--- title: "350.week1b" author: "William Revelle" date: "04/01/24" output: html_document: default word_document: default --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) options(width=100) #This sets the width of the output, 80 seems to be the default and is too narrow ``` ## Using the psych package for descriptive statistics ```{r} library(psych) #make it active library(psychTools) #specifiy a file to read (e.g.) filename <- "http://personality-project.org/r/datasets/simulation.txt" #read the file my.data <- read.file(filename) ``` #Get basic descriptives First, find out how many rows and columns and then, if not too many, show a few ```{r} dim(my.data) names(my.data) headTail(my.data) ``` Then get the basic desriptive statistics ```{r} describe(my.data) ``` #Basic descriptive graphs Box plots and violins ```{r} boxplot(my.data) violinBy(my.data) ``` #descriptives by groups ```{r} describeBy(my.data,"sex") violinBy(my.data,grp="sex") ``` #Now lets try some bivariate descriptives -- The correlation ```{r} lowerCor(my.data) #just find the correlations corPlot(my.data) #show them in a heat map corPlot(my.data, numbers=TRUE) #with the values corPlot(my.data, numbers = TRUE, stars=TRUE) # with magic astericks corPlot(my.data,numbers=TRUE,upper=FALSE,diag=FALSE) ``` # Lets try some more conventional ways of showing it ```{r} corr.test(my.data) ``` #What about bootstrap resampling? ```{r} ci <- corCi(my.data) ci ```