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The Data Box

1.

Dynamic Data: An old problem reconsidered

The study of personality has traditionally emphasized how
people differ from each other and the reliability and validity of
these differences. This has been reflected in the many
publications in Personality and Individual Differences and
others emphasizing the structure of personality, scale
construction, and validation.

The typical data collected emphasized the “R" approach of
Cattell's data box (Cattell, 1946a, 1966a), that is, correlating
how participants differ across items/tests.

Cattell's data box also included the possibility of studying how

one person varied over time (“P"). Sometimes the approach

would consider stabilities across time as measured by the
correlation of measures taken at two different time points 7
('s")
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The Data Box

The data box: Subjects x Measures x Time

Subjects
1
S,
S 0,
n 01 Time (Occasions)
T1 To Ty

Tests

=
(Cattell, 1946a, 1966b)
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Longitudinal data

Data over time: the long way

. Studying psychology the “long way” involves longitudinal

designs.

Traditionally associated with developmental studies, the time
periods are years and decades.

One of the more impressive stabilities is the correlation of .56
over 79 years of 1Q scores from age 11 to age 90 (Deary et al.,
2013).

An example of what Cattell referred to as a diagonal in his
data box would be the correlation across time of individuals
taken on different measures.

An powerful example of this is the prediction of health related

outcomes in middle age from teacher ratings of students in

grades 1 - 6 (Hampson and Goldberg, 2006). ( F,)
PX
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Longitudinal data

1.

Changes in the way data are collected

In the past 30 years or so, we have seen an exciting change in

the way we collect data, in that we now can study how

individuals vary over time (Cattell's P approach). To Cattell,

this was “the method for discovering trait unities” (Cattell,

1946b, p 95).

The emphasis is now upon individual variability with the

added complexity of how these patterns of individual change

differ across participants (e.g., Bolger and Laurenceau, 2013;

Mehl and Conner, 2012; Wilt et al., 2011, 2016).

Although the methods were originally developed to examine

data with a nested structure (e.g., students nested within

classes nested within schools Bryk and Raudenbush, 1992),

the use of these techniques across many occasions within
individuals has been labeled Intensive Longitudinal Methods — __
(Walls and Schafer, 2006) and “captures life as it is lived”
(Bolger et al., 2003). 6/3
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Dynamic Data

1. We refer to data that show systematic variation over time as
dynamic to distinguish them from static cross sectional data
(Revelle and Wilt, 2021; Wilt and Revelle, 2022).

2. Formal models that distinguish between dynamic patterns
versus stochastic variation (Revelle and Condon, 2015) are
beyond the scope of this paper.

3. Although it is possible to examine group patterns over time, it
is more typical to consider how individuals differ in their
patterning across time.

® This can be intensive longitudinal (many measures over a short
period of time (e.g. multiple measures/day over several weeks)
(e.g.,. Fisher et al., 2018; Wilt et al., 2011)

® More traditional longitudinal (multiple measures taken every
year for several years) or

® Long term longitudinal (life span measures) (e.g., Deary and
Batty, 2007; Deary et al., 2013; Terman and Oden, 1947 ‘
Lubinski, 2016)
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Many names, one analytic tecnique

1. Analytic strategies for analyzing such multi-level data have
been given different names in a variety of fields and are known
by a number of different terms such as the

random effects or random coefficient models of economics,

multi-level models of sociology and psychology,

hierarchical linear models of education

or more generally, mixed effects models (Fox, 2016).

2. Although frequently cautioned not to do so, some
psychologists continue to use a repeated measures analysis of
variance approaches rather than the more accurate mixed
effects models.

3. The Ime4 (Bates et al., 2015) and nlme (Pinheiro et al.,
2016) packages can do this.

R
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Longitudinal data

1.

Within groups and between groups

The analysis of data at multiple levels presents at least two
challenges, one is that of interpretation, the other is that of
statistical inference.

It has long been known (Yule, 1903) that relationships found
within groups are not necessarily the same as those between
groups. Although when aggregating across British health

districts, it appeared that increased mortality was associated

with increases in vaccinations, when examined at the within
district level, it was clear that vaccinations reduced mortality
(Yule, 1912).

Variously known as Simpson's paradox (Simpson, 1951), or

the ecological fallacy (Robinson, 1950), the observation is

that relationships of aggregated data do not imply the same
relationship at the disaggregated level. Such results are .
examples of non-ergodic relationships, that is, relationships [
that differ from the individual to the group level (Molenaar, 9/



Introduction
00000e
Longitudinal data

Structure at different levels of analysis

1. More importantly, when the effect of levels is ignored,
structural relationships are difficult to interpret.

2. The correlation between two variables (x and y) when x and y
are measured within individuals is a function of the correlation
between the individual means (ryy,,,,..,), the pooled within
individual correlations (ry,;,,) and the relationships between
the data and the between group means 7petween as well as the
the correlation of the data within the within subject means

Nwithin-

er = nXWithin * nymthin * rX}/within + 77Xbetween * ,r,ybetween * erbetween' (1)
=
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Analyzing dynamic data: a tutorial

. Revelle and Wilt (2019) work through some examples of

analyzing dynamic data.

2. The following slides are taken from that tutorial.

3. Otbher articles with Josh Wilt discuss why dynamics are some

important (Wilt et al., 2011, 2016; Revelle and Wilt, 2021).

. We first show a “toy" example to see how the functions work

® Simulate 4 subjects on four variables over six times.

Then apply these techniques to an open source data set on
emotion (Fisher, 2015).

® Observed 10 subjects on 27 variables over 100 days

11/34
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Creatin data set

library (psych) #activate the psych package

#create the data

set.seed (42)

X <— sim.multi (n.obs=4,nvar=4,nfact=2,days=6,ntrials=6,plot=TRUE,

phi.i=c(-.7,0,0,.7),loading=.6)

raw <— round(x[3:8]); raw[l:4] <- raw[l:4] + 6

#make a 'Fat’ version

XFat <- reshape (raw, idvar="id",timevar="time",times=1:4,
direction="wide")

#show it

XFat

#now make it wide
XWide <- reshape (XFat, idvar="id",varying=2:25,direction="1long")
Xwide <- dfOrder (XWide, "id")

#add in the trait information

traits <- data.frame(id = 1:4,extraversion =c(5,10,15,20),
neuroticism =c (10,5, 15,10))

Xwide.traits <- merge (Xwide,traits, by ="id")
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The ta
set.seed (42)

X <— sim.multi (n.obs=4,nvar=4,nfact=2,days=6,ntrials=6,plot=TRUE
phi.i=c(-.7,0,0,.7),loading=.6)

raw <— round(x[3:8])

raw[l:4] <- raw[l:4] + 6

headTail (raw, top=8, bottom=8)

headTail (raw, top=8, bottom=8)
Vvl V2 V3 V4 time id

1 7 10 4 3 24 1
2 8 7 6 4 48 1
3 8 8 5 2 72 1
4 5 5 5 6 96 1
5 8 8 5 5 120 1
6 11 9 1 2 144 1
7 6 6 6 5 24 2
8 7 8 5 5 48 2
17 4 4 6 7 120 3
18 5 4 7 7 144 3
19 4 5 4 4 24 4
20 6 4 4 5 48 4
21 5 7 5 6 72 4
22 3 4 5 5 96 4
23 5 4 4 3 120 4
24 5 4 4 5 144 4
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Show the wide data set

XFat <- reshape (raw, idvar="id",timevar="time",times=1:4,
direction="wide")

#show it
XFat
XFat
id V1.24 V2.24 V3.24 V4.24 V1.48 V2.48 V3.48 V4.48 V1.72 V2.72 V3.72
101 7 10 4 3 8 7 6 4 8 8 5
72 6 6 6 5 7 8 5 5 7 7 6
13 3 5 6 4 4 6 5 5 4 5 6 6
19 4 4 5 4 4 6 4 4 5 5 7 5
V4.72 V1.96 V2.96 V3.96 V4.96 V1.120 V2.120 V3.120 V4.120 V1.144 V2.144
1 2 5 5 5 6 8 8 5 5 11 9
7 7 7 7 6 6 7 7 4 4 8 7
13 7 6 6 9 6 4 4 6 7 5 4
19 6 3 4 5 5 5 4 4 3 5 4
v3.144 v4.144
1 1 2
7 6 6
13 7 7
19 4 5
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Add the personality variables to it

—
#now make it wide

XWide <- reshape (XFat,idvar="id",varying=2:25,direction="1long")

Xwide <- dfOrder (XwWide, "id")

#add in the trait information

traits <- data.frame(id = 1:4,extraversion =c(5,10,15,20),
neuroticism =c¢ (10,5, 15,10))

Xwide.traits <- merge (Xwide,traits, by ="id")

headTail (Xwide.traits, top=8,bottom=8)
id time V1 V2 V3 V4 extraversion neuroticism

1 1 24 7 10 4 3 5 10
2 1 48 8 7 6 4 5 10
3 1 72 8 8 5 2 5 10
4 1 96 5 5 5 6 5 10
5 1 120 8 8 5 5 5 10
6 1 144 11 9 1 2 5 10
7 2 24 6 6 6 5 10 5
8 2 48 7 8 5 5 10 5
17 3 120 4 4 6 7 15 15
18 3 144 5 4 7 7 15 15
19 4 24 4 5 4 4 20 10
20 4 48 6 4 4 5 20 10
21 4 72 5 7 5 6 20 10
22 4 96 3 4 5 5 20 10
23 4 120 5 4 4 3 20 10
24 4 144 5 4 4 5 20 10 15 /34
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Always describe the data

describe (Xwide.traits)

describe (Xwide.traits)

vars n mean sd median trimmed mad min max range skew kurtosis se
id 124 2.50 1.14 2.5 2.50 1.48 1 4 3 0.00 -1.49 0.23
v1i 224 6.17 1.74 6.0 6.10 1.48 3 11 8 0.61 0.44 0.35
v2 324 6.17 1.74 6.0 6.05 1.48 4 10 6 0.28 -0.91 0.35
v3 4 24 5.08 1.47 5.0 5.05 1.48 1 9 8 -0.06 1.81 0.30
va 524 4.92 1.50 5.0 5.00 1.48 2 7 5 -0.31 -0.89 0.31
time 6 24 84.00 41.87 84.0 84.00 53.37 24 144 120 0.00 -1.41 8.55
extraversion 7 24 12.50 5.71 12.5 12.50 7.41 5 20 15 0.00 -1.49 1.17
neuroticism 8 24 10.00 3.61 10.0 10.00 3.71 5 15 10 0.00 -1.16 0.74

>
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A toy data set

And show the correlations

lowerCor (Xwide.traits)

id Vi v2 v3 v4 time extrv nrtcs
id 1.00
V1 -0.75 1.00
v2 -0.75 0.77 1.00
v3 0.05 -0.28 -0.21 1.00
va 0.25 -0.43 -0.38 0.67 1.00
time 0.00 0.16 -0.17 0.00 0.20 1.00
extraversion 1.00 -0.75 -0.75 0.05 0.25 0.00 1.00
neuroticism 0.32 -0.38 -0.38 0.16 0.08 0.00 0.32 1.00
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Display the data using m1Plot.

mlPlot is a simple helper function to call some lattice plotting
routines.

mlPlot (Xwide.traits, grp = "id", Time = "time", items =
+ col=c("blue", "red", "black", "grey"),
+

= ¢c(2:5),

main="Lattice Plot by subjects over time")
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A toy data set

Lattice Plot by subjects over time

20 40 60 80 100 120 140

1 1 1 1 1 1 1
id: {1} [ d:{2}

%";y/ =

id: {3} [ id: {4}

60 80 100 120 140
time

References
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How did it do this?

Examine mlPlot (revised 5/0

mlPlot

mlPlot

function (x, grp = "id", Time = "time", items = c(3:5), extra = NULL,
col = c("blue", "red", "black", "grey"),type="b", main = "Lattice Plot by subjects over t
|

{

long <- mlArrange(x = x, grp = grp, Time = Time, items = items,
extra = extra)
plotl <- xyplot (values time | id, group = items, data = long,
type = type, as.table = TRUE, strip = strip.custom(strip.names = TRUE,
strip.levels = TRUE), col = col, main = main, ...)
print (plotl)
invisible (long)

}
<bytecode: 0x1580c58a8>
<environment: namespace:psych>
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Using open data sets

Open and shared science

1. One of the more powerful uses of the web is to share data
2. A number of data sets are available for other people to use

3. Aaron Fisher at UCB has released a data set of positive and
negative mood for 10 subjects over 100 days (Fisher, 2015)

4. Other, larger data sets, are also available.

)
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Using open data sets

The Fisher data set

1. Although available on the web, it is necessary to download the
data and do some rearrangements to make it useful for our
purposes.

2. In a study of 10 participants diagnosed with clinically
generalized anxiety disorder, (Fisher, 2015) collected 28 items
for at least 60 days per participant.

3. | have moved this data set to the 350 folder so that we can
use it more readily.

4. In an impressive demonstration of how different people are, he
examined the dynamic factor structure of each person using
procedures discussed by Molenaar (1985).

R
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Using open data sets

The table of contents of fisher data

personality-project/courses/350/Fisher_2015_Data/P030/
personality-project/courses/350/Fisher_2015_Data/P065/
personality-project/courses/350/Fisher_2015_Data/P009/
personality-project/courses/350/Fisher_2015_Data/P007/
personality-project/courses/350/Fisher 2015_Data/P022/
personality-project/courses/350/Fisher_2015_Data/P013/
personality-project/courses/350/Fisher_2015_Data/P023/
personality-project/courses/350/Fisher_2015_Data/P002/
personality-project/courses/350/Fisher_2015_Data/P010/
personality-project/courses/350/Fisher_2015_Data/P011/

Each subfolder contains a number of files, including an RData file.

We want to read each of these files and then combine them. We
create a small function combine.data to do this.

23/34
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Using the Fisher data set
R code
"combine.data" <- function(dir=NULL, names, filename=NULL) {
new <— NULL
n <- length (names)
old.dir <- getwd() #save the current working directory
for (subject in 1:n) { #repeat n times, once for each subject
if(is.null (filename)) {setwd(dir)} else {dir <- filename}
#set the working directory to where the files are
#this is specific to this particular data structure
x <- read.file(f=paste0(dir,"/P",names[subject],"/pre",
names [subject], ".csv"))
nx <- nrow(x)
#add id and time to this data frame
temp <- data.frame (id=names[subject], time=1:nx, x)
#icombine with prior data.frames to make a longer object
new <- rbind(new, temp)
} #end of the subject loop
setwd (old.dir) #set the working directory back to the original
return (new) } #end the function by returning the data

folder.name <- "http://personality-project. org/courses/350/Fisher_z015_Data/Fisher_201@‘
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Use this function

names <- ¢ (Il002|l, "oo7" , "009", TO010" B llollll, ll013", "o22" , ||023n,
"030","065") #hard coded from his file names
#specify where the data are
filename <-
"http://personality-project.org/courses/350/Fisher_2015_Data"
new <- combine.data(dir=NULL, names=names, filename=filename)

dim (new)
dim (new)

[1] 792 29

colnames (new)

[1] "id" "time" "happy" "sad" "angry"

[6] "content" "afraid" "lonely" "relaxed" "tired"

[11] "anxious" "positive" "percent" "interfere" "upset"

[16] "wcontent" "tension" "difficult" "control" "concentrate"
[21] "mustens" "fatigue" "irritable" "sleep" "restless"
[26] "avoid" "prepare" "procrast" "reassur"
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Using open data sets

As with any datst we describe it

describe (new)

vars n mean sd median trimmed mad min max range skew kurtosis se
idx 1 792 5.27 2.90 5.0 5.21 2.97 1 10 9 0.17 -1
time 2 792 41.34 25.36 40.0 40.15 29.65 1 118 117 0.42 -0
happy 3 788 156.44 316.53 38.0 70.51 26.69 3 999 996 2.27 3
sad 4 788 148.20 319.72 29.0 61.04 31.13 0 999 999 2.27 3
angry 5 788 148.61 319.41 30.0 61.44 28.17 1 999 998 2.27 3
content 6 788 154.26 317.46 33.0 67.99 26.69 3 999 996 2.27 3
afraid 7 788 152.49 318.28 36.0 66.33 37.06 0 999 999 2.26 3
lonely 8 788 151.39 318.66 36.0 65.07 37.06 0 999 999 2.27 3
relaxed 9 788 152.97 317.78 30.0 66.36 19.27 2 999 997 2.27 3
tired 10 788 167.59 312.62 55.0 84.41 35.58 1 999 998 2.26 3
anxious 11 788 170.52 311.44 62.5 87.98 30.39 0 999 999 2.27 3
positive 12 788 158.27 315.89 41.0 72.74 31.13 3 999 996 2.27 3
percent 13 788 170.42 315.02 57.0 87.27 32.62 4 999 995 2.23 3
interfere 14 788 168.30 315.96 52.5 84.92 34.84 0 999 999 2.23 3
upset 15 788 170.76 313.10 56.0 87.49 32.62 6 999 993 2.25 3
wcontent 16 788 171.13 314.70 56.5 87.92 30.39 3 999 996 2.23 3
tension 17 788 170.10 313.37 60.0 86.97 31.13 4 999 995 2.25 3
difficult 18 788 172.06 314.41 58.0 89.25 31.13 2 999 997 2.23 3
control 19 788 171.82 314.50 59.0 88.88 31.13 3 999 996 2.23 3
concentrate 20 788 164.91 318.81 46.0 80.71 29.65 4 999 995 2.22 2
mustens 21 788 167.25 318.19 53.0 83.88 40.03 0 999 999 2.21 2
fatigue 22 788 171.17 316.65 52.0 88.30 35.58 4 999 995 2.21 2
irritable 23 788 166.52 318.18 47.0 82.59 26.69 2 999 997 2.22 2
sleep 24 788 169.42 317.51 50.0 86.41 40.03 3 999 996 2.21 2
restless 25 788 171.13 316.51 53.0 88.02 32.62 3 999 996 2.22 2
avoid 26 788 166.69 318.65 45.0 83.20 37.06 0 999 999 2.21 2
prepare 27 788 165.72 318.94 44.0 82.09 37.06 0 999 999 2.21 2
procrast 28 788 168.61 317.98 45.5 85.53 39.29 3 999 996 2.20 2
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fisher <- scrub(new, max=101)

#But that messes up the id field

fisher <- scrub(new, where =2:29, max = 120)

#id field is quasi numeric

table (fisher$id)

fisher$id <- as.numeric(fisher$id) j#keeps the original values
describe (fisher)

We need to clean up the get rid of missing values

fisher <- scrub(new, where =2:29, max = 120)

> describe (fisher)

id

time
happy

sad
angry
content
afraid
lonely
relaxed
tired
anxious
positive
percent
interfere
upset
wcontent
tension
difficult
control

1 792 18.53 17.28 11 14.85 5.93 2 65
2 792 41.34 25.36 40 40.15 29.65 1 118
3 691 38.16 21.69 33 36.37 20.76 3 97
4 691 28.77 23.42 21 26.02 22.24 0 100
5 691 29.23 20.72 25 26.99 22.24 1 100
6 691 35.68 23.52 28 33.15 20.76 3 100
7 691 33.66 25.77 29 31.01 29.65 0 100
8 691 32.40 25.35 28 29.80 31.13 0 100
9 691 34.21 20.89 28 31.85 14.83 2 93
10 691 50.88 25.55 50 51.03 31.13 1 100
11 691 54.22 24.37 57 55.20 26.69 0 100
12 691 40.25 22.31 38 38.73 25.20 3 100
13 689 51.36 23.13 50 50.98 29.65 4 100
14 689 48.94 25.18 45 48.21 29.65 0 99
15 690 53.13 23.36 50 52.87 29.65 6 100
16 689 52.18 22.35 50 51.67 25.20 3 100
17 690 52.37 23.67 51 52.77 31.13 4 100
18 689 53.24 23.17 51 53.16 28.17 2 100
19 689 52.96 23.19 51 52.73 28.17 3 100

O0OO0OO0DO0OO0OO0DO0OO0OO0OO0OO0OO0O0OO0OOOOHR

O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0OOO O
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Fisher’'s data: p

positive <- cs(happy,content, relaxed, positive)

negative <- cs(angry,afraid, sad, lonely)

pana <- c(positive,negative) #we want to select the items

R <- lowerCor (fisher[pana]) #to show in a correlation matrix

pana.scores <- scoreltems (keys=list (positive=positive,
negative=negative), fisher, impute="median")

summary (pana.scores)

across subjects

happy cntnt relxd postv angry afrad sad lonly
happy 1.00
content 0.80 1.00
relaxed 0.67 0.74 1.00
positive 0.84 0.79 0.70 1.00

angry -0.19 -0.15 -0.12 -0.15 1.00

afraid -0.36 -0.37 -0.28 -0.34 0.65 1.00

sad -0.34 -0.32 -0.23 -0.31 0.67 0.75 1.00
lonely -0.24 -0.21 -0.12 -0.21 0.64 0.74 0.80 1.00

Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, (unstandardized) alpha on the diagonal
corrected correlations above the diagonal:

positive negative ~
positive 0.93 -0.33
negative -0.30 0.91

28/34



Analyzing the data

Real data
0e00

Fisher affect over time

describe (affect.df)
lowerCor (affect .df)

affect.df <-cbind(fisher[1:2], pana.scores$score)

describe (affect.df)
vars n mean
id 1 792 18.42 17

> lowerCor (affect.df)

id time postv
id 1.00
time -0.08 1.00

positive -0.50 0.01 1.00
negative 0.60 -0.01 -0.30

sd median trimmed

.37 11.00
time 2 792 41.34 25.
positive 3 792 36.40 18.
negative 4 792 30.34 19.

14.85
40.15
34.39
28.41

mad
5.93
29.65
15.57
21.50

min
1.00
1.00
3.75
1.50

max
65.00
118.00
93.25
98.50

range
64.0
117.0
89.5
97.0

skew kurtosis se

1.75
0.42
0.94
0.75

2.25 0.62
-0.31 0.90
0.20 0.67
-0.07 0.70
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Fisher’'s data, measuring positive and negative affect over time

mlPlot (fisher, type="p",items=3:4,col=c("blue", "red") ,pch= c(16,17))

Lattice Plot by subjects over time

0 20 40 60 80 100 120 0 20 40 60 80 100 120
P S S M AR P S S M S S

‘id ‘(2)‘ I id: {7} I ‘id ‘(9)‘ I id:{10} I ‘id (‘11)‘

100

Tid:{22} Tid: {23} id[{30} id: {65}
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Fisher’s affect data within subjects over time

sb.affect<- statsBy(affect.df, "id", cors=TRUE)
round (sb.affect$within, 2)
round (sb.affect$pooled, 2)

sb.affect

time-postv time-negtv postv-negtv

1 -0.38 -0.18 -0.36
7 -0.48 0.53 -0.60
9 0.05 -0.03 0.35
10 -0.29 -0.36 -0.28
11 0.43 0.13 -0.28
13 0.03 -0.22 -0.05
22 -0.04 -0.32 -0.24
23 -0.01 -0.22 -0.16
30 0.29 0.11 -0.43
65 0.09 -0.48 -0.74

time positive negative

time 1.00 -0.04 -0.10
positive -0.04 1.00 -0.29
negative -0.10 -0.29 1.00
sb.affect

Statistics within and between groups
Call: statsBy(data = affect.df, group = "id", cors = TRUE)
Intraclass Correlation 1 (Percentage of variance due to groups)

id time positive negative

1.00 0.10 0.64 0.70
Intraclass Correlation 2 (Reliability of group differences)

id time positive negative

1.00 0.90 0.99 0.99 31/34
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Simulating data

To understand how models work, it useful to simulate data where
we know the structure. sim.multi does this.

1. Trends over time

2. Diurnal variation

3. Within subject variability
4

. sim.multi() defaults to 4 subjects for two variables over 16
days.

)
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Conclusion

Modern data collection techniques allow for intensive measurement
within subjects. Analyzing this type of data requires analyzing data
at the within subject as well as between subject level. Although
sometimes conclusions will be the same at both levels, it is
frequently the case that examining within subject data will show
much more complex patterns of results than when they are simply
aggregated. This tutorial is a simple introduction to the kind of
data analytic strategies that are possible.

(See http://personality-project.org/courses/350/350.wk7b.html for
worked examples.)

These slides have been adapted from (Revelle and Wilt, 2019):
Analyzing dynamic data: a tutorial

R
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