

4Vy - 4V, _4n
VBV + 2V )(4Vey +2Ve) 2V +2Vi 21 +2

/1 =

rXX

and thus

B
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The Spearman Brown Prophecy Formula

The correlation between a test made of up two halves with
intercorrelation (r; = V4, / Vi, ) with another such test is

4Vt’1 4Vt1 4r1
Fyy! = e —
T V(AVy +2Ve)(AVy, +2Ve) 2V +2V 242
and thus 5
n
;= 12
oc 14+ n ( )

Spearman (1910); Brown (1910)

This requires splitting the test into two parts. But there are many
alternative splits: odd/even, first half/second half, random.
splitHalf does this.
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Using the splitHalf function to find all possible splits

sp <- splitHalf (ability, raw=
hist (sp$raw,breaks=101, xlab="split half reliabilities",
main = "Split Half reliabilities of a test with 16 ability item
sp;

sp$minAB; sp$maxAB

RUE)

#set raw=TRUE to do the his

rogram

5")

sp
Split half reliabilities
Call: splitHalf(r = ability, raw = TRUE)

Maximum
Guttman
Average
Guttman
Guttman
Minimum
Average

split half reliability (lambda 4) = 0.87
lambda 6 = 0.84
split half reliability = 0.83
lambda 3 (alpha) = 0.83
lambda 2 = 0.83
split half reliability (beta) = 0.73
interitem r = 0.23 with median = 0.2

Quantiles of split half reliability

2.5% 50% 97.5%
0.77 0.83 0.86

sp$minAB

reason.
reason.
reason.
reason.
letter.
letter.
letter.
letter.
matrix.
matrix.
matrix.
matrix.
rotate.
rotate.
rotate
rotate.

4

16
17
19
7

33
34
58
45
46
47
55
3

4
.6
8

O0COO0OO0OOHOOOKRKERERERRERHED
HERHErKRHOFRKHEHFROOOOOOOW

sp$minAB

reason.

reason

reason.

reason

letter.
letter.
letter.
letter.
matrix.
matrix.
matrix.
matrix.
rotate.

rotate
rotate
rotate

4

.16
17
.19
7

33
34
58
45
46
47
55
3

.4
.6
.8

O0COO0OOCOHOOOKRHKHRERKRERERHED
HERHKRHOFRKHFROOOOOOOW
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6,435 possible eight item splits of the 16 ability items

Split Half reliabilities of a test with 16 ability items

o
3 -
©
=~ 8 4
g 2
5
3
T
3
j
[
o
w
o J

[ T T T T T 1
074 076 078 080 082 084 086 32/113
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Coefficient «

Find the correlation of a test with a test just like it based upon the
internal structure of the first test. Basically, we are just estimating
the error variance of the individual items.

2 k2 U)%*Z Ui2

g2 o2 k—1 o2

There are several functions in psych to do this:
1. alpha works for one scale
2. scoreltems reports a for more than one scale

3. omega finds « as well as the more useful wy and w; statistics.
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Using the alpha function

alpha (ability)

alpha (ability)

Reliability analysis
Call: alpha(x = ability)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.83 0.83 0.84 0.23 4.9 0.0064 0.51 0.25 0.21
lower alpha upper 95% confidence boundaries

0.82 0.83 0.84

This assumes the items are all positively correlated. But if they are
not, we can let alpha find the directions of the items

R

A
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alpha with positively and negatively keyed items

alpha (bfi[1:5], check.keys=TRUE)

Reliability analysis
Call: alpha(x = bfi[1:5], check.keys = TRUE)

raw_alpha std.alpha G6(smc) average r S/N ase mean sd median_r
0.7 0.71 0.68 0.33 2.5 0.009 4.7 0.9 0.34

lower alpha upper 95% confidence boundaries
0.69 0.7 0.72

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

Al- 0.72 0.73 0.67 0.40 2.6 0.0087 0.0065 0.38
A2 0.62 0.63 0.58 0.29 1.7 0.0119 0.0169 0.29
A3 0.60 0.61 0.56 0.28 1.6 0.0124 0.0094 0.32
A4 0.69 0.69 0.65 0.36 2.3 0.0098 0.0159 0.37
A5 0.64 0.66 0.61 0.32 1.9 0.0111 0.0126 0.34
Item statistics

n raw.r std.r r.cor r.drop mean sd
Al- 2784 0.58 0.57 0.38 0.31 4.6 1.4
A2 2773 0.73 0.75 0.67 0.56 4.8 1.2
A3 2774 0.76 0.77 0.71 0.59 4.6 1.3
A4 2781 0.65 0.63 0.47 0.39 4.7 1.5
A5 2784 0.69 0.70 0.60 0.49 4.6 1.3
Non missing response frequency for each item @

1 2 3 4 5 6 miss
Al 0.33 0.29 0.14 0.12 0.08 0.03 0.01

29 002 0 08 005 0200 27 0 21 0 01 35/113
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Alpha varies by the number of items and the inter item correlation

Alpha varies by r and number of items

0.8 0.9

alpha
0.7

0.5 0.6

0.4

@
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Signal to Noise Ratio

The ratio of reliable variance to unreliable variance is known as the
Signal /Noise ratio and is just

S P>

N~ 1- p?
, which for the same assumptions as for «, will be

S nr
N1 (14)

That is, the S/N ratio increases linearly with the number of items
as well as with the average intercorrelation

®
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Alpha vs signal/noise: and r and n

Alpha Signal/Noise
o
@
@
o
S
o
2
&
®
=
s
o
o4
°
2
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Number of items Number of items
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Find alpha using the alpha function

> alpha (bfi[16:20])
Reliability analysis
Call: alpha(x = bfi[16:201])

raw_alpha std.alpha G6(smc) average_r mean sd
0.81 0.81 0.8 0.46 15 5.8

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

N1 0.75 0.75 0.70 0.42
N2 0.76 0.76 0.71 0.44
N3 0.75 0.76 0.74 0.44
N4 0.79 0.79 0.76 0.48
N5 0.81 0.81 0.79 0.51

Item statistics

n r r.cor mean sd
N1 990 0.81 0.78 2.8 1.5
N2 990 0.79 0.75 3.5 1.5
N3 997 0.79 0.72 3.2 1.5
N4 996 0.71 0.60 3.1 1.5
N5 992 0.67 0.52 2.9 1.6 @
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What if items differ in their direction?

alpha (bfi[6:10])

Reliability analysis
Call: alpha(x = bfi[6:10])

raw_alpha std.alpha G6(smc) average_r mean sd
-0.28 -0.22 0.13 -0.038 3.8 0.58

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

Cl -0.430 -0.472 -0.020 -0.0871
c2 -0.367 -0.423 -0.017 -0.0803
Cc3 -0.263 -0.295 0.094 -0.0604
c4 -0.022 0.123 0.283 0.0338
Cc5 -0.028 0.022 0.242 0.0057

Item statistics
n r r.cor r.drop mean sd

Cl 2779 0.56 0.51 0.0354 4.5 1.2
C2 2776 0.54 0.51 -0.0076 4.4 1.3
C3 2780 0.48 0.27 -0.0655 4.3 1.3
C4 2774 0.20 -0.34 -0.2122 2.6 1.4
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But what if some j re reversed keyed?

alpha (bfi[6:10], check.keys=TRUE)

Reliability analysis
Call: alpha(x = bfi[6:10], check.keys = TRUE)

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.73 0.73 0.69 0.35 2.7 0.0081 4.3 0.95 0.34
lower alpha upper 95% confidence boundaries

0.71 0.73 0.74

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r

c1 0.69 0.70 0.64 0.36 2.3 0.0093 0.0037 0.35
c2 0.67 0.67 0.62 0.34 2.1 0.0099 0.0056 0.34
c3 0.69 0.69 0.64 0.36 2.3 0.0096 0.0070 0.36
c4- 0.65 0.66 0.60 0.33 2.0 0.0107 0.0037 0.32
C5- 0.69 0.69 0.63 0.36 2.2 0.0096 0.0017 0.35
Item statistics
n raw.r std.r r.cor r.drop mean sd
Cl 2779 0.65 0.67 0.54 0.45 4.51.2
c2 2776 0.70 0.71 0.60 0.50 4.4 1.3
C3 2780 0.66 0.67 0.54 0.46 4.3 1.3
C4- 2774 0.74 0.73 0.64 0.55 4.4 1.4
C5- 2784 0.72 0.68 0.57 0.48 3.7 1.6
Non missing response frequency for each item @
1 2 3 4 5 6 miss

Cl 0.03 0.06 0.10 0.24 0.37 0.21 0.01
C2 0.03 0.09 0.11 0.23 0.35 0.20 0.01 41/113
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Guttman’s alternative estimates of reliability

ICC and

Kappa
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Reliability is amount of test variance that is not error variance. But
what is the error variance? There are multiple ways of estimating

this,
L Ve—Ve | Ve
XX Vs Vx.
A 1 tr(Vx) Vi — tr(Vx)
! Ve Vi
\ \ G Vi — tr(Vx) + =G
2 = A1+ Ve Ve
Vx —tr(Vx)
N Xn(nfli)x _n\_on (1_ tr(V)X> _oon Vi—tr(Vx)
3= A Vx T h—1 n-—-1 Vi T n-1 Vi -
oo YtV ten s
Vx Vi an + be + 2¢cap VXa be
2
N1 =9 _q_ X rin)
Vi Vi

(15)

(16)

(17)

a (18)

(19)

(20)
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Four different correlation matrices, one value of «
$1: no group factors $2: large g, small group factors
s s
3 3
< £
Vi V2 V3 V4 V5 V6 Vi V2 V3 V4 Vs Ve 1. The prob|em of
group factors
$3: small g, large group factors S4: no g but large group factors 2 If no groups' or
many groups,
s s « is ok
3 3
< £
Vi V2 V3 V4 V5 V6 Vi V2 V3 V4 V5 V6

)
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Decomposing a test into general, Group, and Error variance

Total=g+Gr+E General = .2
=532 ’=28.8

S >
2 24
- o]
> > i
S 5]
2 24

] 1. Decompose
> S L s s e total variance

V1 V3 V5 V7 V9 V11 V1 V3 V5 V7 V9 V11 .
into general,
group, specific,
3 grou s==1932, 4,.5 ItiZ”LE;_;or and error

s IS
o] - o < total
> ] o?=108 >
> ] > a > general
N N
2 2
S S

LI S N B B B B B |
V1 V3 V5 V7 V9 V11 V1 V3 V5 V7 V9 V11 @
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Two additional alternatives to a: wpjerarchicar and omega;ora)

If a test is made up of a general, a set of group factors, and
specific as well as error:

x=cg+Af+Ds+e (21)

then the communality of itemj, based upon general as well as
group factors,

2 2 2
W=c+) f; (22)
and the unique variance for the item
uP =07 (1—h) (23)

may be used to estimate the test reliability.

2
_ledV41AAT L 20-F) L ¥

v o v v Y@
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lcc’l + 1AA/T >(1-h7) S 02
Wt = VX == — T =1- VX (25)
and
’ 2
= L (2A) (26)

Vi X XRy
These may both be find by factoring the correlation matrix and
finding the g and group factor loadings using the omega function.

)
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Using omega on the Thurstone data set to find alternative reliability
estimates
> lower.mat (Thurstone)

> omega (Thurstone)

Sntnc Vcblr Snt.C Frs.L 4.L.W Sffxs Ltt.S Pdgrs Ltt.G

Sentences 1.00

Vocabulary 0.83 1.00

Sent .Completion 0.78 0.78 1.00

First.Letters 0.44 0.49 0.46 1.00

4.Letter.Words 0.43 0.46 0.42 0.67 1.00

Suffixes 0.45 0.49 0.44 0.59 0.54 1.00

Letter.Series 0.45 0.43 0.40 0.38 0.40 0.29 1.00

Pedigrees 0.54 0.54 0.53 0.35 0.37 0.32 0.56 1.00
Letter.Group 0.38 0.36 0.36 0.42 0.45 0.32 0.60 0.45 1.00
Omega

Call: omega(m = Thurstone)

Alpha: 0.89

G.6: 0.91

Omega Hierarchical: 0.74

Omega H asymptotic: 0.79 @
Omega Total 0.93
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Two ways of showing a general factor
Omega Hierarchical (multilevel) Structure

Sentences

0

Vocabulary '

Sent.Completion 0
First.Letters

0.9

4.Letter.Words 0
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omega function does a Schmid Leiman transformation
> omega (Thurstone, s1=FALSE)

Omega

Call: omega(m = Thurstone, sl = FALSE)
Alpha: 0.89

G.6: 0.91

Omega Hierarchical: 0.74

Omega H asymptotic: 0.79

Omega Total 0.93

Schmid Leiman Factor loadings greater than 0.2
g Flx F2x F3x h2 uz p2

Sentences 0.71 0.57 0.82 0.18 0.61
Vocabulary 0.73 0.55 0.84 0.16 0.63
Sent .Completion 0.68 0.52 0.73 0.27 0.63
First.Letters 0.65 0.56 0.73 0.27 0.57
4.Letter.Words 0.62 0.49 0.63 0.37 0.61
Suffixes 0.56 0.41 0.50 0.50 0.63
Letter.Series 0.59 0.61 0.72 0.28 0.48
Pedigrees 0.58 0.23 0.34 0.50 0.50 0.66
Letter.Group 0.54 0.46 0.53 0.47 0.56

With eigenvalues of:
g Flx F2%x F3%
3.58 0.96 0.74 0.71 @
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Types of reliability

Internal consistency
® «
®  Whierarchical
® Wrotal
g

Intraclass

® Agreement

® Test-retest, alternate
form

Generalizability

Internal consistency
® alpha,
score.items
® omega
iclust

icc

wkappa,
cohen.kappa
cor

aov

)
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Alpha and its alternatives
e Reliability = gé —1-9%
e If there is another test, then oy = oy, (covariance of test Xj
with test Xo = Cy)
® But, if there is only one test, we can estimate af based upon
the observed covariances within test 1

® How do we find o2 ?
® The worst case, (Guttman case 1) all of an item’s variance is
error and thus the error variance of a test X with
variance-covariance Cy
* Co= 02 = diag(C,)
o\ = Smdlc)
® A better case (Guttman case 3, ) is that that the average
covariance between the items on the test is the same as the
average true score variance for each item.
* C. =02 =diag(C)

b )\3 = = )\1 * nil = (Cx—diag(%x))*n/(n—l) ,
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Guttman 6: estimating using the Squared Multiple Correlation

o

ox

. oy 0'2
Reliability = 2t =1 —
® Estimate true item variance as squared multiple correlation

with other items
* g = (fodlag((éx)Jr):(smc,-)

® This takes observed covariance, subtracts the diagonal, and
replaces with the squared multiple correlation
® Similar to « which replaces with average inter-item covariance

Squared Multiple Correlation is found by smc and is just
sme;=1-1/R;*

)
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Alpha and its alternatives: Case 1: congeneric measures

First, create some simulated data with a known structure

> set.seed(42)

> v4 <- sim.congeneric(N=200, short=FALSE)

> str(v4) #show the structure of the resulting object
List of 6

$

w»

o

model : num [1:4, 1:4] 1 0.56 0.48 0.4 0.56 1 0.42 0.35 0.48 0.42
.— attr(x, "dimnames")=List of 2
.$ : chr [1:4] "vi" "v2" "v3" "v4"
. ..$ @ chr [1:4] "V1" "v2" "v3" onv4n
pattern : num [1:4, 1:5] 0.8 0.7 0.6 0.5 0.6
.- attr(x, "dimnames")=List of 2
.$ @ chr [1:4] "V1" "V2" "V3" "v4r
.$ : chr [1:5] "theta" "el" "e2" "e3" .
r : num [1:4, 1:4] 1 0.546 0.466 0.341 0.546
.— attr(x, "dimnames")=List of 2
.$ ¢ chr [1:4] "v1™ "v2" "v3" "v4"
.$ ¢ chr [1:4] "v1™ "v2" "vy3" "vy4"

latent : num [1:200, 1:5] 1.371 -0.565 0.363 0.633 0.404

.— attr(x, "dimnames")=List of 2
.$ @ NULL
.$ : chr [1:5] "theta" "el" "e2" "e3"

observed: num [1:200, 1:4] -0.104 -0.251 0.993 1.742 -0.503

.— attr(x, "dimnames")=List of 2

.$ : NULL
.$ : chr [1:4] "v1" "v2" "v3" "v4"
N : num 200

attr(», "class")= chr [1:2] "psych" "sim" @
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A congeneric model

> v4Smodel

> f1 <- fa(v4S$model) vi vz v3 V4
> fa.diagram(f1l) vVl 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35

Four congeneric tests V3 0.48 0.42 1.00 0.30

v4 0.40 0.35 0.30 1.00

> round (cor (vd$observed), 2

9 0/8 07 O \al V2 V3 V4

V1 1.00 0.55 0.47 0.34

V2 0.55 1.00 0.38 0.30

vil V2] V3] V443 .47 0.38 1.00 0.31
V4 0.34 0.30 0.31 1.00

)
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Find o and related stats for the simulated data

> alpha (v4$observed)

Reliability analysis
Call: alpha(x = v4S$observed)

raw_alpha std.alpha G6(smc) average_r mean sd
0.71 0.72 0.67 0.39 -0.036 0.72

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

V1 0.59 0.60 0.50 0.33
v2 0.63 0.64 0.55 0.37
V3 0.65 0.66 0.59 0.40
v4 0.72 0.72 0.64 0.46

Item statistics

n r r.cor r.drop mean sd
V1 200 0.80 0.72 0.60 -0.015 0.93
v2 200 0.76 0.64 0.53 -0.060 0.98
V3 200 0.73 0.59 0.50 -0.119 0.92
V4 200 0.66 0.46 0.40 0.049 1.09 @
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A hierarchical structure

Correlation plot

> set.seed(42)
> r9 <- sim.hierarchical ()
> lower.mat (r9)

V1 V2 V3 v4 V5 vé v7 V8 V9
vl 1.00
V2 0.56 1.00
V3 0.48 0.42 1.00
v4 0.40 0.35 0.30 1.00
V5 0.35 0.30 0.26 0.42 1.00
Ve 0.29 0.25 0.22 0.35 0.30 1.00
v7 0.30 0.26 0.23 0.24 0.20 0.17 1.00
v8 0.25 0.22 0.19 0.20 0.17 0.14 0.30 1.00
v9 0.20 0.18 0.15 0.16 0.13 0.11 0.24 0.20 1.00

A hierarchical structure has a general factor accounting the
correlations between lower level factors. An example is Neuroticism
as a general factor and anxiety, anger, and depression as lower level @

factors. We can explore this kind of structure by simulation.
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Simulating a hi ical structure
sim.hierarchical #type the name of the function to see it

function (gload = NULL, fload = NULL, n = 0, raw = FALSE, mu = NULL)
{ # All functions begin and end with
cl <- match.call()

if (is.null(gload)) #put in default value if not specified
gload = matrix(c(0.9, 0.8, 0.7), nrow = 3)
if (is.null(fload)) { #more default values
fload <- matrix(c(0.8, 0.7, 0.6, rep(0, 9), 0.7, 0.6,
0.5, rep(0, 9), 0.6, 0.5, 0.4), ncol = 3) }

fcor <- gload %*% t(gload)
diag(fcor) <- 1
model <- fload %*% fcor %x*% t(fload)
diag(model) <- 1
nvar <- dim(fload) [1]
colnames (model) <- rownames (model) <- paste("V", l:nvar, sep ="'
if (n > 0) {
if (is.null (mu)) mu <- rep(0, nvar)
eX <- eigen (model)
observed <- matrix(rnorm(nvar * n), n)
observed <- t(eX$vectors %*% diag(sqrt (pmax (eX$values,
0)), nvar) %x% t (observed))
observed <- t (t (observed) + mu)
colnames (observed) <- paste("V", l:nvar, sep = "")
r <- cor (observed)
if (!'raw) { result <- list(model = model, r = r, N = n, Call = )
} else {result <- list (model = model, r = r, observed = observed, N = n, Call = cl)
}
class (result) <- c("psych", "sim")
return (result) #return a list of objects
} else { return(model) }
} #all functions end with }

57/113



Classical test theory Internal structure a, A3, omegay Types of reliability 2#1 ICC and Kappa
DO 00000000 00000000 000 00 000000
0000 ole] 00000800000 el fele]
« of the 9 hierarchical variables
Reliability analysis
Call: alpha(x = r9)
raw_alpha std.alpha G6(smc) average_r S/N median_r
0.76 0.76 0.76 0.26 3.2 0.25 <- means and medians are similar

Reliability if an item is dropped:

raw_alpha std.alpha G6(smc) average_r S/N var.r med.r
V1 0.71 0.71 0.70 0.24 2.5 0.0067 0.22
v2 0.72 0.72 0.71 0.25 2.6 0.0085 0.23
v3 0.74 0.74 0.73 0.26 2.8 0.0101 0.25
v4 0.73 0.73 0.72 0.25 2.7 0.0106 0.23
V5 0.74 0.74 0.73 0.26 2.9 0.0112 0.24
V6 0.75 0.75 0.74 0.27 3.0 0.0113 0.25
v7 0.75 0.75 0.74 0.27 3.0 0.0129 0.25
v8 0.76 0.76 0.75 0.28 3.1 0.0118 0.26
V9 0.77 0.77 0.76 0.29 3.3 0.0099 0.28

Item statistics
r r.cor r.drop

vl 0.72 0.71 0.61
V2 0.67 0.63 0.54
V3 0.61 0.55 0.47
v4 0.65 0.59 0.51
V5 0.59 0.52 0.45
vé 0.53 0.43 0.38
V7 0.56 0.46 0.40
v8 0.50 0.39 0

®
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Simulate 3 groups, with a small general factor

G9 <- sim.hierarchical (gload=
lowerMat (G9)
alpha (G9)

c(.5,.4,.3))

G9 <- sim.hierarchical (gload=c(.5, .4, .3))
> lowerMat (G9)

V1
v2
v3
v4
V5
vé
v7
vs
v9

Vi

Oococoo0oo0oo0or

v2

1
0
0.
0.
0
0
0
0

.00

v3

Ococoocoookr

v4

ocococoor

V5

.00

30

.04
.04

vé v7 v8 v9

1.00

0.04 1.00

0.03 0.30 1.00
0.02 0.24 0.20 1.00

)
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alpha for the smaller general factor case

alpha(x = G9)

alpha (G9)

Reliability analysis
Call: alpha(x = G9)

raw_alpha std.alpha G6(smc) average_r S/N median_r
0.58 0.58 0.62 0.13 1.4 0.067

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_ r
V1 0.52 0.52 0.54 0.12
v2
v3
va
V5
V6
v7
v8
V9

/N var.r med.r
017
019
024

025
025

BB WWNNNRR
Ooooooooo

0
0
0
0.
023 0.061
0
0
0
0

socoocooo
cocooooo
secocooo
cocooooo

Item statistics

r r.cor r.drop
.58 .56 0.39
.55 .36

.52 .32 @
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Create another 9 variable with no general factor loadings

This is functionally three different—unrelated measures.
R code

g9 <- sim.hierarchical (gload=c(rep(0,3)))
lowerMat (g9)

vs
v9

.00 0.00 0.30 1.00
.00 0.00 0.24 0.20 1.00

alpha (g9)
v1i v2 v3 v4 v5 vé v7 v8 v9
V1 1.00
V2 0.56 1.00
V3 0.48 0.42 1.00
V4 0.00 0.00 0.00 1.00
V5 0.00 0.00 0.00 0.42 1.00
V6 0.00 0.00 0.00 0.35 0.30 1.00
V7 0.00 0.00 0.00 0
0.00 0.00 0.00 0.
0.00 0.00 0.00 0.

1
0
.00 0.00 0.00 1.00
0
0

)
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alpha for 9 variables with no general factor

alpha (g9)

alpha (g9)

Reliability analysis
Call: alpha(x = g9)

raw_alpha std.alpha G6(smc) average_r S/N median_r
0.47 0.47 0.54 0.091 0.9 0 <- means and medians differ drastically

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N var.r med.r

V1 0.41 0.41 0.46 0.080 0.021
v2 082 0.023
v3 .085 0.026
va 089 0.029
V5 091 0.030
V6 094 0.031
v7 097 0.033
v8 099 0.033
V9 101 0.034

Ooooooooo
oOooooooo
Ooooooooo
Oooooooo
Ooooooooo

©

o
Ocoooooooo

Item statistics
r r.cor r.drop
.52 .49 0.29

.50 .46
®

.48 0.40
62/113
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Lets see if we can compare these three cases

R code
om9 <— omega (r9) #The defa strong general factor loadings
omG9 <- omega (G9) #these are weaker loadings
omg9 <- omega(g9) #these have no general loading
sum.oms <—- data.frame (omega=c (om9$omega_h, omG9$omega_h, omg9$omega_h),

alpha=c (om9$alpha, omG9$alpha, omg9$alpha),
omega_tot=c (om9$omega.tot, omG9$omega.tot, omg9Somega.tot))
round (sum.oms, 2)

round (sum.oms, 2)
omega alpha omega_tot

1 0.69 0.76 0.80
2 0.26 0.58 0.70
3 0.00 0.47 0.64

We see that « is not sensitive to internal structure, wy is sensitive
to internal structure.
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An example of two different scales confused as one

Factor Analysis

o

o¥°

08

> set.seed(17)
> two.f <- sim.item(8)
> lowerCor (two. f)

cor.plot(cor(two.f))

V1

.00
.29
.05
.03
.38
.38
.06
.08

V2

v3

va

-0.

-0.
-0.

2#1 ICC and Kappa
[ lele} Q00000
fstetete] 00
V5 V6 v7 V8
00
01 1.00
06 0.33 1.00
36 0.03 0.04 1.00
37 0.05 0.03 0.37 1.
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Rearrange the items to

Correlation plot

80000000
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00000000

V1

v2

V5

V6

V3

\Z3

v7

V8

0.8

0.6

0.4

0.2

Types of reliability

show it more clearly

> cor.2f <- cor(two.f)

> cor.2f

c(1:2,5:6,3:4,7:8)]

> lowerCor (two.f)
>cor.plot (cor.2f)

V1 V2 v5
vl 1.00
v2 0.29 1.00
V5 -0.38 -0.35
vée -0.38 -0.33
v3 0.05 0.03 -

v7 -0.06 0.02
ve -0.08 -0.04

1
0
0
v4a 0.03 -0.02 -0.
0
0

vé

V3

.00
.34
-0.
-0.

39

ICC and Kappa
Q00000
fele]

<- cor.2f[c(1:2,5:6,3:4,7:8),

v4 v7 v8
1.00
-0.36 1.00

-0.37 0.37 1.

)
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« of two scales confused as one
Note the use of the keys parameter to specify how some items
should be reversed.

> alpha (two.f, keys=c(rep(1l,4),rep(-1,4)))

Reliability analysis
Call: alpha(x = two.f, keys = c(rep(l, 4), rep(-1, 4)))

raw_alpha std.alpha G6(smc) average_r mean sd
0.62 0.62 0.65 0.17 -0.0051 0.27

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r

V1 0.59 0.58 0.61 0.17
V2 0.61 0.60 0.63 0.18
v3 0.58 0.58 0.60 0.16
v 0.60 0.60 0.62 0.18
V5 0.59 0.59 0.61 0.17
ve 0.59 0.59 0.61 0.17
v1 0.58 0.58 0.61 0.17
v8 0.58 0.58 0.60 0.16

Item statistics

n r r.cor r.drop mean sd
V1l 500 0.54 0.44 0.33 0.063 1.01
V2 500 0.48 0.35 0.26 0.070 0.95
V3 500 0.56 0.47 0.36 -0.030 1.01
V4 500 0.48 0.37 0.28 -0.130 0.97
V5 500 0.52 0.42 0.31 -0.073 0.97
V6 500 0.52 0.41 0.31 -0.071 0.95 @
V7 500 0.53 0.44 0.34 0.035 1.00
V8 500 0.56 0.47 0.36 0.097 1.02
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Score as two different scales
First, make up a keys matrix to specify which items should be

scored, and in which way
! R code

#the old way
> keys <—- make.keys (two.f, keys.list=1list (one=c(1,2,-5,-6),
two=c(3,4,-7,-8)))

> keys

one two
[1,1 1 0
[2,] 1 0
[3,1 0 1
[4,] 0 1
[5,1 -1 0
[6,] -1 0
[7,1 0 -1
[8,] 0o -1

#or the new way

keys.list=1list (one=c(1,2,-5,-6),two=c(3,4,-7,-8))
keys.list

$one

[1] 1 2 -5 -6

$two R

[1] 3 4 -7 -8
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Now score the two scales and find a and other reliability estimates

> scoreltems (keys.list,two.f

Call: score.items (keys = keys, items = two.f)
(Unstandardized) Alpha:
one two

alpha 0.68 0.7
Average item correlation:
one two
average.r 0.34 0.37
Guttman 6x reliability:
one two
Lambda.6 0.62 0.64
Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:
one two
one 0.68 0.08
two 0.06 0.70
Item by scale correlations:
corrected for item overlap and scale reliability
one two

vl 0.57 0.09
v2 0.52 0.01
v3 0.09 0.59

v4 -0.02 0.56
V5 -0.58 -0.05
V6 -0.57 -0.05
V7 -0.05 -0.58

V8 -0.09 -0.59 @
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A real exaore the bfi
keys.list <-

list (agree=c("-Al1", "A2",6"A3",6"A4",6"A5"),
conscientious=c("C1","C2","C3","-C4",6"-C5"),
extraversion=c("-El1","-E2","E3", "E4","E5"),
neuroticism=c ("N1", "N2", "N3", "N4", "N5"),
openness = c("0O1","-02","0O3","04","-05"))
scores <— scorelItems (keys.list,bfi,min=1,max=6) #specify the mi
scores $examine the output

nimum

Call: scoreltems(keys = keys.list, items = bfi, min = 1, max = 6)

(Unstandardized) Alpha:
agree conscientious extraversion neuroticism openness
alpha 0.7 0.72 0.76 0.81 0.6

Standard errors of unstandardized Alpha:
agree conscientious extraversion neuroticism openness
ASE 0.014 0.014 0.013 0.011 0.017

Average item correlation:
agree conscientious extraversion neuroticism openness
average.r 0.32 0.34 0.39 0.46 0.23

Guttman 6x reliability:
agree conscientious extraversion neuroticism openness
Lambda. 6 0.7 0.72 0.76 0.81 0.6

Signal/Noise based upon av.r
aqgree conscientious extraversion neuroticism openness

®
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scoreltems output (continued)

Guttman 6x reliability:
agree conscientious extraversion neuroticism openness
Lambda. 6 0.7 0.72 0.76 0.81 0.6

Signal/Noise based upon av.r
agree conscientious extraversion neuroticism openness
Signal/Noise 2.3 2.6 3.2 4.3 1.5

Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

agree conscientious extraversion neuroticism openness

agree 0.70 0.36 0.63 -0.245 0.23
conscientious 0.26 0.72 0.35 -0.305 0.30
extraversion 0.46 0.26 0.76 -0.284 0.32
neuroticism -0.18 -0.23 -0.22 0.812 -0.12
openness 0.15 0.19 0.22 -0.086 0.60

In order to see the item by scale loadings and frequency counts of the data
print with the short option = FALSE

ICC and Kappa
Q00000
[e]e]

)
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Types of reliability 2#1 ICC and Kappa
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Types of reliability

Internal consistency
® «
®  Whierarchical
® Wrotal
g

Intraclass

® Agreement

® Test-retest, alternate
form

Generalizability

Internal consistency
® alpha,
score.items
® omega
iclust

icc

wkappa,
cohen.kappa
cor

aov

)
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ICC and Kappa
0®0000

Reliability of judges

® When raters (judges) rate targets, there are multiple sources
of variance
® Between targets
® Between judges
® |nteraction of judges and targets

® The intraclass correlation is an analysis of variance
decomposition of these components
e Different ICC's depending upon what is important to consider

® Absolute scores: each target gets just one judge, and judges
differ

® Relative scores: each judge rates multiple targets, and the
mean for the judge is removed

® Each judge rates multiple targets, judge and target effects
removed
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Internal structure

Types of reliability

Ratings of judges

ICC and Kappa
00®000

What is the reliability of ratings of different judges across ratees?
It depends. Depends upon the pairing of judges, depends upon the
targets. ICC does an Anova decomposition.

> Ratings
Jl J2

1

AU R WN R
o Ul B WN

1

2
3
4
5
6

J3 J4 J5

3
1
5
2
6
4

> describe (Ratings, skew=FALSE)

var
Jl 1
J2 2
J3 3
J4 4
J5 5
J6 6

cuwouwuuud
WHWHRRR

sd median trimmed

.87

N WNoWwWw
ouwouuwu

.5

3.

NWwNow
ocuouuw

5

BB NN

Ratings

mad min max

1
1

[N

ran

R

A
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Sources of variances and the Intraclass Correlation Coefficient

Table: Sources of variances and the Intraclass Correlation Coefficient.

(J1,J2)  (J3,J4) (J5,06) (J1,J3) (J1,J5) (J1..J3) (J1..J4) (J1..

Variance estimates

MSy, 7 15.75 15.75 7.0 5.2 10.50 21.88
MS,, 0 2.58 7.58 12,5 15 8.33 7.12
MS; 0 6.75 36.75 75.0 0.0 50.00 38.38
MSe 0 1.75 1.75 0.0 1.8 0.00 .88
Intraclass correlations
1ICC(1,1) 1.00 72 .35 -.28 .55 .08 .34
1ICC(2,1) 1.00 .73 .48 .22 .53 .30 42
1CC(3,1) 1.00 .80 .80 1.00 .49 1.00 .86
1CC(1,k) 1.00 .84 .52 -.79 71 21 .67
1CC(2,k) 1.00 .85 .65 36 69 .56 .75
1CC(3,k) 1.00 .89 -89 1.00 65 1.00 96
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ICC is done by calling anova

aov.x <- aov(values ~ subs + ind, data = x.df)
s.aov <- summary (aov.x)
stats <- matrix(unlist(s.aov), ncol = 3, byrow = TRUE)
MSB <- stats[3, 1]
MSW <- (stats[2, 2] + stats[2, 3]1)/(stats[l, 2] + stats[1,
31)
MSJ <- stats[3, 2]
MSE <- stats[3, 3]
ICCl <- (MSB - MSW)/(MSB + (nj - 1) » MSW)
ICC2 <- (MSB - MSE)/(MSB + (nj — 1) % MSE + nj % (MSJ — MSE)/n.obs
ICC3 <- (MSB - MSE)/(MSB + (nj - 1) = MSE)
ICCl2 <- (MSB - MSW)/ (MSB)
ICC22 <- (MSB - MSE)/(MSB + (MSJ - MSE)/n.obs)
ICC32 <- (MSB - MSE) /MSB

@
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Intraclass Correlations using the ICC function

> print (ICC(Ratings),all=TRUE) #get more output than normal
Sresults

type ICC F dfl df2 p lower bound upper bound
Single_raters_absolute ICCl 0.32 3.84 5 30 0.01 0.04 0.79
Single_random_raters ICC2 0.37 10.37 5 25 0.00 0.09 0.80
Single_fixed_raters ICC3 0.61 10.37 5 25 0.00 0.28 0.91
Average_raters_absolute ICClk 0.74 3.84 5 30 0.01 0.21 0.96
Average_random_raters ICC2k 0.78 10.37 5 25 0.00 0.38 0.96
Average_fixed_raters ICC3k 0.90 10.37 5 25 0.00 0.70 0.98
$summary

Df Sum Sg Mean Sq F value Pr (>F)

subs 5 141.667 28.3333 10.366 1.801e-05 *xx
ind 5 153.000 30.6000 11.195 9.644e-06 *xx

Residuals 25 68.333 2.7333

Signif. codes: 0 Oxx+0 0.001 Ox+0 0.01 6%0 0.05 0.6 0.1 6 0 1

Sstats

[,1] [,2] [,3]
[1,] 5.000000e+00 5.000000e+00 25.000000
[2,] 1.416667e+02 1.530000e+02 68.333333
[3,] 2.833333e+01 3.060000e+01 2.733333
[4,] 1.036585e+01 1.119512e+01 NA
[5,] 1.800581e-05 9.64435%9e-06 NA
S$MSW
[1] 7.377778

$call @
ICC(x = Ratings)
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Cohen’s kappa and weighted kappa

® When considering agreement in diagnostic categories, without
numerical values, it is useful to consider the kappa coefficient.
® Emphasizes matches of ratings
® Doesn't consider how far off disagreements are.

® Weighted kappa weights the off diagonal distance.

® Diagnostic categories: normal, neurotic, psychotic

)

77/113



Classical test theory Internal structure «, A3, omegap Types of reliability 2#1 ICC and Kappa
000

000000 00000000 00000000 000 000000
0000000000 000000000 00000000000 [e]e]e]e] oe

Cohen kappa and weighted kappa

cohen

normal neurotic psychotic
normal 0.44 0.07 0.09
neurotic 0.05 0.20 0.05
psychotic 0.01 0.03 0.06

> cohen.weights
11 [,21 [,3]

1,1 0 1 3

[2,] 1 0 6

[3,1 3 6 0

> cohen.kappa (cohen, w=cohen.weights,n.obs=200)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence

lower estimate upper
unweighted kappa 0.39 0.49 0.59
weighted kappa -0.34 0.35 1.00

Number of subjects = 200

see the other examples in ?cohen.kappa @
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Outline of Part II: the New Psychometrics

Two approaches
Various IRT models
Polytomous items

Ordered response categories

Differential Item Functioning

Factor analysis & IRT
Non-monotone Trace lines

(AT

@
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Classical Reliability

Classical model of reliability
® Observed = True +2Error
® Reliability = 1 — —gerer_

observed

® Reliability = r = r?

Xdomain

® Reliability as correlation of a test with a test just like it
Reliability requires variance in observed score

2
® As 02 decreases so will ry =1 — —gerer

observed

. Alternate estimates of reliability all share this need for

variance

3.1 Internal Consistency

3.2 Alternate Form

3.3 Test-retest

3.4 Between rater

Item difficulty is ignored, items assumed to be sampled at

random @
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The “new psychometrics”

1. Model the person as well as the item

® People differ in some latent score
® |tems differ in difficulty and discriminability

2. Original model is a model of ability tests
® p(correct|ability, difficulty, ...) = f(ability — difficulty)
® What is the appropriate function?
3. Extensions to polytomous items, particularly rating scale
models

®
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Classic Test Theory as 0 parameter IRT

Classic Test Theory considers all items to be random replicates of
each other and total (or average) score to be the appropriate
measure of the underlying attribute. Items are thought to be
endorsed (passed) with an increasing probability as a function of
the underlying trait. But if the trait is unbounded (just as there is
always the possibility of someone being higher than the highest
observed score, so is there a chance of someone being lower than
the lowest observed score), and the score is bounded (from p=0 to
p=1), then the relationship between the latent score and the
observed score must be non-linear. This leads to the most simple
of all models, one that has no parameters to estimate but is just a
non-linear mapping of latent to observed:

1
p(correctj|;) = ———-. (27)
(=
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Various IRT models

Classical Theory as a “Whipping Wall” (Lumsden, 1976)
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Rasch model — All items equally discriminating, differ in difficulty

Slightly more complicated than the zero parameter model is to
assume that all items are equally good measures of the trait, but
differ only in their difficulty/location. The one parameter logistic
(1PL) Rasch model (Rasch, 1960) is the easiest to understand:

1

p(correct;j|0;, 6;) = T3 e 0

(28)
That is, the probability of the it person being correct on (or
endorsing) the j* item is a logistic function of the difference
between the person’s ability (latent trait) (6;) and the item
difficulty (or location) (6;). The more the person's ability is greater
than the item difficulty, the more likely the person is to get the
item correct.

84 /113



Various IRT models
000®0000000000000

Estimating the model

The probability of missing an item, q, is just 1 - p(correct) and
thus the odds ratio of being correct for a person with ability, 6;, on
an item with difficulty, ¢; is

1 1

OR:: — p_ P _ 1+e% 0 14T 1 05
y “a 1 = ~%6 T 5-o ¢ .
1-— P q 1-— e i edi—Yi
14e% 7Y 5:—0;
14+e 7
(29)

That is, the odds ratio will be a exponential function of the
difference between a person’s ability and the task difficulty. The
odds of a particular pattern of rights and wrongs over n items will
be the product of n odds ratios

ORi1ORjy...OR;, = H 0 = eMiem X% (30)
®
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Estimating parameters

Substituting P for the pattern of correct responses and Q for the
pattern of incorrect responses, and taking the logarithm of both
sides of equation 30 leads to a much simpler form:

P . <
In— = 0;—!—2 6; = n(6; 4+ 6). 31
nQ n = J n( ) ( )

That is, the log of the pattern of correct/incorrect for the jth
individual is a function of the number of items * (6; - the average
difficulty). Specifying the average difficulty of an item as § = 0 to
set the scale, then 6; is just the logarithm of P/Q divided by n or,
conceptually, the average logarithm of the p/q

In

0; = . (32)

3 ‘0\‘0

R
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Difficulty is just a function of probability correct

Similarly, the pattern of the odds of correct and incorrect responses
across people for a particular item with difficulty d; will be

N
P
OR]_J'ORQJ' . Oan = 6 = H eei—éj = eZ:N:l(ei)_N‘sj (33)
i=1
and taking logs of both sides leads to
p N
/na = (6;) — Ng;. (34)
i=1

Letting the average ability # = 0 leads to the conclusion that the
difficulty of an item for all subjects, ¢, is the logarithm of Q/P
divided by the number of subjects, N,

o

In

5 = P () @
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Rasch model in words

That is, the estimate of ability (Equation 32) for items with an
average difficulty of 0 does not require knowing the difficulty of
any particular item, but is just a function of the pattern of corrects
and incorrects for a subject across all items.

Similarly, the estimate of item difficulty across people ranging in
ability, but with an average ability of 0 (Equation 35) is a function
of the response pattern of all the subjects on that one item and
does not depend upon knowing any one person'’s ability. The
assumptions that average difficulty and average ability are 0 are
merely to fix the scales. Replacing the average values with a
non-zero value just adds a constant to the estimates.

R
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Rasch as a high jump

The independence of ability from difficulty implied in equations 32
and 35 makes estimation of both values very straightforward.
These two equations also have the important implication that the
number correct (np for a subject, Np for an item) is monotonically,
but not linearly related to ability or to difficulty.

That the estimated ability is independent of the pattern of rights
and wrongs but just depends upon the total number correct is seen
as both a strength and a weakness of the Rasch model. From the
perspective of fundamental measurement, Rasch scoring provides
an additive interval scale: for all people and items, if §; < 6; and
0k < 0y then p(x|0;,0k) < p(x|0},0,). But this very additivity
treats all patterns of scores with the same number correct as equal
and ignores potential information in the pattern of responses.

R
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Rasch estimates from Itm

Item Characteristic Curves

e
o
@
S
> @
z 3
2
2
- (3
£ oz
o
o 4
e 4
° T T T T T
-4 2 0 2 4
Ability

Item Information Curves

Information

@
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The LSAT example from Itm

data (bock)
library (1tm)

ord <- order (colMeans (lsat6),decreasing=TRUE)

lsat6.sorted <- lsat6[,ord]
describe (1sat6.sorted)

Tau <- round(—-gnorm(colMeans (lsat6.sorted)), 2)

#tau
rasch (lsat6.sorted, constraint=cbind (ncol (1sat6.sorted)+1,1.702

estimate

s of t
)

var n mean
Q1 1 1000 0.92
Q5 2 1000 0.87
Q4 3 1000 0.76
Q2 4 1000 0.71
Q3 5 1000 0.55
> Tau

o1 05 04

sd median trimmed mad min max range

.27 1 1.00

34 1 0.96

43 1 0.83

45 1 0.76

50 1 0.57
Q2 o3

-1.43 -1.13 -0.72 -0.55 -0.13

Call:

rasch(data = lsaté6.sorted, constraint =

1, 1.702))

Coefficients:

Dffclt.Ql Dffclt.Q5 Dffclt.Q4 Dffclt.Q2 Dffclt.Q3
-1.507

-1.927

-0.960

0

ocoooo

-0.742

0

0
0
0
0

1

1
1
1
1

-0.195

1
1
1
1
1

skew kurtosis

-3.
-2.
-1.
-0.
-0.

20
20
24
92
21

8.
2.
-0.
-1.
-1.

cbind (ncol (1sat6.sorted) +

Dscrmn

1.702
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Item information

When forming a test and evaluating the items within a test, the
most useful items are the ones that give the most information
about a person’s score. In classic test theory, item information is
the reciprocal of the squared standard error for the item or for a
one factor test, the ratio of the item communality to its uniqueness:
RN

J T 2 _ 2
og 1 hj

When estimating ability using IRT, the information for an item is a
function of the first derivative of the likelihood function and is
maximized at the inflection point of the icc.

R
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Estimating item information
The information function for an item is

[PI(F)I?
I(f,x) = —t—=—— 36
79 = B em 9
For the 1PL model, P’ the first derivative of the probability
function P;(f) = 1+e5 5 IS
0—0
e
Pr=——0 7
1+ e o) (37)
which is just P;Q; and thus the information for an item is
i = P;Q;. (38)

That is, information is maximized when the probability of getting
an item correct is the same as getting it wrong, or, in other words,
the best estimate for an item’s difficulty is that value where half of @

the subjects pass the item.
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Elaborations of Rasch

1. Logistic or cumulative normal function
® |ogistic treats any pattern of responses the same
® Cumulative normal weights extreme scores more
2. Rasch and 1PN models treat all items as equally
discriminating
® But some items are better than others
® Thus, the two parameter model

1

T 1 ei6-0) (39)

p(correct;;|0;, v, §;)

®
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2PL and 2PN models

1
p(COI’reCtij|9i,Oéj,(sj) = m (40)
while in the two parameter normal ogive (2PN) model this is
a(0— 5) 2
p(correct|d, oj, §) Zdu (41)

V 27T —inf
where u = (6 — 9).
The information function for a two parameter model reflects the
item discrimination parameter, «,
2
= a?PQ, (42)

which, for a 2PL model is
of

(1+ eaj(5ﬁ9j))2'

lj = aiP;Q; = (43)
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The problem of non-parallel trace lines

2PL models differing in their discrimination parameter

e | a=2 I
e P
.
.
/
/
,

© 1 !
> T X)=—— /
= o =
3 1+ g2(0-9)
£
S
°
c a=05
R
> <@ |
= o
=
<
kel
@
£
8 = ]
“— o
S]
2
3
]
Q
S |
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Parameter explosion — better fit but at what cost

The 3 parameter model adds a guessing parameter.

PSP SV —
p(correct;j|0;, aj, 6;,7j) = vj + ST =y (44)
And the four parameter model adds an asymtotic parameter
P(x|0;, e, 0,7, () = + _Y- (45)
1y I j7717 ) —7j 1—|—eaj(5j_9i).

)
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Probability of correct |ability and difficulty

>robability of correct |ability and difficulty
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3and 4 PL

3PL models differing in guessing and difficulty

Ability in logit units

4PL items differing in guessing, difficulty and asymptote

C-v
PO =+ 1+ e0-d)
y=02%=

: S ®
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Personality items with monotone trace lines

A typical personality item might ask “How much do you enjoy a
lively party” with a five point response scale ranging from “1: not
at all” to “b: a great deal” with a neutral category at 3. An
alternative response scale for this kind of item is to not have a
neutral category but rather have an even number of responses.
Thus a six point scale could range from “1: very inaccurate” to "6:
very accurate” with no neutral category

The assumption is that the more sociable one is, the higher the
response alternative chosen. The probability of endorsing a 1 will
increase monotonically the less sociable one is, the probability of
endorsing a 5 will increase monotonically the more sociable one is.

R
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Threshold models

For the 1PL or 2PL logistic model the probability of endorsing the

kth response is a function of ability, item thresholds, and the
discrimination parameter and is

1 1
P(r = k|0;, 6k, 6k—1, xg) = P(r|0j, 6p—1, i) — P(r|0;, 6k, i) = —
( [0, 8k, Ok—1, k) (rl6;, 0k —1, k) — P(rl0;, 8y, k) Lt ek k 10 14 eon(ok 07

(46)

where all by are set to by = 1 in the 1PL Rasch case.

)
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Responses to a multiple choice polytomous item

Five level response scale Four response functions
o 2+
By @
El =
H
5 3
§ o -
g 34 & 34
2 8
s B
i z
- I
H i g i
3 e g e
g [
«
o o
S S
° o
El 31
T T T T T T T T T T
-4 2 4 2 4 4 2 4 2 4
Latent attribute on logit scale Latent trait - logit units

@
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Differences in the response shape of mulitple choice items

Multiple choice ability item

e 4
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Differential Item Functioning

1. Use of IRT to analyze item quality
® Find IRT difficulty and discrimination parameters for different
groups
® Compare response patterns

Differential Item Functioning

lales
emales

Probabilty of Response
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Factor analysis & IRT
©000000

FA and IRT

If the correlations of all of the items reflect one underlying latent
variable, then factor analysis of the matrix of tetrachoric
correlations should allow for the identification of the regression
slopes («) of the items on the latent variable. These regressions
are, of course just the factor loadings. Item difficulty, J; and item
discrimination, a; may be found from factor analysis of the
tetrachoric correlations where J; is just the factor loading on the
first factor and 7; is the normal threshold reported by the
tetrachoric function (McDonald, 1999; Lord & Novick, 1968;
Takane & de Leeuw, 1987).

D A
5= aj=—2 (47)

12 2
1= A 1=
where D is a scaling factor used when converting to the

parameterization of logistic model and is 1.702 in that case and 1
=

in the case of the normal ogive model.
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FA and IRT

IRT parameters from FA

D Aj
b = o= ——  (4)
V31— A V1A
FA parameters from IRT
N = )

) J .
/ 2 / 2
l—i—aj l—i—aj
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Two approaches
[e]e)

> set.seed(1

> items <- sim.npn(9,1000,low=-2.5,high=2.5)$items
> p.fa <-irt.fa(items)

Summary information by factor and item

Factor = 1

V1
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V3

V4

V5
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V7

V8

V9

Test Info
SEM
Reliability
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0
0
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Various IRT models
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Polytomous items
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Factor analysis & IRT
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the irt.fa function
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Item Characteristic Curves from FA

Item parameters from factor analysis
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Item information from FA

Item information from factor analysis

0.8 1.0

0.6

Item Information
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Test Information Curve

Test information -- item parameters from factor analysis
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Comparing three ways of estimating the parameters

set.seed(17)
items <- sim.npn(9,1000,low=-2.5,high=2.5)Sitems

p.fa <- irt.fa(items)Scoefficients[1:2]
p.ltm <- Iltm(items~zl)$Scoefficients
p.ra <- rasch(items, constraint = cbind(ncol (items) + 1, 1)) Scoefficie
a <- seq(-2.5,2.5,5/8)
p.df <- data.frame(a,p.fa,p.ltm,p.ra)
round (p.df,2)

a Difficulty Discrimination X.Intercept. z1l beta.i beta
Item 1 -2.50 -2.45 1.03 5.42 2.61 3.64 1
Item 2 -1.88 -1.84 1.00 3.35 1.88 2.70 1
Item 3 -1.25 -1.22 1.04 2.09 1.77 1.73 1
Item 4 -0.62 -0.69 1.03 1.17 1.71 0.98 1
Item 5 0.00 -0.03 1.18 0.04 1.94 0.03 1
Item 6 0.62 0.63 1.05 -1.05 1.68 -0.88 1
Item 7 1.25 1.43 1.10 -2.47 1.90 -1.97 1
Item 8 1.88 1.85 1.01 -3.75 2.27 -2.71 1
Item 9 2.50 2.31 0.90 -5.03 2.31 -3.66 1
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Attitudes might not have monotone trace lines

1. Abortion is unacceptable under any circumstances.

2. Even if one believes that there may be some
exceptions, abortions is still generally wrong.

3. There are some clear situations where abortion
should be legal, but it should not be permitted in all
situations.

4. Although abortion on demand seems quite extreme,
I generally favor a woman's right to choose.

5. Abortion should be legal under any circumstances.
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Ideal point models of attitutude

Attitudes reflect an unfolding (ideal point) model
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00 C > °

IRT and CTT don’t really differ except

—

. Correlation of classic test scores and IRT scores > .98.

N

. Test information for the person doesnt’t require people to vary
3. Possible to item bank with IRT
® Make up tests with parallel items based upon difficulty and

discrimination
® Detect poor items

N

. Adaptive testing
® No need to give a person an item that they will almost
certainly pass (or fail)
® Can tailor the test to the person
® (Problem with anxiety and item failure)

R

A
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