
Packages Functions

Psychology 350: Advanced statistics and
programming in R

William Revelle

Department of Psychology
Northwestern University
Evanston, Illinois USA

Spring, 2023

1 / 13

Packages Functions

Outline

Packages

Functions

2 / 13

Packages Functions

Core R may be extended by the use of packages
1. R is very powerful, but what makes it even more useful is the

large set of packages that may be installed.
2. Each package contains at least one (and perhaps hundreds)

of functions.
3. Each function comes with a help menu with (usually)

examples of how to use it.
4. We will discuss one such package, the psych package which

contains many functions specifically written for psychological
research.

5. It may be installed with the normal menu option. Once
installed, you need to make it, and any other packages active
by using the library command:R code

install.packages(c("psych","psychTools")) #just do this once
#or, to get the cutting edge version
install.packages(c("psych","psychTools"),

repos="http://personality-project.org/r",
type="source")

#in which case, you will need to restart R
library(psych) #need to do this at the beginning of every session3 / 13

Packages Functions

Getting help

1. For some packages, ? the name of the package will give
preliminary help

2. For many packages, ’vignettes’ will give detailed descriptions
of how to use it

3. These may be found in the ’vignettes’ menu or, for psych at
https://personality-project.org/r/psych/intro.pdf

4 / 13

https://personality-project.org/r/psych/intro.pdf

Packages Functions

A small subset of very useful packages

• General use
• core R
• MASS
• lattice
• lme4 (core)
• psych
• Zelig

• Special use
• ltm/eRm/mirt
• sem
• lavaan/OpenMx
• GPArotation
• mvtnorm
• > 20,000 known
• + ?

• General applications
• most descriptive and inferential stats
• Modern Applied Statistics with S
• Lattice or Trellis graphics
• Linear mixed-effects models
• Personality/psychometrics/general purpose
• General purpose toolkit

• More specialized packages
• Latent Trait Model (IRT)
• SEM and CFA (RAM path notation)
• SEM and CFA (multiple groups)
• Jennrich rotations
• Multivariate distributions
• Thousands of more packages on CRAN
• Code on GitHub/ webpages/journal articles

5 / 13

Packages Functions

Objects and Functions

1. R is a collection of Functions that act upon and return Objects
2. Although most functions can act on an object and return an

object (a =f(b)), some are binary operators
• primitive arithmetic functions +, -, * , /, %*%, ˆ
• logical functions <, > ,==, !=

3. Some functions return “invisible" values
• e.g., p <- print(x,digits=3) will print out x to 3 digits but

also returns a value to p.
• Similarly, s <- summary(some object) will return the value of

the summary function.

4. But most useful functions act on an object and return a
resulting object

• This allows for extraordinary power because you can combine
functions by making the output of one the input of the next.

• The number of R functions is very large, for each package has
introduced more functions, but for any one task, not many
functions need to be learned. Keep a list of the ones you use.

6 / 13

Packages Functions

A few of the most useful data manipulations functions (adapted from
Rpad-refcard). Use ? for details

file.choose () find a file

file.choose (new=TRUE) create a new
file

read.table (filename)

read.csv (filename) reads a comma
separated file

read.delim (filename) reads a tab
delimited file

c (...) combine arguments

from:to e.g., 4:8

seq (from,to, by)

rep (x,times,each) repeat x

gl (n,k,...) generate factor
levels

matrix (x,nrow=,ncol=) create a
matrix

data.frame (...) create a data frame

dim (x) dimensions of x

str (x) Structure of an object

list (...) create a list

colnames (x) set or find column
names

rownames (x) set or find row names

ncol(x), nrow(x) number of row, columns

rbind (...) combine by rows

cbind (...) combine by columns

is.na (x) also is.null(x), is...

na.omit (x) ignore missing data

table (x)

merge (x,y)

apply (x,rc,FUNCTION)

ls () show workspace

rm () remove variables from
workspace

7 / 13

Packages Functions

More useful statistical functions, Use ? for details

mean (x)

is.na (x) also is.null(x), is...

na.omit (x) ignore missing data

sum (x)

rowSums (x) see also colSums(x)

min (x)

max (x)

range (x)

table (x)

summary (x) depends upon x

sd (x) standard deviation

cor (x) correlation

cov (x) covariance

solve (x) inverse of x

lm (y~x) linear model

aov (y~x) ANOVA

Selected functions from psych package

describe (x) descriptive stats

describeBy (x,y) descriptives by group

pairs.panels (x) SPLOM

error.bars (x) means + error bars

error.bars.by (x) Error bars by groups

fa (x,n) Factor analysis

principal (x,n) Principal components

iclust (x) Item cluster analysis

scoreItems (x) score multiple scales

score.multiple.choice (x) score multiple choice
scales

alpha (x) Cronbach’s alpha

omega (x) MacDonald’s omega

irt.fa (x) Item response theory
through factor analysis

lmCor (y~x)

linear model for correlations

bestScales empirical scale construction

8 / 13

Packages Functions

Show all the functions in the psych package
objects("package:psych")

objects("package:psych")
[1] "%+%" "ability" "affect" "all.income"
[5] "alpha" "anova.psych" "autoR" "Bechtoldt"
...

[49] "cohen.kappa" "comorbidity" "con2cat" "congeneric.sim"
[53] "cor.ci" "cor.plot" "cor.plot.upperLowerCi" "cor.smooth"
...
[81] "cushny" "d2r" "densityBy" "describe"

...
[109] "epi.dictionary" "equamax" "error.bars" "error.bars.by"
...
[177] "ICC2latex" "iclust" "ICLUST" "ICLUST.cluster"
...
[201] "irt.fa" "irt.item.diff.rasch" "irt.person.rasch" "irt.responses"
...
[241] "mixed.cor" "mixedCor" "mlArrange" "mlPlot"
...
[253] "omega" "omega.diagram" "omega.graph" "omega2latex"
...
[309] "read.clipboard.upper" "read.file" "read.file.csv" "read.https"
...
[329] "score.alpha" "score.irt" "score.irt.2" "score.irt.poly"
[333] "score.items" "score.multiple.choice" "scoreFast" "scoreIrt"
...
[405] "Thurstone" "Thurstone.33" "topBottom" "tr"
[409] "Tucker" "unidim" "varimin" "veg"
...

9 / 13

Packages Functions

Functions

1. All functions
1.1 Take input (usually as a set of parameters)
1.2 Process the input
1.3 Return the results (either explicitly, or as a list)

2. The help option will explain what the inputs are, what it does,
and what it returns

3. The examples will show various forms of input, various
processes, and various outputs

4. The vignettes will walk through more complicated examples
and are meant to be more helpful than just the help pages

10 / 13

Packages Functions

Using functions by scripting

Most statistical procedures require three or more steps. You can
do this a series of calls to various functions

1. Getting the data (e.g. read.file)

2. Describing and cleaning the data (e.g., describe, scrub
pairs.panels)

3. Do some statistical operation (e.g., t-test lm, aov, cor

4. Organize the results into helpful tables.

These steps should be documented so that you can do them again
You can make up your own set of ’useful R’ commands which you
can then use again and again

11 / 13

Packages Functions

Writing functions
1. Eventually, the set of scripts that you have written become

cumbersome and you can write little functions to save you
time.

2. For instance, if you frequently want to convert a correlation to
the z score equivalent using the Fisher transformation, you
could write a function similar to fisherz.

3. Or, if you want to know the effect size equivalent of a
correlation r2d

4. Each function needs to define what the inputs will be, what
default values they have (if any)

5. Each function then needs to process those inputs in some
meaningful way

6. The value returned may be a single item (or vector) or a list of
objects.

7. How to write functions? Read someone else’s functions and
then modify them.

12 / 13

Packages Functions

Programming Style and advice

1. Everyone has their own style, but there are some
recommended styles

2. Document your scripts, document your functions.

3. You thought long and hard about how to make something
work. Once it does, say what you did so that when you need
to do this again later, you know what to do.

4. Try to keep all scripts and functions to be less than a screen
long. This makes it easier to follow your own code.

5. Break long scripts into shorter chunks which you can test as
you go along.

13 / 13

	Packages
	Functions

