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Causal effects

1. The experimentalist wants to know how much changing one
variable (X) produces changes in another (Y). Typically we
call X and Y the Independent Variable and the Dependent
Variable.

2. This leads to an experimental manipulation of X into two
levels (0 and 1) and then the observation of the values of Y
for those two conditions and their expectations are

3. E(Y |X = 0) = Ȳ0 and E(Y |X = 1) = Ȳ1

4. Find the means for these two and take their difference :
D = Ȳ1 − Ȳ0

5. But these means reflect variability and scale (kg vs. gms). So
find

6. d = Ȳ1−Ȳ0
sd as a measure of the effect size of X
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t: the mean difference in comparison to the standard error

1. Gossett/Student (1908) expressed the mean difference in
terms of the standard error of the difference

2. se of difference is twice the square root of the pooled within
group squared standard errors:

3.

sed =

√
sd2

0

n0 − 1
+

sd2
1

n1 − 1

4.

t =
Ȳ1 − Ȳ0√
sd2

0
n0−1 +

sd2
1

n1−1

5. Gossett/Student derived the distribution of this statistic for
small samples.

6. Therefore, t varies as the effect size and the sample size:

t = d
√
df
2
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Effect size

1. There are many ways of reporting how two groups differ.
Cohen’s d statistic (Cohen, 1988) is just the differences of
means expressed in terms of the pooled within group standard
deviation. This is insensitive to sample size.

2. r is a universal measure of effect size that is a simple function
of d, but is bounded -1 to 1.

3. The t statistic is merely d * sqrt(df)/2 and thus reflects
sample size.

4. Confidence intervals for Cohen’s d may be found by
converting the d to a t, finding the confidence intervals for t,
and then converting those back to ds. This take advantage of
the uniroot function and the non-centrality parameter of the t
distribution.

5. See cohen.d
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cohen.d on the sat.act data setR code
cohen.d(sat.act,"gender") #t test on all the subjects
cohen.d(sat.act[1:40,],"gender") #and then just the first 40 subjects

cohen.d(sat.act,"gender") #
Call: cohen.d(x = sat.act, group = "gender")
Cohen d statistic of difference between two means

lower effect upper
education 0.03 0.18 0.34
age -0.20 -0.04 0.11
ACT -0.23 -0.08 0.08
SATV -0.19 -0.04 0.12
SATQ -0.51 -0.35 -0.19
Multivariate (Mahalanobis) distance between groups
[1] 0.52
r equivalent of difference between two means
education age ACT SATV SATQ

0.09 -0.02 -0.04 -0.02 -0.17
Call: cohen.d(x = sat.act[1:40, ], group = "gender")
Cohen d statistic of difference between two means

lower effect upper
education -0.15 0.49 1.12
age -0.60 0.03 0.65
ACT -0.49 0.14 0.76
SATV -0.61 0.02 0.64
SATQ -1.10 -0.47 0.17
Multivariate (Mahalanobis) distance between groups
[1] 0.82
r equivalent of difference between two means
education age ACT SATV SATQ

0.24 0.01 0.07 0.01 -0.23
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Plotting cohen.d for bfi items by genderR code
cd <- cohen.d(bfi[1:26],"gender",

dictionary=bfi.dictionary[,2,drop=FALSE])
error.dots(cd,head=13,tail=13,main="BFI items by gender")
abline(v=0)

Am indifferent to the feelings of others
Don't talk a lot.
Am full of ideas.
Waste my time.
Do things in a half-way manner.
Find it difficult to approach others.
Carry the conversation to a higher level
Spend time reflecting on things.
Often feel blue.
Am exacting in my work.
Will not probe deeply into a subject.
Avoid difficult reading material.
Get angry easily.
Know how to captivate people.
Do things according to a plan.
Continue until everything is perfect.
Take charge.
Make friends easily.
Get irritated easily.
Make people feel at ease.
Have frequent mood swings.
Love children.
Know how to comfort others.
Inquire about others' well-being.
Panic easily.

-0.4 -0.2 0.0 0.2 0.4

BFI items by gender
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the t-test

The t-test and effect size

1. The t-test is an effect size/standard error (σx̄) of effect size.
(For equal size groups)

es =
x1 − x2√

σ2
x1 + σ2

x2)/2
(1)

and

σx̄ =

√
σ2
x

df
(2)

t = es

√
df

2
(3)

2. If expressed as a regression, slope reflects how much y
changes for a unit change in x.

3. Note how effect size is not affected by sample size, t is.
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the t-test

t.test is sensitive to sample sizeR code
t.test(education ~ gender,data=sat.act)
t.test(education ~ gender,data=sat.act[1:40,])

Welch Two Sample t-test

data: education by gender
t = -2.2299, df = 453.96, p-value = 0.02624
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.48935928 -0.03087916

sample estimates:
mean in group 1 mean in group 2

2.995951 3.256071

> t.test(education ~ gender,data=sat.act[1:40,])

Welch Two Sample t-test

data: education by gender
t = -1.4356, df = 28.257, p-value = 0.1621
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.3601898 0.2389777

sample estimates:
mean in group 1 mean in group 2

3.166667 3.727273
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the t-test

More on effect size

1. In a recent paper with Alice Eagly,(Eagly and Revelle, 2022)
we showed how effect sizes can vary by aggregating items.

2. At the item level, there are many very small gender
differences, but when pooled into scales, the differences are
quite noticeable.

3. We made us of the Mahalanobis (1936) distance. (See
McLachlan (1999) for a discussion of the M distance, and Del
Giudice (2009); Del Giudice et al. (2012) for applications.)

4. M distance is just the distance in multivariate space between
two centroids. It is

√
dR−1d′. where d is a vector of distances

and R is the correlation matrix.

5. Reported by cohen.d.
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the t-test

The athenstaedt data set

1. Included in psychTools is a dataset taken from Ursala
Athenstaedt (2003)

2. Ursala Athenstaedt (2003) reported several analyses of items
and scales measuring Gender Role Self-Concept.

3. Eagly and Revelle (2022) have used these data in an analysis
of the power of aggregation.

4. Here are the original items as well as the three scales Eagly
and Revelle (2022).

5. The accompanying Athenstaedt.dictionary may be used to see
the items.
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the t-test

Show some of the items

R code
lookupFromKeys(Athenstaedt.keys[7:8],

dictionary=Athenstaedt.dictionary)

$F5
ItemLabel Item

V46 V46 Sew on a Button
V45 V45 Change Bed Sheets
V72 V72 Do the Ironing
V38 V38 Dust the Furniture
V71 V71 Wash Windows

$M5
ItemLabel Item

V32 V32 Do Repair Work
V29 V29 Change Fuses
V54 V54 Shovel Snow
V57 V57 Do Home Improvement Jobs
V30 V30 Clean a Drain
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the t-test

The items in these scales correlate within but not between scales

F and M items from Athenstaedt

gender

V30

V57

V54

V29

V32

V71

V38

V72

V45

V46

V46 V45 V72 V38 V71 V32 V29 V54 V57 V30

0.50 0.42 0.53 0.42 0.35-0.47-0.52-0.38-0.35-0.271.00

0.06 0.05 0.00 0.03 0.14 0.51 0.58 0.35 0.36 1.00-0.27

-0.01 -0.09 -0.12 -0.09 0.01 0.61 0.47 0.42 1.00 0.36-0.35

-0.02 -0.01 -0.07 0.01 0.10 0.46 0.43 1.00 0.42 0.35-0.38

-0.11 -0.10 -0.14-0.17 -0.02 0.66 1.00 0.43 0.47 0.58-0.52

-0.06 -0.11 -0.15 -0.12 0.00 1.00 0.66 0.46 0.61 0.51-0.47

0.51 0.53 0.54 0.59 1.00 0.00 -0.02 0.10 0.01 0.14 0.35

0.47 0.58 0.48 1.00 0.59 -0.12 -0.17 0.01 -0.09 0.03 0.42

0.61 0.50 1.00 0.48 0.54 -0.15 -0.14 -0.07 -0.12 0.00 0.53

0.56 1.00 0.50 0.58 0.53 -0.11 -0.10 -0.01 -0.09 0.05 0.42

1.00 0.56 0.61 0.47 0.51 -0.06 -0.11 -0.02 -0.01 0.06 0.50

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
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the t-test

Scoring the Athenstaedt items
R code

scales<- scoreOverlap(Athenstaedt.keys,Athenstaedt)
scatterHist(Femininity ~ Masculinity + gender, data =Athenstaedt,
cex.point=.4,smooth=FALSE, correl=FALSE,d.arrow=TRUE,col=c("blue","red"),

lwd=4, cex.main=1.5,main="Scatter Plot and Density",cex.axis=2)

Scale intercorrelations corrected for item overlap and attenuation
adjusted for overlap correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:

Femininity Masculinity MF F10 M10 MF20 F5 M5 MF10
Femininity 0.900 -0.090 0.81 0.931 -0.141 0.75 0.885 -0.159 0.75
Masculinity -0.079 0.875 -0.66 -0.082 0.976 -0.71 -0.050 0.961 -0.70
MF 0.719 -0.580 0.88 0.749 -0.684 0.99 0.695 -0.690 0.98
F10 0.831 -0.072 0.66 0.886 -0.092 0.75 0.987 -0.113 0.78
M10 -0.125 0.852 -0.60 -0.081 0.871 -0.73 -0.056 0.995 -0.72
MF20 0.652 -0.614 0.85 0.648 -0.624 0.85 0.714 -0.737 1.02
F5 0.775 -0.044 0.60 0.858 -0.048 0.61 0.853 -0.077 0.74
M5 -0.137 0.817 -0.59 -0.096 0.843 -0.62 -0.065 0.824 -0.71
MF10 0.626 -0.573 0.81 0.644 -0.585 0.82 0.600 -0.569 0.77

Two separate domains: items and scales that correlate with being
Male or Female, form reliable scales, but the scales are
independent.
We can show this at the item level using the scatterHist
function.
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the t-test

Analysis of the Athenstaedt data.
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the t-test

The linear model and its special cases

There are many forms of the linear model.

1. ŷ = b1x + e is the classic regression model, where b1 =
covxy
varx

.

2. If x is a dichotomous variable, this is equivalent to a t-test or if
there are more than two categories, as an Analysis of Variance.

3. The use of dichotomous variables is most frequently seen in
experimental designs where we have two values of some
experimental variable. We think of x causing y, and typically
refer to x as an Independent Variables causing y, the
Dependent Variable.

4. If expressed as a t-test, this is difference of means, divided by
the standard error of the difference of means.

5. It is perhaps better to think of a t as an effect size divided by
its standard error. The effect size is the difference in means
divided by the pooled within group standard deviation:
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the t-test

Regression

1. Typical model is that X causes Y
ŷ = bx1x + e

2. The slope (b) is the ratio of the covariance of x and y divided
by the variance of x.
bx1 =

covxy
varx

=
σxy

σ2
x

3. But, if we think of y causing x, this becomes:

4. Y causes X
x̂ = by1y + e and
by1 =

covxy
vart

5. If we are unsure of the direction of causality, we can find the
geometric average of the two regressions and find

rxy =
√

bx1by1 =
σxy

σ2
y
=

√
σxy

σ2
x

σxy

σ2
y
=

σxy√
σ2
xσ

2
y

=
σxy

σxσy

6. ŷ = b1x1 + b2x2 + e Multiple regression. If x1 and x2 are
categorical, this is also an analysis of variance.
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History: Relating two variables

Co-relationships (see week 3)

1. Descriptive measures of relationship
• Do two (or more) variables co-vary?

2. Galton (1888) reported a method of measuring the
“co-relation”of two measures

3. Pearson (1896) formalized this as the Pearson Product
Moment Correlation Coefficient

ρ =
Σxy√
Σx2Σy2

where x and y are deviation scores from the mean

x = X − X̄ = X − Σx

N
y = Y − Ȳ = X − Σx

N

4. Spearman (1904) expressed this in terms of rank orders.

5. in R we use the (cor) function
18 / 69
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History: Relating two variables

Francis Galton 1822-1911

Francis Galton (1822-1911) was among the most influential
psychologists of the 19th century. He did pioneering work on the
correlation coefficient, behavior genetics and the measurement of
individual differences. He introspectively examined the question of
free will and introduced the lexical hypothesis to the study of
personality and character. In addition to psychology, he did
pioneering work in meteorology and introduced the scientific use of
fingerprints. Whenever he could, he counted.
http://personality-project.org/revelle/publications/galton.pdf
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History: Relating two variables

Karl Pearson 1857-1936

Carl (Karl) Pearson was among the most influential statisticians of
the early 20th century. Founder of the statistics department at
University College London. He developed the Pearson Product
Moment Correlation Coefficient, its special case the ϕ coefficient,
and the tetrachoric correlation. Major behavior geneticist and
eugenicist.
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History: Relating two variables

Charles Spearman 1863-1945

Charles Spearman (1863-1945) was the leading psychometrician of
the early 20th century. His work on the classical test theory, factor
analysis, and the g theory of intelligence continues to influence
psychometrics, statistics, and the study of intelligence. More than
100 years after their publication, his most influential papers remain
two of the most frequently cited articles in psychometrics and
intelligence. http://personality-project.org/revelle/publications/spearman.pdf
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History: Relating two variables

Galton’s height data

Table: The relationship between the average of both parents (mid parent)
and the height of their children. The basic data table is from Galton
(1886) who used these data to introduce reversion to the mean (and
thus, linear regression). The data are available as part of the UsingR or
psych packages.

> library(psych)
> data(galton)
> galton.tab <- table(galton)
> galton.tab[order(rank(rownames(galton.tab)),decreasing=TRUE),] #sort it by decreasing row values

child
parent 61.7 62.2 63.2 64.2 65.2 66.2 67.2 68.2 69.2 70.2 71.2 72.2 73.2 73.7
73 0 0 0 0 0 0 0 0 0 0 0 1 3 0
72.5 0 0 0 0 0 0 0 1 2 1 2 7 2 4
71.5 0 0 0 0 1 3 4 3 5 10 4 9 2 2
70.5 1 0 1 0 1 1 3 12 18 14 7 4 3 3
69.5 0 0 1 16 4 17 27 20 33 25 20 11 4 5
68.5 1 0 7 11 16 25 31 34 48 21 18 4 3 0
67.5 0 3 5 14 15 36 38 28 38 19 11 4 0 0
66.5 0 3 3 5 2 17 17 14 13 4 0 0 0 0
65.5 1 0 9 5 7 11 11 7 7 5 2 1 0 0
64.5 1 1 4 4 1 5 5 0 2 0 0 0 0 0
64 1 0 2 4 1 2 2 1 1 0 0 0 0 0
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History: Relating two variables

Galton’s height data
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Figure: Galton’s data can be plotted to show the relationships between mid parent and child heights. Because
the original data are grouped, the data points have been jittered to emphasize the density of points along the
median. The bars connect the first, 2nd (median) and third quartiles. The dashed line is the best fitting linear fit,
the ellipses represent one and two standard deviations from the mean.
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Formally

Bivariate Regression
X Y ϵ

X Y- �
��
ϵ�

βy .x

y = ŷ + ϵ = βy .xx + ϵ

βy .x =
σxy

σ2
x

ϵ = y − ŷ∑
(ϵ2) =

∑
(y − ŷ)2 =

∑
(y − βy .xx)

2 =
∑

(y2 − 2yβy .xx + (βy .xx)
2)

Minimize
∑

(ϵ2)w .r .t.β => d(ϵ2)
dβ = 0 => −2σxy + 2βy .xσ

2
x = 0 =>

βy .x =
σxy

σ2
x
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Formally

Bivariate Regression
X Y ϵ

X Y- �
��
ϵ�

βy .x

y = ŷ + ϵ = βy .xx + ϵ

βy .x =
σxy

σ2
x

δ

X Y�
��
δ - �

βx .y

x = x̂ + δ = βx .yy + δ

βy .x =
σxy

σ2
y
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Formally

Bivariate Correlation is the geometric average of the two regressions
X Y

X Y

y = ŷ + ϵ = βy .xx + ϵ

βy .x =
σxy

σ2
x

x = x̂ + δ = βx .yy + δ

βy .x =
σxy

σ2
y

rxy =
σxy√
σ2
xσ

2
y

rxy = σzxzy (the covariance of standard scores)
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Formally

Scatter Plot Matrix showing correlation and LOESS regression
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Selection effects

The effect of selection on the correlation
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• Consider what happens if we
select a subset

• The“Oregon”model
• (GPA + (V+Q)/200) > 11.6

• The range is truncated, but
even more important, by using
a compensatory selection
model, we have changed the
sign of the correlations.
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Selection effects

Regression and restriction of range
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Although the correlation is very sensitive, regression slopes are
relatively insensitive to restriction of range.
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Selection effects

R code for regression figuresR code
datafilename="http://personality-project.org/r/datasets/psychometrics.prob2.txt"
mydata =read.table(datafilename,header=TRUE) #read the data file

gradq <- subset(gradf,gradf[2]>700) #choose the subset
with(gradq,lm(GRE.V ~ GRE.Q)) #do the regression

Call:
lm(formula = GRE.V ~ GRE.Q)
Coefficients:
(Intercept) GRE.Q

258.1549 0.4977
#show the graphic
op <- par(mfrow=c(1,2)) #two panel graph
with(gradf,{
plot(GRE.V ~ GRE.Q,xlim=c(200,800),main='Original data', pch=16)
abline(lm(GRE.V ~ GRE.Q))
})
text(300,500,'r = .46 b = .56')
with(gradq,{
plot(GRE.V ~ GRE.Q,xlim=c(200,800),main='GRE Q > 700',pch=16)
abline(lm(GRE.V ~ GRE.Q))
})
text(300,500,'r = .18 b = .50')

op <- par(mfrow=c(1,1)) #switch back to one panel
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Selection effects

Show many correlations with a heat map using cor.plot.

Big 5 Inventory Items from SAPA
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Continuous vs. discrete X and Y

Alternative versions of the correlation coefficient

Table: A number of correlations are Pearson r in different forms, or with
particular assumptions. If r =

∑
xiyi√∑
x2
i

∑
y2
i

, then depending upon the type

of data being analyzed, a variety of correlations are found.

Coefficient symbol X Y Assumes
Pearson r continuous continuous
Spearman rho (ρ) ranks ranks
Point bi-serial rpb dichotomous continuous
Phi ϕ dichotomous dichotomous
Bi-serial rbis dichotomous continuous normality
Tetrachoric rtet dichotomous dichotomous normality
Polychoric rpc categorical categorical normality

use cor for the first 4, biserial, tetrachoric, polychoric to
find these values.
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Continuous vs. discrete X and Y

The ϕ coefficient is just a Pearson r on dichotomous data

Table: The basic table for a phi, ϕ coefficient, expressed in raw
frequencies in a four fold table is taken from Pearson and Heron (1913)

Success Failure Total

Accept A B R1 = A + B

Reject C D R2 = C + D

Total C1 = A + C C2=B + D n = A + B + C + D

In terms of the raw data coded 0 or 1, the phi coefficient can be
derived directly by direct substitution, recognizing that the only
non zero product is found in the A cell

n
∑

XiYi −
∑

Xi

∑
Yi = nA− R1C1

ϕ =
AD − BC√

(A+ B)(C + D)(A+ C )(B + D)
. (4)
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Continuous vs. discrete X and Y

The tetrachoric correlation estimates the latent correlation

-3 -2 -1 0 1 2 3
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Y rho =  0.4
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x
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m
(x
)
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τ

x1

Y > Τ
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Continuous vs. discrete X and Y

The tetrachoric correlation estimates the latent correlation

tetrachoric iteratively estimates the tetrachoric correlalation.

x
y

z

Bivariate density  rho =  0.6
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WARNING

Cautions about correlations–The Anscombe data set

Consider the following 8 variables
var n mean sd median trimmed mad min max range skew kurtosis se

x1 1 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.20 1.00
x2 2 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.20 1.00
x3 3 11 9.0 3.32 9.00 9.00 4.45 4.00 14.00 10.00 0.00 -1.20 1.00
x4 4 11 9.0 3.32 8.00 8.00 0.00 8.00 19.00 11.00 2.47 11.00 1.00
y1 5 11 7.5 2.03 7.58 7.49 1.82 4.26 10.84 6.58 -0.05 -0.53 0.61
y2 6 11 7.5 2.03 8.14 7.79 1.47 3.10 9.26 6.16 -0.98 0.85 0.61
y3 7 11 7.5 2.03 7.11 7.15 1.53 5.39 12.74 7.35 1.38 4.38 0.61
y4 8 11 7.5 2.03 7.04 7.20 1.90 5.25 12.50 7.25 1.12 3.15 0.61
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WARNING

Cautions, Anscombe continued

With regressions of
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000909 1.1247468 2.667348 0.025734051
x1 0.5000909 0.1179055 4.241455 0.002169629

[[2]]
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.000909 1.1253024 2.666758 0.025758941
x2 0.500000 0.1179637 4.238590 0.002178816

[[3]]
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0024545 1.1244812 2.670080 0.025619109
x3 0.4997273 0.1178777 4.239372 0.002176305

[[4]]
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0017273 1.1239211 2.670763 0.025590425
x4 0.4999091 0.1178189 4.243028 0.002164602
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WARNING

Cautions about correlations: Anscombe data set
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WARNING

Further cautions about correlations–the problem of levels

1. Correlations taken at one level of analysis can be unrelated to
those at another level

2. rxy = ηxwg ∗ ηywg ∗ rxywg + ηxbg ∗ ηybg ∗ rxybg
3. Where η is the correlation of the data with the within group

values, or the group means.

4. The within group and between group correlations can even be
of different sign!

5. The withinBetween data set is an example of this problem.

6. The statsBy function will find the within and between group
correlations for this kind of multi-level design.
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WARNING

Cautions about correlations: Within versus between groups
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WARNING

The ubiquitous correlation coefficient

Table: Alternative Estimates of effect size. Using the correlation as a
scale free estimate of effect size allows for combining experimental and
correlational data in a metric that is directly interpretable as the effect of
a standardized unit change in x leads to r change in standardized y.

Statistic Estimate r equivalent as a function of r

Pearson correlation rxy =
Cxy

σxσy
rxy

Regression by.x = Cxy
σ2
x

r = by.x
σy

σx
by.x = r σx

σy

Cohen’s d d = X1−X2
σx

r = d√
d2+4

d = 2r√
1−r2

Hedge’s g g = X1−X2
sx

r = g√
g2+4(df /N)

g =
2r
√

df /N√
1−r2

t - test t = d
√
df

2
r =

√
t2/(t2 + df ) t =

√
r2df
1−r2

F-test F = d2df
4

r =
√

F/(F + df ) F = r2df
1−r2

Chi Square r =
√

χ2/n χ2 = r2n

Odds ratio d = ln(OR)
1.81

r = ln(OR)

1.81
√

(ln(OR)/1.81)2+4
ln(OR) = 3.62r√

1−r2

requivalent r with probability p r = requivalent
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The linear model is a regression model

1. ŷ = µ+ β1X1 + β2X2 + ....+ βnX1 ∗ X2 + ...+ ϵ

2. Or more generally ŷ = µ+ βX+ ϵ where β is a matrix of
coefficients and X is a design matrix.

3. Analysis of variance is a special case where the X design
matrix is a orthogonal set of weights.

4. Can use the lm or the lmCor functions to find the coefficients.

5. lm is in core-R and also gives convenient diagnostics
• lm requires complete data and does not automatically

zero-center interaction terms
• lmCor will work with incomplete data, or the correlation matrix

and by default zero centers before doing interaction products
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Regression versus ANOVA

The npk data set is an example for anova. A classical N, P, K
(nitrogen, phosphate, potassium) factorial experiment on the
growth of peas conducted on 6 blocks. Each half of a fractional
factorial design confounding the NPK interaction was used on 3 of
the plots. R code
describe(npk) #raw data is categorical
NPK <- char2numeric(npk) #convert to numeric
describe(NPK) #numeric

vars n mean sd median trimmed mad min max range skew kurtosis se
block* 1 24 3.50 1.74 3.50 3.50 2.22 1.0 6.0 5.0 0.00 -1.41 0.36
N* 2 24 1.50 0.51 1.50 1.50 0.74 1.0 2.0 1.0 0.00 -2.08 0.10
P* 3 24 1.50 0.51 1.50 1.50 0.74 1.0 2.0 1.0 0.00 -2.08 0.10
K* 4 24 1.50 0.51 1.50 1.50 0.74 1.0 2.0 1.0 0.00 -2.08 0.10
yield 5 24 54.88 6.17 55.65 54.75 6.15 44.2 69.5 25.3 0.24 -0.51 1.26

>
vars n mean sd median trimmed mad min max range skew kurtosis se

block 1 24 3.50 1.74 3.50 3.50 2.22 1.0 6.0 5.0 0.00 -1.41 0.36
N 2 24 1.50 0.51 1.50 1.50 0.74 1.0 2.0 1.0 0.00 -2.08 0.10
P 3 24 1.50 0.51 1.50 1.50 0.74 1.0 2.0 1.0 0.00 -2.08 0.10
K 4 24 1.50 0.51 1.50 1.50 0.74 1.0 2.0 1.0 0.00 -2.08 0.10
yield 5 24 54.88 6.17 55.65 54.75 6.15 44.2 69.5 25.3 0.24 -0.51 1.26
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The npk data set
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Compare aov to lm

1. aov works on factors and takes ‘products’ to show interactions

2. If the data are factors, lm will produce similar results

3. But, if the data are numeric, the results differ. Why?

4. First lets do the comparisons on factors
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R code
summary(aov(yield ~ N * P * K, data=npk))
summary(lm(yield ~ N * P * K, data =npk))

> summary(aov(yield ~ N * P * K, data=npk))
Df Sum Sq Mean Sq F value Pr(>F)

N 1 189.3 189.28 6.161 0.0245 *
P 1 8.4 8.40 0.273 0.6082
K 1 95.2 95.20 3.099 0.0975 .
N:P 1 21.3 21.28 0.693 0.4175
N:K 1 33.1 33.14 1.078 0.3145
P:K 1 0.5 0.48 0.016 0.9019
N:P:K 1 37.0 37.00 1.204 0.2887
Residuals 16 491.6 30.72
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> summary(lm(yield ~ N * P * K, data =npk))
Call:
lm(formula = yield ~ N * P * K, data = npk)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 54.8750 1.1314 48.500 <2e-16 ***
N1 2.8083 1.1314 2.482 0.0245 *
P1 -0.5917 1.1314 -0.523 0.6082
K1 -1.9917 1.1314 -1.760 0.0975 .
N1:P1 -0.9417 1.1314 -0.832 0.4175
N1:K1 -1.1750 1.1314 -1.038 0.3145
P1:K1 0.1417 1.1314 0.125 0.9019
N1:P1:K1 1.2417 1.1314 1.097 0.2887
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.543 on 16 degrees of freedom
Multiple R-squared: 0.4391, Adjusted R-squared: 0.1937
F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586
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But treating them numerically, the results differ
Call:
lm(formula = yield ~ N * P * K, data = npk)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 54.8750 1.1314 48.500 <2e-16 ***
N1 2.8083 1.1314 2.482 0.0245 *
P1 -0.5917 1.1314 -0.523 0.6082
K1 -1.9917 1.1314 -1.760 0.0975 .
N1:P1 -0.9417 1.1314 -0.832 0.4175
N1:K1 -1.1750 1.1314 -1.038 0.3145
P1:K1 0.1417 1.1314 0.125 0.9019
N1:P1:K1 1.2417 1.1314 1.097 0.2887
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.543 on 16 degrees of freedom
Multiple R-squared: 0.4391, Adjusted R-squared: 0.1937
F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586
> summary(lm(yield ~ N * P * K, data =NPK))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.900 35.779 0.081 0.9364
N 40.667 22.629 1.797 0.0912 .
P 25.967 22.629 1.148 0.2680
K 24.567 22.629 1.086 0.2937
N:P -18.667 14.312 -1.304 0.2106
N:K -19.600 14.312 -1.370 0.1898
P:K -14.333 14.312 -1.002 0.3315
N:P:K 9.933 9.052 1.097 0.2887
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.543 on 16 degrees of freedom
Multiple R-squared: 0.4391, Adjusted R-squared: 0.1937
F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586 47 / 69
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The problem with multiplication to produce interaction terms

1. An interaction is just the product of two variables (with the
main effects removed)

2. But just taking the products will produce correlations between
the main effects and the interactions.

3. We show this by finding the products and then their
correlations R code

NP <- NPK$N * NPK$P
NK <- NPK$N * NPK$K
PK <- NPK$P * NPK$K
PKN <- PK * NPK$N
NPK.prods <- data.frame(NPK,NP,NK,PK,PKN)
pairs.panels(NPK.prods,gap=0) #show the correlations,

tighten up the figure
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Interactions as products
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Interactions of products of centered data

1. If we center the data (subtract the mean from each variable)
aka deviation scores

2. Then the products are uncorrelated with the main effects

3. We can do this using the scale function

4. By default scale also standardizes (divides by the standard
deviation).

5. To keep the data in the same metric as the raw data, we do
not standardiize

6. Then do the regressions on the centered (with products) data
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Center the dataR code
centered.NPK <- scale(NPK,scale=FALSE)
centered.NPK <- data.frame(scale(NPK,scale=FALSE))
c.NP <- centered.NPK$N * centered.NPK$P
c.NK <- centered.NPK$N * centered.NPK$K
c.PK <- centered.NPK$P * centered.NPK$K
c.PKN <- c.PK * centered.NPK$N
center.prod <- data.frame(centered.NPK,c.NP,c.NK,c.PK,c.PKN)
describe(center.prod)
pairs.panels(center.prod) #show the results grapically

describe(center.prod)
vars n mean sd median trimmed mad min max range skew kurtosis se

block 1 24 0 1.74 0.00 0.00 2.22 -2.50 2.50 5.00 0.00 -1.41 0.36
N 2 24 0 0.51 0.00 0.00 0.74 -0.50 0.50 1.00 0.00 -2.08 0.10
P 3 24 0 0.51 0.00 0.00 0.74 -0.50 0.50 1.00 0.00 -2.08 0.10
K 4 24 0 0.51 0.00 0.00 0.74 -0.50 0.50 1.00 0.00 -2.08 0.10
yield 5 24 0 6.17 0.77 -0.13 6.15 -10.67 14.62 25.30 0.24 -0.51 1.26
c.NP 6 24 0 0.26 0.00 0.00 0.37 -0.25 0.25 0.50 0.00 -2.08 0.05
c.NK 7 24 0 0.26 0.00 0.00 0.37 -0.25 0.25 0.50 0.00 -2.08 0.05
c.PK 8 24 0 0.26 0.00 0.00 0.37 -0.25 0.25 0.50 0.00 -2.08 0.05
c.PKN 9 24 0 0.13 0.00 0.00 0.19 -0.12 0.12 0.25 0.00 -2.08 0.03
> lowerCor(center.prod)

block N P K yield c.NP c.NK c.PK c.PKN
block 1.00
N 0.00 1.00
P 0.00 0.00 1.00
K 0.00 0.00 0.00 1.00
yield -0.16 0.46 -0.10 -0.33 1.00
c.NP 0.00 0.00 0.00 0.00 -0.16 1.00
c.NK 0.00 0.00 0.00 0.00 -0.19 0.00 1.00
c.PK 0.00 0.00 0.00 0.00 0.02 0.00 0.00 1.00
c.PKN -0.29 0.00 0.00 0.00 0.21 0.00 0.00 0.00 1.00
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Describe and show correlations

describe(center.prod)
vars n mean sd median trimmed mad min max range skew kurtosis se

block 1 24 0 1.74 0.00 0.00 2.22 -2.50 2.50 5.00 0.00 -1.41 0.36
N 2 24 0 0.51 0.00 0.00 0.74 -0.50 0.50 1.00 0.00 -2.08 0.10
P 3 24 0 0.51 0.00 0.00 0.74 -0.50 0.50 1.00 0.00 -2.08 0.10
K 4 24 0 0.51 0.00 0.00 0.74 -0.50 0.50 1.00 0.00 -2.08 0.10
yield 5 24 0 6.17 0.77 -0.13 6.15 -10.67 14.62 25.30 0.24 -0.51 1.26
c.NP 6 24 0 0.26 0.00 0.00 0.37 -0.25 0.25 0.50 0.00 -2.08 0.05
c.NK 7 24 0 0.26 0.00 0.00 0.37 -0.25 0.25 0.50 0.00 -2.08 0.05
c.PK 8 24 0 0.26 0.00 0.00 0.37 -0.25 0.25 0.50 0.00 -2.08 0.05
c.PKN 9 24 0 0.13 0.00 0.00 0.19 -0.12 0.12 0.25 0.00 -2.08 0.03
> lowerCor(center.prod)

block N P K yield c.NP c.NK c.PK c.PKN
block 1.00
N 0.00 1.00
P 0.00 0.00 1.00
K 0.00 0.00 0.00 1.00
yield -0.16 0.46 -0.10 -0.33 1.00
c.NP 0.00 0.00 0.00 0.00 -0.16 1.00
c.NK 0.00 0.00 0.00 0.00 -0.19 0.00 1.00
c.PK 0.00 0.00 0.00 0.00 0.02 0.00 0.00 1.00
c.PKN -0.29 0.00 0.00 0.00 0.21 0.00 0.00 0.00 1.00
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Centering the data

We do the linear model on the centered data
R code

summary(lm(yield ~ N*P*K,data=center.prod))

summary(lm(yield ~ N*P*K,data=center.prod))

Call:
lm(formula = yield ~ N * P * K, data = center.prod)

Residuals:
Min 1Q Median 3Q Max

-10.133 -4.133 1.250 3.125 8.467

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.269e-15 1.131e+00 0.000 1.0000
N 5.617e+00 2.263e+00 2.482 0.0245 *
P -1.183e+00 2.263e+00 -0.523 0.6082
K -3.983e+00 2.263e+00 -1.760 0.0975 .
N:P -3.767e+00 4.526e+00 -0.832 0.4175
N:K -4.700e+00 4.526e+00 -1.038 0.3145
P:K 5.667e-01 4.526e+00 0.125 0.9019
N:P:K 9.933e+00 9.052e+00 1.097 0.2887
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.543 on 16 degrees of freedom
Multiple R-squared: 0.4391, Adjusted R-squared: 0.1937
F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586
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Centering the data

This is now the same as the original aov
summary(aov(yield ~ N*P*K,data=npk))

Df Sum Sq Mean Sq F value Pr(>F)
N 1 189.3 189.28 6.161 0.0245 *
P 1 8.4 8.40 0.273 0.6082
K 1 95.2 95.20 3.099 0.0975 .
N:P 1 21.3 21.28 0.693 0.4175
N:K 1 33.1 33.14 1.078 0.3145
P:K 1 0.5 0.48 0.016 0.9019
N:P:K 1 37.0 37.00 1.204 0.2887
Residuals 16 491.6 30.72
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

summary(lm(yield ~ N*P*K,data=center.prod))
Call:
lm(formula = yield ~ N * P * K, data = center.prod)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.269e-15 1.131e+00 0.000 1.0000
N 5.617e+00 2.263e+00 2.482 0.0245 *
P -1.183e+00 2.263e+00 -0.523 0.6082
K -3.983e+00 2.263e+00 -1.760 0.0975 .
N:P -3.767e+00 4.526e+00 -0.832 0.4175
N:K -4.700e+00 4.526e+00 -1.038 0.3145
P:K 5.667e-01 4.526e+00 0.125 0.9019
N:P:K 9.933e+00 9.052e+00 1.097 0.2887
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.543 on 16 degrees of freedom
Multiple R-squared: 0.4391, Adjusted R-squared: 0.1937
F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586 54 / 69
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Centering the data

Centering using the scale function

In the previous example, we hand centered the data. The scale
function will do this. By default, it will also standardize. We avoid
this by setting the scale parameter to FALSE.
Unfortunately, scale returns a matrix and we want a data.frame.
This is irritating, but easily solved.
We use the Garcia data set. R code
centered.Garcia <- data.frame(scale(Garcia, scale=FALSE))
describe(centered.Garcia)

> centered.Garcia <- data.frame(scale(Garcia, scale=FALSE))
> describe(centered.Garcia)

vars n mean sd median trimmed mad min max range skew kurtosis se
protest 1 129 0 0.82 -0.03 0.01 1.48 -1.03 0.97 2.00 -0.06 -1.52 0.07
sexism 2 129 0 0.78 0.00 -0.02 0.74 -2.25 1.88 4.13 0.12 -0.32 0.07
anger 3 129 0 1.66 -1.12 -0.29 0.00 -1.12 4.88 6.00 1.29 0.26 0.15
liking 4 129 0 1.05 0.19 0.09 0.99 -4.64 1.36 6.00 -1.15 2.48 0.09
respappr 5 129 0 1.35 0.38 0.12 1.11 -3.37 2.13 5.50 -0.75 -0.18 0.12
prot2 6 129 0 0.47 0.32 0.04 0.00 -0.68 0.32 1.00 -0.77 -1.41 0.04
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Centering the data

A word of caution

1. aov and lm produce equivalent results if the design is
balanced.

2. That is, if the IVs are represented proportionally. (no
correlation between the Xi)

3. Consider the case of the Garcia data set
lowerCor(Garcia)

prtst sexsm anger likng rsppp prot2
protest 1.00
sexism -0.02 1.00
anger -0.31 -0.03 1.00
liking 0.17 0.09 -0.51 1.00
respappr 0.48 0.04 -0.53 0.49 1.00
prot2 0.86 0.04 -0.39 0.21 0.50 1.00
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Centering the data

aov and lm not equivalent if design is unbalancedR code
summary(aov(liking ~ prot2 + sexism, data= Garcia))
summary(lm(liking ~ prot2 + sexism, data= Garcia))

summary(aov(liking ~ prot2 + sexism, data= Garcia))
Df Sum Sq Mean Sq F value Pr(>F)

prot2 1 6.41 6.407 6.040 0.0153 *
sexism 1 0.97 0.969 0.913 0.3410
Residuals 126 133.66 1.061
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
> summary(lm(liking ~ prot2 + sexism, data= Garcia))

Call:
lm(formula = liking ~ prot2 + sexism, data = Garcia)

Residuals:
Min 1Q Median 3Q Max

-4.3857 -0.6246 0.0599 0.7754 1.7954

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7468 0.6110 7.768 2.41e-12 ***
prot2 0.4711 0.1949 2.417 0.0171 *
sexism 0.1111 0.1162 0.956 0.3410
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 1.03 on 126 degrees of freedom
Multiple R-squared: 0.0523, Adjusted R-squared: 0.03726
F-statistic: 3.477 on 2 and 126 DF, p-value: 0.03391
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Centering the data

Even worse if look at interaction terms

R code
summary(aov(liking ~ prot2 * sexism, data= Garcia))
summary(lm(liking ~ prot2 * sexism, data= Garcia))

summary(aov(liking ~ prot2 * sexism, data= Garcia))
Df Sum Sq Mean Sq F value Pr(>F)

prot2 1 6.41 6.407 6.553 0.01166 *
sexism 1 0.97 0.969 0.991 0.32139
prot2:sexism 1 11.45 11.451 11.713 0.00084 ***
Residuals 125 122.21 0.978
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
> summary(lm(liking ~ prot2 * sexism, data= Garcia))

Call:
lm(formula = liking ~ prot2 * sexism, data = Garcia)
Residuals:

Min 1Q Median 3Q Max
-3.9894 -0.6381 0.0478 0.7404 2.3650
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.7062 1.0449 7.375 1.99e-11 ***
prot2 -3.7727 1.2541 -3.008 0.00318 **
sexism -0.4725 0.2038 -2.318 0.02205 *
prot2:sexism 0.8336 0.2436 3.422 0.00084 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 0.9888 on 125 degrees of freedom
Multiple R-squared: 0.1335, Adjusted R-squared: 0.1127
F-statistic: 6.419 on 3 and 125 DF, p-value: 0.0004439
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Centering the data

Centering helps, but not if the DVs are correlated

R code
summary(aov(liking ~ prot2 * sexism, data= Garcia))
summary(lm(liking ~ prot2 * sexism, data= data.frame(scale(Garcia,scale=FALSE)) ))

summary(aov(liking ~ prot2 * sexism, data= Garcia))
Df Sum Sq Mean Sq F value Pr(>F)

prot2 1 6.41 6.407 6.553 0.01166 *
sexism 1 0.97 0.969 0.991 0.32139
prot2:sexism 1 11.45 11.451 11.713 0.00084 ***
Residuals 125 122.21 0.978
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
> summary(lm(liking ~ prot2 * sexism, data= data.frame(scale(Garcia,scale=FALSE)) ))

Call:
lm(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia,

scale = FALSE)))

Residuals:
Min 1Q Median 3Q Max

-3.9894 -0.6381 0.0478 0.7404 2.3650

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01219 0.08713 -0.140 0.88899
prot2 0.49262 0.18722 2.631 0.00958 **
sexism 0.09613 0.11169 0.861 0.39102
prot2:sexism 0.83355 0.24356 3.422 0.00084 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 0.9888 on 125 degrees of freedom
Multiple R-squared: 0.1335, Adjusted R-squared: 0.1127
F-statistic: 6.419 on 3 and 125 DF, p-value: 0.0004439
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Centering the data

lmCor will do regressions and interactions as well

1. lmCor will work from raw data or correlation matrices

2. With raw data, it can find interactions

3. The syntax can be identical to lm or you can specify it by x
and y

4. Compare
lmCor(yield ~ N * P * K, data = npk)
with
lm(yield ~ N * P * K, data = as.data.frame(scale(NPK)))
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Centering the data

lmCor versus lm
lmCor(yield~ N*P*K,data= npk) #note, it will work on the factor level data as well
Call: lmCor(y = yield ~ N * P * K, data = npk)
Multiple Regression from raw data
DV = yield

slope se t p lower.ci upper.ci VIF
(Intercept) 0.00 0.19 0.00 1.000 -0.40 0.40 1
N 0.46 0.19 2.48 0.025 0.07 0.86 1
P -0.10 0.19 -0.52 0.610 -0.49 0.30 1
K -0.33 0.19 -1.76 0.097 -0.73 0.07 1
N*P -0.16 0.19 -0.83 0.420 -0.55 0.24 1
N*K -0.19 0.19 -1.04 0.310 -0.59 0.20 1
P*K 0.02 0.19 0.13 0.900 -0.37 0.42 1
N*P*K 0.21 0.19 1.10 0.290 -0.19 0.60 1
Residual Standard Error = 0.9 with 16 degrees of freedom
Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p
yield 0.66 0.44 0.56 0.31 0.19 0.1 1.79 7 16 0.159

lm(formula = yield ~ N * P * K, data = as.data.frame(scale(NPK)))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.195e-16 1.833e-01 0.000 1.0000
N 4.647e-01 1.872e-01 2.482 0.0245 *
P -9.791e-02 1.872e-01 -0.523 0.6082
K -3.296e-01 1.872e-01 -1.760 0.0975 .
N:P -1.592e-01 1.913e-01 -0.832 0.4175
N:K -1.986e-01 1.913e-01 -1.038 0.3145
P:K 2.395e-02 1.913e-01 0.125 0.9019
N:P:K 2.144e-01 1.954e-01 1.097 0.2887
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.898 on 16 degrees of freedom
Multiple R-squared: 0.4391, Adjusted R-squared: 0.1937
F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586
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Interactions are hard to visualize

1. Main effects (in anova terms) are just linear relationships

2. These may be shown by straight lines

3. Two main effects may be shown by two parallel lines

4. Interactions are non-parallel lines.

5. Lets use the Garcia et al. (2010) data to show this (in
psychTools as Garcia).
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Garcia data set

1. Garcia et al. (2010) report data for 129 subjects on the effects of perceived
sexism on anger and liking of women’s reactions to ingroup members who
protest discrimination. This data set is also used as the ‘protest’ data set by
Hayes (2013) It is a useful example of mediation and moderation in regression.
It may also be used as an example of plotting interactions.

2. The reaction of women to women who protest discriminatory treatment was
examined in an experiment reported by Garcia et al. (2010). 129 women were
given a description of sex discrimination in the workplace (a male lawyer was
promoted over a clearly more qualified female lawyer). Subjects then read that
the target lawyer felt that the decision was unfair. Subjects were then randomly
assigned to three conditions: Control (no protest), Individual Protest (“They are
treating me unfairly”) , or Collective Protest (“The firm is is treating women
unfairly”).

3. We use lmCor to find the regressions with the 0 centered product term and do
the graphics at the same time
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The Garcia data set

R code
dim(Garcia)
describe(Garcia)
lowerCor(Garcia)

dim(Garcia)
[1] 129 6
> describe(Garcia)

vars n mean sd median trimmed mad min max range skew kurtosis se
protest 1 129 1.03 0.82 1.00 1.04 1.48 0.00 2 2.00 -0.06 -1.52 0.07
sexism 2 129 5.12 0.78 5.12 5.10 0.74 2.87 7 4.13 0.12 -0.32 0.07
anger 3 129 2.12 1.66 1.00 1.84 0.00 1.00 7 6.00 1.29 0.26 0.15
liking 4 129 5.64 1.05 5.83 5.73 0.99 1.00 7 6.00 -1.15 2.48 0.09
respappr 5 129 4.87 1.35 5.25 4.98 1.11 1.50 7 5.50 -0.75 -0.18 0.12
prot2 6 129 0.68 0.47 1.00 0.72 0.00 0.00 1 1.00 -0.77 -1.41 0.04
> lowerCor(Garcia)

prtst sexsm anger likng rsppp prot2
protest 1.00
sexism -0.02 1.00
anger -0.31 -0.03 1.00
liking 0.17 0.09 -0.51 1.00
respappr 0.48 0.04 -0.53 0.49 1.00
prot2 0.86 0.04 -0.39 0.21 0.50 1.00
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Two analyses of Garcia–Center the data!
lmCor(respappr ~ prot2 * sexism ,data=Garcia ,main="Moderated regression (mean centered)")
Call: lmCor(y = respappr ~ prot2 * sexism, data = Garcia, main = "Moderated regression (mean centered)")

Multiple Regression from raw data
DV = respappr

slope se t p lower.ci upper.ci VIF
(Intercept) 0.00 0.08 0.00 1.0e+00 -0.15 0.15 1
prot2 0.51 0.08 6.73 5.5e-10 0.36 0.65 1
sexism 0.01 0.08 0.18 8.6e-01 -0.14 0.16 1
prot2*sexism 0.22 0.08 2.87 4.8e-03 0.07 0.36 1
Residual Standard Error = 0.85 with 125 degrees of freedom
Multiple Regression

R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p
respappr 0.54 0.3 0.42 0.18 0.28 0.06 17.53 3 125 1.46e-09

> lmCor(respappr ~ prot2 * sexism ,data=Garcia ,zero=FALSE,main="Moderated regression (not mean centered)")
Call: lmCor(y = respappr ~ prot2 * sexism, data = Garcia, main = "Moderated regression (not mean centered)",

zero = FALSE)
Multiple Regression from raw data
DV = respappr

slope se t p lower.ci upper.ci VIF
(Intercept) 0.00 0.08 0.00 1.0000 -0.15 0.15 1.00
prot2 -0.93 0.50 -1.85 0.0670 -1.93 0.06 44.99
sexism -0.31 0.14 -2.24 0.0270 -0.58 -0.04 3.34
prot2*sexism 1.50 0.52 2.87 0.0048 0.47 2.53 48.14

Residual Standard Error = 0.85 with 125 degrees of freedom

Multiple Regression
R R2 Ruw ../../images Shrunken R2 SE of R2 overall F df1 df2 p

respappr 0.54 0.3 0.45 0.2 0.28 0.06 17.53 3 125 1.46e-09 65 / 69
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Comparing centered and non-centered interactions

Moderated regression (mean centered)

prot2

sexism

prot2*sexism

respappr

0.51

0.01

0.22

0.04

-0.03

0.04

Moderated regression (not mean centered)

prot2

sexism

prot2*sexism

respappr

-0.93

-0.31

1.5

0.04

0.96

0.26
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Plotting an interaction

1. Show the overall data as a function of group (different colors
for different groups

2. Plot the regression lines separately for each group
R code

#demonstrate interaction plots
#first plot the data with a different color for each group
plot(respappr ~ sexism, pch = 23- protest,

bg = c("black","red", "blue")[protest],
data=Garcia, main = "Response to sexism varies as type of protest")
#then, repeatedly draw a line for each regression slope
#use the abline function within the by function

by(Garcia,Garcia$protest, function(x) abline(lm(respappr ~ sexism,
data =x),lty=c("solid","dashed","dotted")[x$protest+1]))

#Put in the labels for the graph
#the parameters are the x and y coordinates, followed by text to show
text(6.5,3.5,"No protest")
text(3,3.9,"Individual")
text(3,5.2,"Collective")
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Showing an interaction
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Can do the same interaction plot using lmCor

lmCor is meant to mimic lm for many of the results. The difference
is in the default values. We adjust those to get the right result.

R code
#demonstrate interaction plots
#first plot the data with a different color for each group
plot(respappr ~ sexism, pch = 23- protest,

bg = c("black","red", "blue")[protest],
data=Garcia, main = "Response to sexism varies as type of protest")
#then, repeatedly draw a line for each regression slope
#use the abline function within the by function
by(Garcia,Garcia$protest, function(x) abline(lmCor(respappr ~ sexism,

data =x, plot=FALSE, std=FALSE) #note that set these two parameters
,lty=c("solid","dashed","dotted")[x$protest+1]))

#Put in the labels for the graph
##the parameters are the x and y coordinates, followed by text to show

text(6.5,3.5,"No protest")
text(3,3.9,"Individual")
text(3,5.2,"Collective")
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