Preliminaries

· I

Validi 0000 A bit of math 000000

Maximize prediction

References

Psychology 350: Special Topics An introduction to R for psychological research Scoring items to make scales

William Revelle Northwestern University Evanston, Illinois USA

https://personality-project.org/courses/350

May, 2024

Outline

Preliminaries Using keys

Validity

Items

Validity

A bit of math

Maximize prediction Best scales on the bfi

Forming scales to increase reliability

- 1. We know from our prior discussions of reliability and test theory that forming composites of items will enhance prediction and reliability.
- 2. Known since Spearman (1904) the the power of aggregation is that error averages out and that signal averages in.
- 3. How to form aggregates?
 - Item sums

Preliminaries

- item averages
- These are obviously just transforms of each, unless we have missing data
- 4. Multiple ways of doing this:
 - Scripts (one off)
 - Write your own function
 - Explore the *psych* functions


```
Preliminaries
```

lity O Validi 0000 A bit of math 000000 Maximize prediction

References

The basic script applied to the ability data set

```
R codedata <- read.file() #get the data you want to score</td>data <- ability</td>Cscores <- rowSums(data) #total scores</td>Mscores <- rowMeans(data) #mean scores</td>cor2(Cscores,Mscores)length(Cscores)#do it again, but with na.rm=TRUECscores <- rowSums(data, na.rm=TRUE) #total scores</td>Mscores <- rowMeans(data, na.rm=TRUE)</td>#scores <- rowMeans(data, na.rm=TRUE) #total scores</td>cor2(Cscores,Mscores)plot(Mscores ~ Cscores,main="means versus sum scores")
```

```
Cscores <- rowSums(data) #total scores
> Mscores <- rowSums(data) #mean scores
> cor2(Cscores, Mscores)
[1] 1
> length(Cscores)
[1] 1525
> #do it again, but with na.rm=TRUE
> Cscores <- rowSums(data, na.rm=TRUE) #total scores
> Mscores <- rowSums(data, na.rm=TRUE) #mean scores
> cor2(Cscores, Mscores)
[1] 0.94
```



```
Preliminaries
```

dity 00 Validi 0000 A bit of math 000000 Maximize prediction

References

Using the alpha or scoreFast functions

```
      al <- alpha(data)</td>

      cor2(al$scores,Mscores)

      sf <- scoreFast(list(colnames(data)),data)</td>

      cor2(sf,Mscores)

      keys <- list(colnames(data))</td>

      sf <- scoreFast(keys,data)</td>
```

```
al <- alpha(data)
> cor2(al$scores,Mscores)
[]1 1
sf <- scoreFast(list(colnames(data)),data)
> cor2(sf,Mscores)
   [,1]
-A 1
keys <- list(colnames(data))
sf <- scoreFast(keys,data)
cor2(sf,Mscores)
   [,1]
-A 1
>
```

Why the list called 'keys'?

Using a keys list

- 1. To score multiple scales, or to specify the direction of keying an item, we can use a 'keys.list"
- 2. This is just list of key names and the items that go into the scale
- 3. Consider subscales of the ability data set

Preliminaries

abilitv.kevs

R code

```
ability.keys

$ICAR16

[1] "reason.4" "reason.16" "reason.17" "reason.19" "letter.7" "letter.33" "letter.34" "lett

[9] "matrix.45" "matrix.46" "matrix.47" "matrix.55" "rotate.3" "rotate.4" "rotate.6" "rot;

$reasoning

[1] "reason.4" "reason.16" "reason.17" "reason.19"

$letters

[1] "letter.7" "letter.33" "letter.34" "letter.58"

$matrix

[1] "matrix.45" "matrix.46" "matrix.47" "matrix.55"

$rotate

[1] "rotate.3" "rotate.4" "rotate.6" "rotate.8"
```

Preliminaries

r I

Validity 0000 A bit of math 000000

Maximize prediction

References

Using the keys.list for the ability data set

```
    R code

    sf5 <- scoreFast (ability.keys,ability)</td>

    cor2(sf5,Mscores)
```

```
sf5 <- scoreFast(ability.keys,ability)
cor2(sf5,Mscores)
        [,1]
ICAR16-A 1.00
reasoning-A 0.77
letters-A 0.78
matrix-A 0.74
rotate-A 0.69</pre>
```

This is better than our simple rowMeans call because it allows for multiple scale at once.

Preliminaries

ty

Validit 0000 A bit of math 000000 Maximize prediction

We could do multiple calls to rowMeans

R code
ulti.score <- data.frame(all = rowMeans(ability, na.rm=TRUE),
<pre>reasoning = rowMeans(ability[,1:4], na.rm=TRUE),</pre>
<pre>letters = rowMeans(ability[,5:8], na.rm=TRUE),</pre>
<pre>matrix = rowMeans(ability[,9:12], na.rm=TRUE),</pre>
<pre>rotate = rowMeans(ability[,13:16], na.rm=TRUE)</pre>
)
cor2(multi.score,sf5)

```
cor2(multi.score, sf5)
          ICAR16-A reasoning-A letters-A matrix-A rotate-A
all
               1.00
                           0.77
                                      0.78
                                               0.74
                                                         0.69
reasoning
               0.77
                           1.00
                                      0.52
                                               0.45
                                                         0.37
letters
               0.78
                           0.52
                                      1.00
                                               0.44
                                                         0.36
matrix
               0.74
                           0.45
                                      0.44
                                               1.00
                                                         0.34
rotate
               0.69
                           0.37
                                      0.36
                                               0.34
                                                         1.00
```


Keys are most useful when we have reverse keyed items

1. Consider the 5 scales of the bfi

	R code
bfi.keys	
bfi.keys \$agree [1] "-A1" "A2" "A3" "A4" "A5"	
\$conscientious [1] "C1" "C2" "C3" "-C4" "-C5"	
\$extraversion [1] "-E1" "-E2" "E3" "E4" "E5"	
\$neuroticism [1] "N1" "N2" "N3" "N4" "N5"	
\$openness [1] "01" "-02" "03" "04" "-05"	

Preliminaries	\
00000	(
Using keys	

Valid 0000 A bit of matl

Maximize prediction

References

Show the items from the dictionary

__________R code _______ lookupFromKeys(bfi.keys, bfi.dictionary[,2:3])

\$agree

		Item	Giant3
A1-	Am indifferent to the feelings of	others.	Cohesion
A2	Inquire about others' well-being.		Cohesion
A3	Know how to comfort others.		Cohesion
A4	Love children.		Cohesion
A5	Make people feel at ease.		Cohesion

\$conscientious

	Item	Giant3
C1	Am exacting in my work.	Stability
C2	Continue until everything is perfect.	Stability
C3	Do things according to a plan.	Stability
C4-	Do things in a half-way manner.	Stability
C5-	Waste my time.	Stability

\$extraversion

		Item	Giant3
E1-	Don't talk a lot.		Plasticity
E2-	Find it difficult to approach	others.	Plasticity
E3	Know how to captivate people.		Plasticity
E4	Make friends easily.		Plasticity
E5	Take charge.		Plasticity

Some items need to be reversed keyed

- 1. Could do this mechanically by recoding those items
- 2. Better is to it automatically by subtracting the item from the max min $+ \ 1$
- 3. i.e. for a 6 point item, subtract from 7

Preliminaries	Validity 0000	Items 000	Validity 0000	A bit of math 000000	Maximize prediction	References
Using keys						

Can find simple sums or means or do some statistics at the same time

1. Conventional statistics include α but also average r , etc.

-			R code									
is <- scoreFast(bil.keys,bil)												
<pre>scales <- scoreItems(bfi.keys,bfi)</pre>												
names(scales)												
		*										
corz(is, sc	ates	scores)										
fa (annuallant												
is <- scorerast	(DII.Ke	eys,dil) 										
> scales <- sco	preiter	ns(bii.keys,bii)										
<pre>> names(scales)</pre>												
<pre>[1] "scores"</pre>		"missing"	"alpha"	"av.r"		"sn"						
<pre>[6] "n.items"</pre>		"item.cor"	"cor"	"corre	cted"	"G6"						
[11] "item.corre	ected"	"response.freq"	"raw" "ase"			"med.r"						
[16] "keys"		"MIMS"	"MIMT"	"Call"								
> cor2(fs, scale	es\$sco	res)										
	agree	conscientious e	xtraversion	neuroticism o	penness							
agree-A	1.00	0.26	0.46	-0.19	0.15							
conscientious-A	0.26	1.00	0.26	-0.23	0.20							
extraversion-A	0.46	0.26	1.00	-0.22	0.22							
neuroticism-A	-0.18	-0.23	-0.22	1.00	-0.09							
openness-A	0.15	0.19	0.21	-0.09	1.00							

Preliminaries
000000
000000
Using keys

alidity 000

ltems 000

Validi 0000 A bit of math 000000 Maximize prediction

References

scoreltems gives a great deal of output

scales

scales											
Call: scoreItems(keys = bfi.keys, items = bfi)											
(Unstand aq	(Unstandardized) Alpha:										
alpha	0.7	0.72	0.76	0.81	0.6						
Standard	errors of un ree conscient	standardized ious extrave	Alpha: rsion neu	roticism op	enness						
ASE 0.	014 0	.014	0.013	0.011	0.017						
Average	item correlat agree consc	ion: ientious ext	raversion	neuroticis	m openne:	55					
average.	r 0.32	0.34	0.39	0.4	6 0.2	23					
Median i	tem correlati	on:									
	agree conscie	ntious extr	aversion	neurotici	.sm o	openness					
	0.34	0.34	0.38	0.	41	0.22					
Guttman	6* reliabili	ty:									
	agree consci	entious extr	aversion a	neuroticism	opennes	5					
Lambda.6	0.7	0.72	0.76	0.81	. 0.0	6					
Signal/Noise based upon av.r :											
	agree co	nscientious	extravers:	ion neuroti	cism open	nness					
Signal/N	oise 2.3	2.6	:	3.2	4.3	1.5					
Scale in raw cor	Scale intercorrelations corrected for attenuation										

13 / 37

Preliminaries ○○○○○ ○○○○○●	Validity 0000	ltems 000	Validity 0000	A bit of math 000000	Maximize prediction	References
Using keys						

scales (continued)

Scale interco	Scale intercorrelations corrected for attenuation							
raw correlat	ions be	elow the	diagonal,	alpha on	the diagonal			
corrected co	rrelat:	ions abo	ve the dia	gonal:				
	agree	conscie	ntious ext	raversion	neuroticism	openness		
agree	0.70		0.36	0.63	-0.245	0.23		
conscientious	0.26		0.72	0.35	-0.305	0.30		
extraversion	0.46		0.26	0.76	-0.284	0.32		
neuroticism	-0.18		-0.23	-0.22	0.812	-0.12		
openness	0.15		0.19	0.22	-0.086	0.60		
Average adjus	ted co:	rrelatio	ns within	and betwee	en scales (MI	MS)		
	agree	cnscn e	xtrv nrtcs	opnns				
agree	0.32							
conscientious	0.22	0.34						
extraversion	0.44	0.26	0.39					
neuroticism	-0.20	-0.26 -	0.28 0.46					
openness	0.11	0.15	0.18 -0.08	0.23				
Average adju	sted i	tem x sc	ale correl	ations wit	thin and betw	een scales	(MIMT)	
	agree	cnscn e	xtrv nrtcs	opnns				
agree	0.68							
conscientious	0.18	0.69						
extraversion	0.33	0.19	0.71					
neuroticism	-0.14	-0.18 -	0.17 0.76					
openness	0.10	0.12	0.14 -0.05	0.62				

Scale validity

- 1. How do we assess the validity of a scale
- 2. Face/Faith The items look right
- 3. Concurrent The scale correlates with relevant criteria
- 4. Predictive The scale predicts criteria in the future
- 5. Construct
 - Convergent The scales correlate with what alternative measures of the same thing
 - Divergent The scales do not correlate with measures of alternative constructs
 - Incremental The scales add to our predictive power

SAPA measures self report

- 1. How to validate the self reports of the SAPA project
- 2. SAPA participants were asked to nominate anonymous friends
- 3. These friends then gave peer ratings

Validity

- Zola et al. (2021) reported the validity of self report personality items from the SAPA personality inventory (SPI) (Condon, 2018) in terms of 30 peer reports on 8 dimensions. Here are the polychoric correlations of these items. spi items were collected using SAPA procedures for 158,631 participants (mean n/item = 18,180), 908 of whom received peer ratings..
- 5. The Multitrait-multimethod correlations were found from the correlations.

inaries 00 00	Validity 00●0	li C	ems 000	Val oo	idity 00	A I oc	bit of ma	ath	Maxi 000 000	mize pre 0	diction	Refere
				Z		ralidi code	ties					
scores	s <- ps	ych::	score	eOver	Tap (zola.	keys	[c(1:	5,33	:37)]	, zola)	#MTMM
lowerMat	(scores\$c	or)										
		Agrbl	Cnscn	Nrtcs	Extrv	Opnnn	Agrbl	Cnscn	Stblt	Extrv	IntlO	
Agreeable	eness	1.00										
Conscient	tiousness	0.28	1.00									
Neurotic	ism	-0.12	-0.18	1.00								
Extravers	sion	0.25	0.12	-0.25	1.00							
Opennness	5	0.08	0.05	-0.09	0.13	1.00						
Agreeable	eness	0.47	0.10	-0.01	0.00	-0.09	1.00					
Conscient	tiousness	0.15	0.55	-0.12	-0.01	-0.04	0.18	1.00				
Stability	2	0.13	0.16	-0.58	0.05	0.07	0.25	0.25	1.00			
Extravers	sion	0.23	0.28	-0.27	0.49	0.11	0.07	0.23	0.22	1.00		
Intellect	tOpenness	0.14	0.08	-0.15	0.09	0.30	0.19	0.24	0.27	0.15	1.00	
lowerMat	(scores\$M	IMS)	#avera	ge ite	n corre	elatio	ns wit	hin and	d betw	een dor	mains	
		Agrbl	Cnscn	Nrtcs	Extrv	Opnnn	Agrbl	Cnscn	Stblt	Extrv	IntlO	
Agreeable	eness	0.33										
Conscient	tiousness	0.10	0.32									
Neurotic	ism	-0.05	-0.07	0.38								
Extravers	sion	0.10	0.05	-0.11	0.39							
Opennness	5	0.03	0.02	-0.03	0.05	0.30						
Agreeable	eness	0.18	0.04	0.00	0.00	-0.03	0.17					
Conscient	tiousness	0.06	0.23	-0.05	0.00	-0.02	0.07	0.26				
Stability	Y	0.05	0.07	-0.25	0.02	0.03	0.10	0.11	0.28			
Extravers	sion	0.09	0.11	-0.11	0.21	0.04	0.03	0.10	0.09	0.21		
Intellect	tOpenness	0.05	0.03	-0.06	0.03	0.11	0.07	0.10	0.11	0.06	0.16	

17 / 37

Reliability and Validity

1. Validity (r_{xy}) is bounded by the square root of reliability (r_{xx}) (Spearman, 1904)

$$r_{xy} \leq \sqrt{r_{xx}}.$$

- 2. To increase reliability, we form scales by aggregating related items.
- 3. This is based upon the notion that all measurement is "befuddled with error" (McNemar, 1946).
- 4. Items in particular are thought to be mainly error with just a little bit of reliable variance.

A bit of math

Maximize prediction

References

Items are better than we think

- 1. Typical belief is that because items are noisy (unreliable) we need to aggregate items to improve the measurement quality of our scale.
- 2. Classical model of an item considers True Scores and Errors

(Spearman, 1904; Lord and Novick, 1968; McDonald, 1999), $X_i = au_i + \epsilon_i$

Items

3. A more refined model considers general variance, group variance, specific variance and error (McDonald, 1999).

$$\mathbf{x} = \mathbf{c}\mathbf{g} + \mathbf{A}\mathbf{f} + \mathbf{D}\mathbf{s} + \mathbf{e} \tag{1}$$

4. And we find ω_t and ω_h (McDonald, 1999; Zinbarg et al., 2005)

$$\omega_{t} = \frac{\sigma_{\chi}^{2} - \Sigma \sigma_{i}^{2} + \Sigma h_{i}^{2}}{\sigma_{\chi}^{2}}.$$

$$\omega_{h} = \frac{(\Sigma \lambda_{i})^{2}}{\sigma_{\chi}^{2}} = \frac{\mathbf{1cc'1'}}{\sigma_{\chi}^{2}}.$$
(2)
(3)

But the variance of an item is much more than what is common

- 1. In the case of one administration, specific and error are confounded.
- 2. But, if we have repeated measures (t_1, t_2) , we can show that the reliable variance $(r_{t_1t_2})$ is much greater than the common variance (h^2) .
- 3. Consider the reliability of 75 mood items taken twice $(\overline{r_{12}} = .63)$ and compare with the communality of these items. $\overline{h^2} = .63$). (Data from the msqR data set in *psychTools*).
- 4. More striking is comparing reliabilities of 57 items from the EPI (Eysenck and Eysenck, 1964) taken several weeks apart ($\overline{r_{12}} = .76$) with their communalities ($\overline{h^2} = .34$). (Data from the epiR data set in *psychTools*).
- 5. David Condon reports within test item reliabilities of .6 -.8.

Communalities and item reliabilities for the MSQ and EPI

Communality and item reliability for the MSQ Communality and item reliability for the EPI 0.50 0.60 0.70 0.80 0.55 0.65 0.75 0.85 h2 h2 -0.01 0.37 8 3 * 8 item.reliability item.reliability 0.70 8 8 8 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6

Using polychoric (msq) or tetrachoric (epi) correlations.

sd median min max range vars n mean se Communality (h2) 1 75 0.63 0.11 0.65 0.34 0.85 0.51 0.01 item reliability 2 75 0.63 0.07 0.63 0.47 0.81 0.34 0.01 EPI statisics sd median min max range vars n mean se Communality (h2) 1 57 0.34 0.15 0.32 0.07 0.67 0.59 0.02 item reliability 0.76 0.56 0.90 0.34 0.01 2 57 0.76 0.07

21 / 37

Validity: a very broad concept

1. Until about 1955, validity was how well a test actually predicted something.

Validity

- But in the 1950's, perhaps in a reaction to behaviorism and in reaction to the plethora of empirical scale developed for the MMPI (Hathaway and McKinley, 1943) or the Strong Vocational Interest test (Strong Jr., 1927), validity came to include *construct validity* (Cronbach and Meehl, 1955; Loevinger, 1957).
- By emphasizing constructs, and the convergent and discriminant patterns of correlations (Campbell and Fiske, 1959), there began a great emphasis upon factorially pure measures.
- 4. Questions of unidimensionality of scales became more important, and criticisms of standard measures of internal consistency such as α or λ_3 became common (Sijtsma, 2008) as psychometricians recommended more model based estimates.
- Simple predictive validity was ignored at best and denigrated at WOrst (Borsboom et al., 2003, 2004).

Let's consider an example

- 1. Consider four different tests where the items range in their correlations with each (internal consistency) and with a criterion (predictive validity).
- 2. The four tests have average intercorrelations of .1 to .4 and thus α ranging from .31 to .73 and have item validies of .2 and thus scale validities ranging from .27 to .35
- 3. The question is which is the better test?

Which set of items (X1..X4) have the highest validity when predicting Y?

A)	α	= .73	$R_y =$	=?		B)	α	= .63	R_y =	=?	
Variable	X1	X2	X3	X4	Y	Variable	X1	X2	X3	X4	Y
X1	1.0					X1	1.0				
X2	0.4	1.0				X2	0.3	1.0			
X3	0.4	0.4	1.0			X3	0.3	0.3	1.0		
X4	0.4	0.4	0.4	1.0		X4	0.3	0.3	0.3	1.0	
Y	0.2	0.2	0.2	0.2	1.0	Y	0.2	0.2	0.2	0.2	1.0
C)	α	= .5	$R_y =$.?		D)	α	= .31	R _y =	=?	
C) Variable	α X1	= .5 X2	$\frac{R_y}{X3}$.? X4	Y	D) Variable	α X1	= .31 X2	<i>R_y</i> = X3	=? X4	Y
C) Variable X1	α X1 1.0	= .5 X2	$R_y = X3$.? X4	Y	D) Variable X1	α X1 1.0	= .31 X2	<i>R_y</i> = X3	=? X4	Y
C) Variable X1 X2	α X1 1.0 0.2	= .5 X2 1.0	$R_y = X3$.? X4	Y	D) Variable X1 X2	α X1 1.0 0.1	$\frac{=.31}{X2}$	<i>R_y</i> = X3	=? X4	Y
C) Variable X1 X2 X3	α X1 1.0 0.2 0.2	= .5 X2 1.0 0.2	$\frac{R_y}{X3} =$	<u>.?</u> X4	Y	D) Variable X1 X2 X3	α X1 1.0 0.1 0.1	= .31 X2 1.0 0.1	<i>R_y</i> = X3	=? X4	Y
C) Variable X1 X2 X3 X4	α X1 1.0 0.2 0.2 0.2	= .5 X2 1.0 0.2 0.2	$\frac{R_y}{X3} = 1.0$.? X4 1.0	Y	D) Variable X1 X2 X3 X4	α X1 1.0 0.1 0.1 0.1	= .31 X2 1.0 0.1 0.1	R _y = X3 1.0 0.1	=? X4 1.0	Y

Please rank order these four cells in terms of validity.

Validity 0000

Which set of items (X1..X4) have the highest validity when predicting Y?

Validity

A)	$\alpha =$	73	$R_y =$.27			B)	$\alpha =$	= .63	$R_y =$.29	
Variable	X1	X2	X3	X4	Y	_	Variable	X1	X2	X3	X4	Y
X1	1.0					_	X1	1.0				
X2	0.4	1.0					X2	0.3	1.0			
X3	0.4	0.4	1.0				X3	0.3	0.3	1.0		
X4	0.4	0.4	0.4	1.0			X4	0.3	0.3	0.3	1.0	
Y	0.2	0.2	0.2	0.2	1.0		Υ	0.2	0.2	0.2	0.2	1.0
C)	α =	= .5	$R_y =$.32		_	D)	α =	= .31	$R_y =$.35	
C) Variable	α = X1	= .5 X2	$\frac{R_y}{X3}$.32 X4		-	D) Variable	α = X1	= .31 X2	$\frac{R_y}{X3} =$.35 X4	Y
C) Variable X1	α = X1 1.0	= .5 X2	$\frac{R_y}{X3}$.32 X4	Y	-	D) Variable X1	α = X1 1.0	= .31 X2	$R_y = X3$.35 X4	Y
C) Variable X1 X2	α = X1 1.0 0.2	= .5 X2 1.0	$\frac{R_y}{X3}$.32 X4	Y	-	D) Variable X1 X2	α = X1 1.0 0.1	= .31 X2 1.0	$\frac{R_y}{X3} =$.35 X4	Y
C) Variable X1 X2 X3	α = X1 1.0 0.2 0.2	= .5 X2 1.0 0.2	$\frac{R_y}{X3} =$.32 X4	Y	-	D) Variable X1 X2 X3	α = X1 1.0 0.1 0.1	= .31 X2 1.0 0.1	$\frac{R_y}{X3} =$.35 X4	Y
C) Variable X1 X2 X3 X4	α = X1 1.0 0.2 0.2 0.2	= .5 X2 1.0 0.2 0.2	$\frac{R_y =}{X3}$ 1.0 0.2	.32 X4 1.0	Y	-	D) Variable X1 X2 X3 X4	α = X1 1.0 0.1 0.1 0.1	= .31 X2 1.0 0.1 0.1	$\frac{R_y}{X3} = \frac{1.0}{0.1}$.35 X4 1.0	Y

Validity is higher the lower the internal consistency.

Validity and reliability: a short digression

A bit of math

- 1. Although we know from Spearman that we can correct for reliability to find the "True" relationship between two variables, this does not help us in the real world.
- 2. Reliability is incorrectly associated with internal consistency which leads to such derivations as coefficients KR20 (Kuder and Richardson, 1937), λ_3 (Guttman, 1945) Or α (Cronbach, 1951).
- 3. Expressed terms of inter-item correlations, this is just $\frac{k\bar{r}}{1+(k-1)\bar{r}}$ and increases with test length (k) and the average interitem correlation (\bar{r}) .
- 4. However, validity of a k item test (r_{y_k}) or the correlation with an external criterion, Y, also increases with test length, and the average item validity $(\bar{r_y})$ but decreases as the inter-item correlation increases $r_{y_k} = \frac{k\bar{r_y}}{\sigma_x} = \frac{k\bar{r_y}}{\sqrt{k+k*(k-1)\bar{r}}}$.

A bit of math

Maximize prediction

References

Reliability and Validity

 Lets unpack these two equations. Internal consistency varies by number of items and average correlation.

$$\lambda_3 = \alpha = \frac{k\bar{r}}{1 + (k-1)\bar{r}} \tag{4}$$

2. But validity varies by number of items, average within test correlation and average item validity

$$r_{y_k} = \frac{k\bar{r}_y}{\sigma_x} = \frac{k\bar{r}_y}{\sqrt{k+k*(k-1)\bar{r}}}.$$
(5)

Validity 0000 ems DO A bit of math

Maximize predictio

References

The trade off between test consistency and test validity

Preliminaries

У

Valid 0000 A bit of math

Maximize predictio

References

Showing the reliability by validity tradeoff

- 1. Consider 9 scales formed from
- 2. 10, 20 or 30 items
- 3. Average validities of .15, .20, .25
- 4. Plot scale validity by scale α for .3 $<\alpha<$.9

eliminaries

Validit 0000 A bit of math

Maximize predictio

References

The trade off between test consistency and test validity

Validity by Reliability Tradeoff

30 / 37

Increasing validity implies increasing the diversity of the item content

A bit of math

- The goal of construct validity is have pure measures with high internal consistency. (Spears that measure one thing well).
- 2. And highly correlated measures of the same constructs.
- 3. But if the goal is predictive validity, we should minimize internal consistency and have independent predictors.
- 4. By emphasizing practical validity, we are ignoring most of what we have been taught (and teach) about reliability (Revelle and Condon, 2018, 2019) and scale construction (Revelle and Garner, 2023).
- 5. Predictive validity can be enhanced by casting a broader net.
- Variations on this theme have been discussed before (Condon et al., 2021; Möttus et al., 2020).

Maximize prediction

Emphasizing predictive validity over reliability

- 1. The bestScales function selects items that most predict a criterion
- 2. But we need to Cross Validate these predictions
- 3. Without cross validation, we are fooling ourselves.
- 4. Either use bootstrap cross validation or K-folds
 - Bootstrap takes multiple samples and then aggregates the (bagging)
 - K-folds splits samples into K parts, derives on derives the model on K-1 parts and then validate it on the remaining part

Maximize prediction

Scale development and cross validation

- 1. Weights based upon data are best fits for those data
- 2. Need to "Cross Validate" on a different set
- 3. Original cross validation technique was to split the sample into 2, derive on first half, report the validities on the second half
- KFold cross validation splits the data into K parts, derives the model on K-1 parts and then validate it on the remaining part. Repeat this K times (folds) and then average across folds.
- Boot Strap Aggregation ("bagging") takes many (100 1000) bootstrap samples and then aggregates across the hold out sample. Bootstrap automatically produces a hold out since 62.3% of subjects are in the derivation sample and 37.7% are in the holdout for each iteration.
- The bestScales function does either K-fold or bagging and produces the Best Items Scale that is Cross-validated Unit-weighted, Informative and Transparent (Elleman et al., 2020).

inaries	Validity 0000	ltems 000	Validity 0000	A bit of math 000000	Maximize prediction	Reference
coles on the	a bfi				•000	
cales on the						
		Using	bestSca	es on the	bfi	
ha <-	boatSaal	og (v-hfi	11.251 0	itoria - hf	i [26.29] dictio	namehf
53 1	DestStart	ES (X-DII	[1.25], C	itterra - br	1[20:20]; dictio	mary_br.
Call = H	bestScales(x	= bfi[1:25]], criteria =	bfi[26:28], di	ctionary = bfi.dictior	mary[2:3])
The iter	ns most corre	lated with	the criteria	yield r's of		
	correlatio	n n.items				
gender	0.3	2 9				
educatio	on 0.1	4 1				
age	0.2	4 10				
The best	t items, thei	r correlat:	ions and cont	ent are		
\$gender						
gende	er			Item Gia	ant3	
N5 0.2	21 Panic easi	1y.		Stabil:	ity	
A2 0.3	18 Inquire ab	out others	' well-being.	Cohesi	on	
A1 -0.1	16 Am indiffe	rent to the	e feelings of	others. Cohesie	on	
A3 0.1	14 Know how t	o comfort o	others.	Cohesi	on	
A4 0.1	13 Love child	ren.		Cohesi	on	
E1 -0.1	13 Don't talk	a lot.	• • • •	Plastic	city	
N3 U	12 Have frequ	ent mood st	wings.	Stabili	ity	
NE 0.1	10 Am Iull Ol 10 Make meenl	ideas.		Cohogi	eity	
AJ 0	to make peopl	e reer at e	Ease.	Conesio	011	
\$educat:	ion					
educa	ation			Item G	iant3	
A1 -	-0.14 Am indi	fferent to	the feelings	of others. Coh	esion	
\$age						
age	8			Item Gia	nt3	(C)
A1 -0.10	6 Am indiffer	ent to the	feelings of	others. Cohesion	n	
C4 -0.1	b Do things i	n a half-wa	ay manner.	Stabili	ty	
A4 0.14	4 Love childr	en.		Cohesio	n	34 /

ninaries		Validit 0000	-y	000	0000	A bit of mat	th		iction	Keferenc
scales o	on the	bfi								
				E	Bootstran	<u>100</u> tim	es			
bs	1 <-	- be	estSo	cales(x=	=bfi[1:25]	, criteri	a = bf	i[26:28]	,	
			d	ictiona	ry=bfi.dio	ctionary[2	2:3], r	i.iter=10	0)	
	- h		~~ (- hfill.2	1 anitonio	- hf: [26.20]	n ito:	- 100		
Call	dict	ionarv	es(x = bfi	- Dii[1.2.	v[2:3])	- DII[20:20]	, n.iter	- 100,		
		deriv	ation	.mean der	vation.sd va	alidation.m v	alidatio	n.sd final.	valid f	inal.wtd
gend	ler			0.32	0.021	0.30	0	.032	0.29	0.33
educ	atio	n		0.16	0.029	0.13	0	.026	0.14	0.17
age				0.25	0.018	0.22	0	.024	0.24	0.25
Cri F	teri 'reg	on = g	ender sd r				Ttom	Giant 3		
N5	100	0 21	0 02	Panic easi	lv		rcem	Stability		
A2	100	0.18	0.02	Inquire al	out others'	well-being.		Cohesion		
A1	100	-0.16	0.02	Am indiffe	erent to the	feelings of	others.	Cohesion		
A3	98	0.14	0.02	Know how t	o comfort ot	hers.		Cohesion		
E1	94	-0.13	0.02	Don't tall	a lot.			Plasticity		
A4	91	0.13	0.02	Love child	lren.			Cohesion		
Cri	teri	on = e	ducat	ion						
F	req	mean.r	sd.r				Item	Giant3		
A1	100	-0.15	0.02	Am indiffe	erent to the	feelings of	others.	Cohesion		
Cri	teri	on = a	ge							
F	req	mean.r	sd.r				Item	Giant3		C
A1	100	-0.16	0.02	Am indiffe	erent to the	feelings of	others.	Cohesion		
C4	99	-0.15	0.02	Do things	in a half-wa	ay manner.		Stability		25
A4	100	0.15	0.02	Love child	iren.			Cohesion		35 /

Now try the 10 criteria from the spi

Call = be	stScales(x = spi	[11:145], crite	eria = spi[1::	10], folds = 10),		
dicti	onary = spi.dict	ionary[, c(2, !	5)])				
	derivation.mean	derivation.sd	validation.m	validation.sd	final.valid	final.wtd	N.wto
age	0.36	0.0076	0.354	0.055	0.35	0.36	10
sex	0.35	0.0078	0.350	0.040	0.35	0.35	10
health	0.44	0.0056	0.431	0.042	0.43	0.44	10
pledu	0.13	0.0181	0.117	0.048	0.12	0.19	10
p2edu	0.11	0.0123	0.082	0.045	NA	0.19	10
education	0.30	0.0112	0.283	0.041	0.26	0.31	10
wellness	0.24	0.0065	0.216	0.050	0.23	0.24	10
exer	0.31	0.0122	0.296	0.026	0.30	0.32	10
smoke	0.27	0.0052	0.260	0.047	0.27	0.28	1
ER	0.15	0.0142	0.130	0.029	0.13	0.16	1

Try it with max item =20

 R code

 bs.spi <- bestScales(spi[11:145], spi[1:10], folds=10, dictionary=spi.org</td>

Call = bestScales(x = spi[11:145], criteria = spi[1:10], n.item = 20, folds = 10, dictionary = spi.dictionary[, c(2, 5)])

derivation.mean derivation.sd validation.m validation.sd final.valid final.wtd N.wt

age	0.38	0.0073	0.373	0.053	0.37	0.36	1
sex	0.41	0.0070	0.396	0.035	0.39	0.35	1
health	0.44	0.0060	0.438	0.054	0.44	0.44	1
pledu	0.13	0.0208	0.119	0.052	0.12	0.19	1
- p2edu	0.12	0.0213	0.072	0.042	NA	0.19	1
education	0.33	0.0063	0.306	0.060	0.32	0.31	1
wellness	0.23	0.0040	0.222	0.032	0.24	0.24	1
exer	0.32	0.0045	0.305	0.050	0.31	0.32	1
smoke	0.27	0.0069	0.250	0.043	0.26	0.28	1
ER	0.15	0.0103	0.135	0.051	0.13	0.16	1

fm

Borsboom, D., Mellenbergh, G. J., and van Heerden, J. (2003). The theoretical status of latent variables. *Psychological Review*, 110(2):203–219.

- Borsboom, D., Mellenbergh, G. J., and van Heerden, J. (2004). The concept of validity. *Psychological Review*, 111(4):1061–1071.
- Campbell, D. T. and Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. *Psychological Bulletin*, 56(8):81–105.
- Condon, D. M. (2018). The SAPA Personality Inventory: An empirically-derived, hierarchically-organized self-report personality assessment model. *PsyArXiv*.
- Condon, D. M., Wood, D., Möttus, R., Booth, T., Costani, G., Greiff, S., Johnson, W., Lukaszesksi, A., Murray, A., Revelle, W., Wright, A. G., Ziegler, M., and Zimmerman, J. (2021). Bottom Up Construction of a Personality Taxonomy. *European Journal* of Psychological Assessment.

References

liminaries 0000 0000	Validity 0000	ltems 000	Validity 0000	A bit of math 000000	Maximize prediction	References
Cront stru	oach, L. J ucture of	. (1951). tests. <i>Ps</i>	Coefficie Sychometr	ent alpha and <i>rika</i> , 16:297–3	the internal 34.	
Cront psy	oach, L. J rchologica	. and Me I tests. <i>I</i>	eehl, P. E. P <i>sycholog</i>	(1955). Con <i>ical Bulletin</i> ,	struct validity in 52(4):281–302.	
Ellem (20 pre tec <i>Eut</i>	an, L. G., 20). Tha dictive ac hniques ir <i>ropean Jc</i>	, McDou, t takes t curacy a n persona purnal of	gald, S., I he BISCU nd parsim ality data, <i>Psycholo</i> g	Revelle, W., a IIT: a compar iony of four s with data m gical Assessm	nd Condon, D. ative study of tatistical learning issingness conditi <i>ent</i> , 36(6):948–9	; ions. 58.
Eysen	ick, H. J.	and Eys	enck, S. E	3. G. (1964).	Eysenck Persona	ality

- *Inventory*. Educational and Industrial Testing Service, San Diego, California.
- Guttman, L. (1945). A basis for analyzing test-retest reliability. *Psychometrika*, 10(4):255–282.
- Hathaway, S. and McKinley, J. (1943). Manual for administering and scoring the MMPI.

- Kuder, G. and Richardson, M. (1937). The theory of the estimation of test reliability. *Psychometrika*, 2(3):151–160.
- Loevinger, J. (1957). Objective tests as instruments of psychological theory. *Psychological Reports Monograph Supplement 9*, 3:635–694.
- Lord, F. M. and Novick, M. R. (1968). Statistical theories of mental test scores. The Addison-Wesley series in behavioral science: quantitative methods. Addison-Wesley Pub. Co, Reading, Mass.
- McDonald, R. P. (1999). *Test theory: A unified treatment*. L. Erlbaum Associates, Mahwah, N.J.
- McNemar, Q. (1946). Opinion-attitude methodology. *Psychological Bulletin*, 43(4):289–374.
- Möttus, R., Wood, D., Condon, D. M., Back, M., Baumert, A., Costani, G., Epskamp, S., Greiff, S., Johnson, W., Lukaszesksi, A., Murray, A., Revelle, W., Wright, A. G., Yarkoni, T., Ziegler,

M., and Zimmerman, J. (2020). Descriptive, predictive and explanatory personality research: Different goals, different approaches, but a shared need to move beyond the big few traits. *European Journal of Personality*, 34(6).

- Revelle, W. and Condon, D. M. (2018). Reliability. In Irwing, P., Booth, T., and Hughes, D. J., editors, *The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development*. John Wily & Sons, London.
- Revelle, W. and Condon, D. M. (2019). Reliability: from alpha to omega. Psychological Assessment, 31(12):1395–1411.
- Revelle, W. and Garner, K. M. (2023). Measurement: Reliability, construct validation, and scale construction. In Harry T. Reis, T. W. and Judd, C. M., editors, *Handbook of Research Methods in Social and Personality Psychology (in press)*.
- Sijtsma, K. (2008). On the use, the misuse, and the very limited usefulness of Cronbach's alpha. *Psychometrika*.

References

Best scales on the bfi

Spearman, C. (1904). "General Intelligence," objectively determined and measured. *American Journal of Psychology*, 15(2):201–292.

- Strong Jr., E. K. (1927). Vocational interest test. Educational Record, 8(2):107–121.
- Zinbarg, R. E., Revelle, W., Yovel, I., and Li, W. (2005). Cronbach's α , Revelle's β , and McDonald's ω_H : Their relations with each other and two alternative conceptualizations of reliability. *Psychometrika*, 70(1):123–133.
- Zola, A., Condon, D. M., and Revelle, W. (2021). The Convergence of Self and Informant Reports in a Large Online Sample. *Collabra: Psychology*, 7(1).

