Effect size

on Correlation an

Alternative ca

Linear model Interaction plots

References

Psychology 350: An introduction to R for Psychological Research Week 5b: The linear model

William Revelle

Department of Psychology Northwestern University Evanston, Illinois USA

April, 2024

Effect size

tion Correlatio

tion and Regression

Alternative case

Linear model Interaction pla

References

Outline

Experimental designs and Effect Sizes the t-test

Correlation

History: Relating two variables

Correlation and Regression Formally Selection effects

Alternative cases

Continuous vs. discrete X and Y WARNING

Linear model

Centering the data

Interaction plots

Causal effects

- The experimentalist wants to know how much *changing* one variable (X) produces changes in another (Y). Typically we call X and Y the Independent Variable and the Dependent Variable.
- 2. This leads to an experimental manipulation of X into two levels (0 and 1) and then the observation of the values of Y for those two conditions and their expectations are

3.
$$\mathbb{E}(Y|X=0) = \overline{Y}_0$$
 and $\mathbb{E}(Y|X=1) = \overline{Y}_1$

- 4. Find the means for these two and take their difference : $D=ar{Y_1}-ar{Y_0}$
- 5. But these means reflect variability and scale (kg vs. gms). So find

6.
$$d = \frac{\bar{Y}_1 - \bar{Y}_0}{sd}$$
 as a measure of the effect size of X

- - t: the mean difference in comparison to the standard error
 - 1. Gossett/Student (1908) expressed the mean difference in terms of the standard error of the difference
 - 2. se of difference is twice the square root of the pooled within group squared standard errors:

$$se_d = \sqrt{rac{sd_0^2}{n_0 - 1} + rac{sd_1^2}{n_1 - 1}}$$
 $ar{Y_1} - ar{Y_2}$

4.

3.

$$t = rac{ar{Y_1} - ar{Y_0}}{\sqrt{rac{sd_0^2}{n_0 - 1} + rac{sd_1^2}{n_1 - 1}}}$$

- 5. Gossett/Student derived the distribution of this statistic for small samples.
- 6. Therefore, t varies as the effect size and the sample size: $t = \frac{d\sqrt{df}}{2}$

Effect size

- There are many ways of reporting how two groups differ. Cohen's d statistic (Cohen, 1988) is just the differences of means expressed in terms of the pooled within group standard deviation. This is insensitive to sample size.
- 2. r is a universal measure of effect size that is a simple function of d, but is bounded -1 to 1.
- The t statistic is merely d * sqrt(df)/2 and thus reflects sample size.
- 4. Confidence intervals for Cohen's d may be found by converting the d to a t, finding the confidence intervals for t, and then converting those back to ds. This take advantage of the uniroot function and the non-centrality parameter of the t distribution.
- 5. See cohen.d

Effect size		Correlation 000000	Correlation	and Regressio	n Alternative	cases Lin 00 00	ear model 00000000 00000000	Interaction plo	ts References
Г					the sat a				
4	coher	n.d(sat	.act[1:4	0,],"gen				2	40 subject:
		•	, "gender")						
				group = "g	ender") en two means				
Co	onen a		c or airre effect upp		en two means				
-	ducat i	on 0.03	0.18 0.						
	qe		-0.04 0.						
	CT		-0.08 0.						
SI	ATV		-0.04 0.						
SI	ATQ	-0.51	-0.35 -0.	19					
	ultiva 1] 0.5		halanobis)	distance b	etween group	5			
r	equiv	alent of	difference	between tw	o means				
e	ducati	on	age .	ACT SA	TV SATQ				
	0.	09 -0	.02 -0	.04 -0.	02 -0.17				
					oup = "gende	c")			
Co	ohen d				en two means				
			effect upp						
			0.49 1.						
	ge CT	-0.60 -0.49							
	ATV	-0.49							
	ATO		-0.47 0.						
	~				etween group				
	1] 0.8			arocance b	section group	•			
			difference	between tw	o means				
	ducati				TV SATQ				
	0.	24 0	0.01 0	.07 0.	01 -0.23				6 / 60

Effect size Correlation Correlation and Regression Alternative cases Linear model Interaction plots I 0000 00000 0000 0000 00000 00000000000 000000000000000000000000000000000000

Plotting cohen.d for bi items by gender

cd <- cohen.d(bfi[1:26], "gender",</pre> dictionary=bfi.dictionary[,2,drop=FALSE]) error.dots(cd,head=13,tail=13,main="BFI items by gender") abline(v=0)

BFI items by gender

Panic easily.	
Inquire about others' well-being.	
Know how to comfort others.	
Love children.	
Have frequent mood swings.	
Make people feel at ease.	
Get irritated easily.	
Make friends easily.	
Take charge.	
Continue until everything is perfect.	
Do things according to a plan.	
Know how to captivate people.	
Get angry easily.	
Avoid difficult reading material.	 -0
Will not probe deeply into a subject.	 -0
Am exacting in my work.	 •
Often feel blue.	 P
Spend time reflecting on things.	
Carry the conversation to a higher level	
Find it difficult to approach others.	
Do things in a half-way manner.	
Waste my time.	
Am full of ideas. Don't talk a lot.	
Am indifferent to the feelings of others	

.

The t-test and effect size

1. The t-test is an effect size/standard error $(\sigma_{\bar{x}})$ of effect size. (For equal size groups)

$$es = \frac{x_1 - x_2}{\sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2)/2}}$$
(1)

and

$$\sigma_{\bar{x}} = \sqrt{\frac{\sigma_x^2}{df}}$$
(2)
$$t = es \frac{\sqrt{df}}{2}$$
(3)

- If expressed as a regression, slope reflects how much y changes for a unit change in x.
- 3. Note how effect size is not affected by sample size, t is.

Effect size	000000	Correlation and Regression	Alternative cases	Linear model Interaction plots	References
t.t	•	t.test is sens ation ~ gender,d	ata=sat.act)		
data:	Welch Two education	o Sample t-test			
altern 95 per -0.48 sample	ative hypot cent confic 935928 -0.0 estimates:	chesis: true differenc dence interval: 03087916		t equal to 0	
> t.te		on ~ gender,data=sat.a o Sample t-test	ct[1:40,])		
t = -1 altern 95 per -1.36 sample	ative hypot cent confic 01898 0.23 estimates:	28.257, p-value = 0. chesis: true differenc dence interval: 389777		t equal to O	

More on effect size

- 1. In a recent paper with Alice Eagly, (Eagly and Revelle, 2022) we showed how effect sizes can vary by aggregating items.
- 2. At the item level, there are many very small gender differences, but when pooled into scales, the differences are quite noticeable.
- We made us of the Mahalanobis (1936) distance. (See McLachlan (1999) for a discussion of the M distance, and Del Giudice (2009); Del Giudice et al. (2012) for applications.)
- 4. M distance is just the distance in multivariate space between two centroids. It is $\sqrt{dR^{-1}d'}$. where d is a vector of distances and **R** is the correlation matrix.
- 5. Reported by cohen.d.

The athenstaedt data set

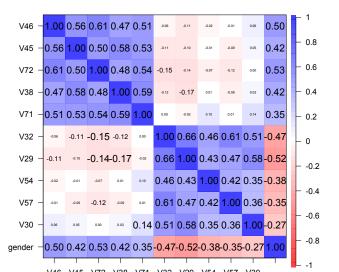
- 1. Included in *psychTools* is a dataset taken from Ursala Athenstaedt (2003)
- 2. Ursala Athenstaedt (2003) reported several analyses of items and scales measuring Gender Role Self-Concept.
- 3. Eagly and Revelle (2022) have used these data in an analysis of the power of aggregation.
- 4. Here are the original items as well as the three scales Eagly and Revelle (2022).
- 5. The accompanying Athenstaedt.dictionary may be used to see the items.

Show some of the items

R code

lookupFromKeys (Athenstaedt.keys[7:8], dictionary=Athenstaedt.dictionary)

\$F5


	ItemLabel	Item
V46	V46	Sew on a Button
V45	V45	Change Bed Sheets
V72	V72	Do the Ironing
V38	V38	Dust the Furniture
V71	V71	Wash Windows

\$M5

	ItemLabel			Item
V32	V32			Do Repair Work
V29	V29			Change Fuses
V54	V54			Shovel Snow
V57	V57	Do	Home	Improvement Jobs
V 30	V30			Clean a Drain

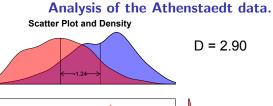
Effect size	Correlation 000000	Correlation and Regression	Alternative cases	Linear model Interaction plots	References
the t-test					

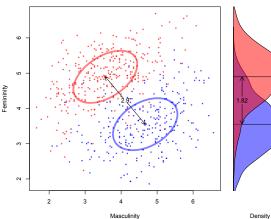
The items in these scales correlate within but not between scales

F and M items from Athenstaedt

	and Regression	Alternative cases	Linear model	Interaction plots	References
scoreOverl ist (Feminin t=.4, smooth	ap(Athenst aity ~ Masc =FALSE, co	aedt.keys, ulinity + c rrel=FALSE,	thenstaed gender, da d.arrow=T	ta =Athenst RUE,col=c("	blue", "ree
orrelations co or overlap corr	rrected for it	em overlap and the diagonal,	lattenuation	- /	axis=2)
-0.079 0.719 0.831 -0.125 0.652 0.775	-0.580 0.88 -0.072 0.66 0.852 -0.60 -0.614 0.85 -0.044 0.60	0.749 -0.684 0.886 -0.092 -0.081 0.871 0.648 -0.624 0.858 -0.048	0.99 0.695 0.75 0.987 -0.73 -0.056 0.85 0.714 0.61 0.853	-0.690 0.98 -0.113 0.78 0.995 -0.72 -0.737 1.02 -0.077 0.74	
	ScoreOverl ist (Feminin t=.4, smooth , cex.main correlations co r overlap corr orrelations ab Femininity Mas 0.900 -0.079 0.719 0.831 -0.125 0.652	Scoring the scoreOverlap (Athenst ist (Femininity ~ Masc t=.4, smooth=FALSE, co , cex.main=1.5, main= correlations corrected for it proverlap correlations below correlations above the diagor Femininity Masculinity MM 0.900 -0.090 0.81 -0.079 0.875 -0.66 0.831 -0.072 0.68 0.831 -0.072 0.66 -0.125 0.852 -0.66 0.652 -0.614 0.68 0.775 -0.044 0.60	Scoring the Athenstaed R code scoreOverlap (Athenstaedt. keys, A ist (Femininity ~ Masculinity + Q t=.4, smooth=FALSE, correl=FALSE, , cex.main=1.5, main="Scatter Pl correlations corrected for item overlap and or overlap correlations below the diagonal, correlations above the diagonal: Femininity Masculinity MF F10 M10 0.900 -0.090 0.81 0.931 -0.141 -0.079 0.875 -0.66 -0.082 0.976 0.831 -0.072 0.66 0.886 -0.092 -0.125 0.852 -0.60 -0.081 0.871 0.652 -0.614 0.85 0.648 -0.624 0.775 -0.044 0.60 0.858 -0.044	ScoreOverlap (Athenstaedt items R code scoreOverlap (Athenstaedt items ist (Femininity ~ Masculinity + gender, dat t=.4, smooth=FALSE, correl=FALSE, d.arrow=TH , cex.main=1.5,main="Scatter Plot and Der correlations corrected for item overlap and attenuation or overlap correlations below the diagonal, alpha on the correlations above the diagonal: Femininity Masculinity MF F10 M10 MF20 F5 0.900 -0.090 0.81 0.931 -0.141 0.75 0.885 -0.079 0.875 -0.66 -0.082 0.976 -0.71 -0.050 0.831 -0.072 0.66 0.886 -0.092 0.75 0.987 -0.125 0.852 -0.60 -0.081 0.871 -0.73 -0.056 0.652 -0.614 0.85 0.648 -0.624 0.853 0.774	Scoring the R code Athenstaedt items scoreOverlap (Athenstaedt.keys, Athenstaedt) ist (Femininity ~ Masculinity + gender, data =Athenst.t = .4, smooth=FALSE, correl=FALSE, d.arrow=TRUE, col=c(") , cex.main=1.5,main="Scatter Plot and Density", cex. correlations corrected for item overlap and attenuation porverlap correlations below the diagonal, alpha on the diagonal correlations above the diagonal: Femininity Masculinity MF F10 M10 MF20 F5 M5 MF10 0.900 -0.090 0.81 0.931 -0.141 0.75 0.885 -0.159 0.75 -0.079 0.875 -0.66 -0.082 0.976 -0.71 -0.050 0.981 -0.70 0.719 -0.580 0.88 0.749 -0.684 0.99 0.695 -0.695 -0.690 0.831 -0.072 0.66 0.886 -0.092 0.75 0.987 -0.113 0.78 -0.125 0.852 -0.60 -0.081 0.871 -0.73 -0.056 0.995 -0.72 0.652 -0.614 0.85 0.648 -0.624 0.65 0.714 -0.737 1.022 0.775 -0.044 0.60 0.858 -0.048 0.61 0.853 -0.077 0.74

Two separate domains: items and scales that correlate with being Male or Female, form reliable scales, but the scales are independent.


-0 573 0 81 0 644 -0 585 0 82 0 600 -0 569 0 77


We can show this at the item level using the scatterHist function.

0 626

MF10

Density

Effect size Correlation Correlation and Regression Alternative cases Linear model Interaction plots References 0000000000 00000 00000 00000 00000 000000 000000 000000 000000 the t-test 000000 000000 000000 000000 0000000 0000000

The linear model and its special cases

There are many forms of the linear model.

- 1. $\hat{y} = b_1 x + e$ is the classic regression model, where $b_1 = \frac{cov_{xy}}{var_x}$.
- 2. If x is a dichotomous variable, this is equivalent to a t-test or if there are more than two categories, as an Analysis of Variance.
- The use of dichotomous variables is most frequently seen in experimental designs where we have two values of some experimental variable. We think of x causing y, and typically refer to x as an Independent Variables causing y, the Dependent Variable.
- 4. If expressed as a t-test, this is difference of means, divided by the standard error of the difference of means.
- 5. It is perhaps better to think of a *t* as an *effect size* divided by its standard error. The effect size is the difference in means divided by the pooled within group standard deviation:

Regression

- 1. Typical model is that X causes Y $\hat{y} = b_{x1}x + e$
- 2. The slope (b) is the ratio of the covariance of x and y divided by the variance of x.

$$b_{x1} = rac{cov_{xy}}{var_x} = rac{\sigma_{xy}}{\sigma_x^2}$$

- 3. But, if we think of y causing x, this becomes:
- 4. Y causes X

$$\hat{x} = b_{y1}y + e$$
 and $b_{y1} = rac{cov_{xy}}{var_t}$

5. If we are unsure of the direction of causality, we can find the geometric average of the two regressions and find

$$r_{xy} = \sqrt{b_{x1}b_{y1}} = \frac{\sigma_{xy}}{\sigma_y^2} = \sqrt{\frac{\sigma_{xy}}{\sigma_x^2}} \frac{\sigma_{xy}}{\sigma_y^2} = \frac{\sigma_{xy}}{\sqrt{\sigma_x^2\sigma_y^2}} = \frac{\sigma_{xy}}{\sigma_x\sigma_y}$$

6. $\hat{y} = b_1 x_1 + b_2 x_2 + e$ Multiple regression. If x_1 and x_2 are categorical, this is also an analysis of variance.

Co-relationships (see week 3)

- 1. Descriptive measures of relationship
 - Do two (or more) variables co-vary?
- 2. Galton (1888) reported a method of measuring the "co-relation" of two measures
- 3. Pearson (1896) formalized this as the Pearson Product Moment Correlation Coefficient

$$\rho = \frac{\Sigma x y}{\sqrt{\Sigma x^2 \Sigma y^2}}$$

where \boldsymbol{x} and \boldsymbol{y} are deviation scores from the mean

$$x = X - \overline{X} = X - \frac{\Sigma x}{N}$$
 $y = Y - \overline{Y} = X - \frac{\Sigma x}{N}$

4. Spearman (1904) expressed this in terms of rank orders.5. in R we use the (cor) function

Effect size Correlation Ocorelation and Regression Alternative cases Linear model Interaction plots References

Francis Galton 1822-1911

Francis Galton (1822-1911) was among the most influential psychologists of the 19th century. He did pioneering work on the correlation coefficient, behavior genetics and the measurement of individual differences. He introspectively examined the question of free will and introduced the lexical hypothesis to the study of personality and character. In addition to psychology, he did pioneering work in meteorology and introduced the scientific use of fingerprints. Whenever he could, he counted.

http://personality-project.org/revelle/publications/galton.pdf

Karl Pearson 1857-1936

Carl (Karl) Pearson was among the most influential statisticians of the early 20th century. Founder of the statistics department at University College London. He developed the Pearson Product Moment Correlation Coefficient, its special case the ϕ coefficient, and the tetrachoric correlation. Major behavior geneticist and eugenicist.

Charles Spearman 1863-1945

Charles Spearman (1863-1945) was the leading psychometrician of the early 20th century. His work on the classical test theory, factor analysis, and the g theory of intelligence continues to influence psychometrics, statistics, and the study of intelligence. More than 100 years after their publication, his most influential papers remain two of the most frequently cited articles in psychometrics and intelligence. http://personality-project.org/revelle/publications/spearman.pdf

Galton's height data

Table: The relationship between the average of both parents (mid parent) and the height of their children. The basic data table is from Galton (1886) who used these data to introduce reversion to the mean (and thus, linear regression). The data are available as part of the UsingR or **psych** packages.

> libra > data > galta > galta	(galto on.tak on.tak	on) o <- : o[orde				s(gali	ton.ta	ab)),	decrea	asing	=TRUE,),]#:	sort :	it by	decreasin	ıg row	7 V.
	child	t t															
parent	61.7	62.2	63.2	64.2	65.2	66.2	67.2	68.2	69.2	70.2	71.2	72.2	73.2	73.7			
73	0	0	0	0	0	0	0	0	0	0	0	1	3	0			
72.5	0	0	0	0	0	0	0	1	2	1	2	7	2	4			
71.5	0	0	0	0	1	3	4	3	5	10	4	9	2	2			
70.5	1	0	1	0	1	1	3	12	18	14	7	4	3	3			
69.5	0	0	1	16	4	17	27	20	33	25	20	11	4	5			
68.5	1	0	7	11	16	25	31	34	48	21	18	4	3	0			
67.5	0	3	5	14	15	36	38	28	38	19	11	4	0	0			
66.5	0	3	3	5	2	17	17	14	13	4	0	0	0	0			
65.5	1	0	9	5	7	11	11	7	7	5	2	1	0	0			
64.5	1	1	4	4	1	5	5	0	2	0	0	0	0	0			
64	1	0	2	4	1	2	2	1	1	0	0	0	0	0			

Alternative case

Linear model Interaction plo

References

History: Relating two variables

Galton's height data

Galton's regression

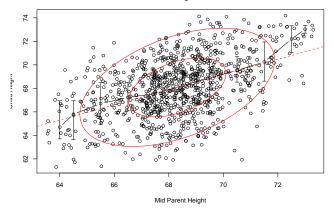
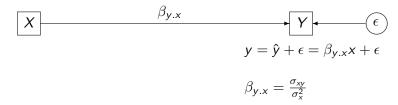
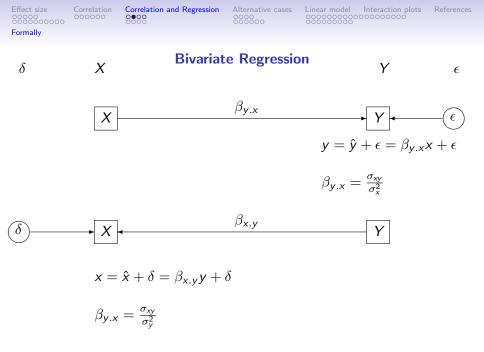



Figure: Galton's data can be plotted to show the relationships between mid parent and child heights. Because the original data are grouped, the data points have been *jittered* to emphasize the density of points along the median. The bars connect the first, 2nd (median) and third quartiles. The dashed line is the best fitting linear fit, the ellipses represent one and two standard deviations from the mean.



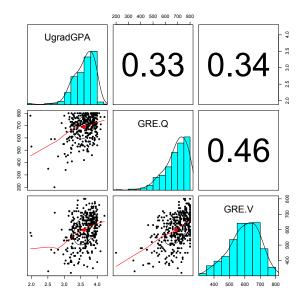
$$\epsilon = y - \hat{y}$$

 $\sum (\epsilon^2) = \sum (y - \hat{y})^2 = \sum (y - \beta_{y,x} x)^2 = \sum (y^2 - 2y\beta_{y,x} x + (\beta_{y,x} x)^2)$ Minimize $\sum (\epsilon^2) w.r.t.\beta => \frac{d(\epsilon^2)}{d\beta} = 0 => -2\sigma_{xy} + 2\beta_{y,x}\sigma_x^2 = 0 =>$

 $\beta_{y.x} = \frac{\sigma_{xy}}{\sigma_x^2}$

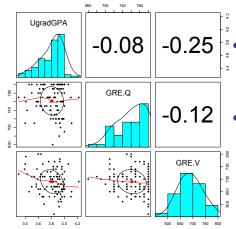
Effect size	Correlation 000000	Correlation and Regression	Alternative cases	Linear model Interaction plots	References
Formally					

Bivariate Correlation is the geometric average of the two regressions


$$\beta_{y.x} = \frac{\sigma_{xy}}{\sigma_y^2} \qquad \qquad \beta_{y.x} = \frac{\sigma_{xy}}{\sigma_x^2}$$

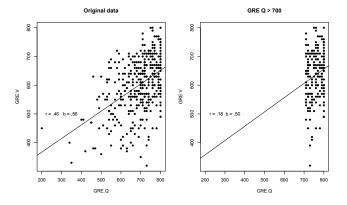
$$r_{xy} = \frac{\sigma_{xy}}{\sqrt{\sigma_x^2 \sigma_y^2}}$$

 $r_{xy} = \sigma_{z_x z_y}$ (the covariance of standard scores)


Effect size	Correlation 000000	Correlation and Regression	Alternative cases	Linear model Interaction plots	References
Formally					

Scatter Plot Matrix showing correlation and LOESS regression

The effect of selection on the correlation


• Consider what happens if we select a subset

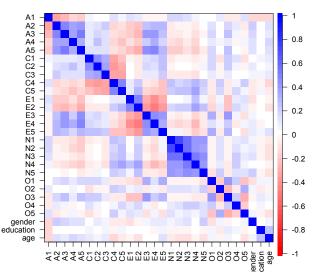
- The "Oregon" model
- (GPA + (V+Q)/200) > 11.6

 The range is truncated, but even more important, by using a compensatory selection model, we have changed the sign of the correlations.

Regression and restriction of range

Although the correlation is very sensitive, regression slopes are relatively insensitive to restriction of range.

Effect size	Correlation	Correlation and Regression	Alternative cases	Linear model Interaction plots	References
Selection effects					


R code for regression figures

```
datafilename="http://personality-project.org/r/datasets/psychometric
mydata =read.table(datafilename,header=TRUE) #read the data file
gradq <- subset(gradf,gradf[2]>700) #choose the subset
with(gradq,lm(GRE.V ~ GRE.Q)) #do the regression
```

```
Call:
lm(formula = GRE.V \sim GRE.Q)
Coefficients:
(Intercept)
                  GRE . O
   258,1549 0,4977
#show the graphic
op <- par(mfrow=c(1,2)) #two panel graph</pre>
with (gradf, {
 plot(GRE.V ~ GRE.Q, xlim=c(200,800), main='Original data', pch=16)
 abline(lm(GRE.V ~ GRE.Q))
 1)
 text(300,500,'r = .46 b = .56')
 with (gradg, {
 plot(GRE.V ~ GRE.Q, xlim=c(200,800), main='GRE Q > 700', pch=16)
 abline(lm(GRE.V ~ GRE.Q))
 1)
 text(300, 500, 'r = .18 b = .50')
 op <- par(mfrow=c(1,1)) #switch back to one panel
```


Show many correlations with a heat map using cor.plot.

Big 5 Inventory Items from SAPA

Alternative versions of the correlation coefficient

Table: A number of correlations are Pearson r in different forms, or with particular assumptions. If $r = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2 \sum y_i^2}}$, then depending upon the type of data being analyzed, a variety of correlations are found.

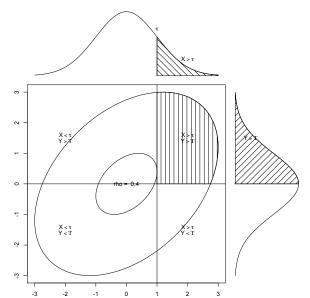
Coefficient	symbol	Х	Y	Assumes
Pearson	r	continuous	continuous	
Spearman	rho (ρ)	ranks	ranks	
Point bi-serial	r _{pb}	dichotomous	continuous	
Phi	$\dot{\phi}$	dichotomous	dichotomous	
Bi-serial	r _{bis}	dichotomous	continuous	normality
Tetrachoric	r _{tet}	dichotomous	dichotomous	normality
Polychoric	r _{pc}	categorical	categorical	normality

use cor for the first 4, biserial, tetrachoric, polychoric to find these values.

The ϕ coefficient is just a Pearson r on dichotomous data

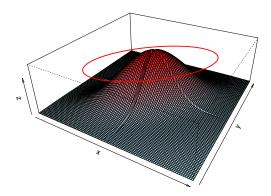
Table: The basic table for a phi, ϕ coefficient, expressed in raw frequencies in a four fold table is taken from Pearson and Heron (1913)

	Success	Failure	Total
Accept	А	В	$R_1 = A + B$
Reject	С	D	$R_2 = C + D$
Total	$C_1 = A + C$	$C_2 = B + D$	n = A + B + C + D


In terms of the raw data coded 0 or 1, the *phi coefficient* can be derived directly by direct substitution, recognizing that the only non zero product is found in the A cell

$$n\sum X_iY_i - \sum X_i\sum Y_i = nA - R_1C_1$$

$$\phi = \frac{AD - BC}{\sqrt{(A+B)(C+D)(A+C)(B+D)}}.$$
 (4)


The tetrachoric correlation estimates the latent correlation

The tetrachoric correlation estimates the latent correlation tetrachoric iteratively estimates the tetrachoric correlation.

Bivariate density rho = 0.6

Correlation Corre

WARNING

elation and Regressic

Alternative cases

Linear model Interaction plot

References

Cautions about correlations-The Anscombe data set

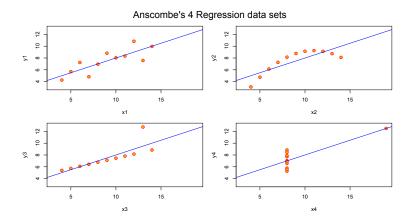
Consider the following 8 variables

	var	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosi
x1	1	11	9.0	3.32	9.00	9.00	4.45	4.00	14.00	10.00	0.00	-1.2
x2	2	11	9.0	3.32	9.00	9.00	4.45	4.00	14.00	10.00	0.00	-1.2
xЗ	3	11	9.0	3.32	9.00	9.00	4.45	4.00	14.00	10.00	0.00	-1.2
x4	4	11	9.0	3.32	8.00	8.00	0.00	8.00	19.00	11.00	2.47	11.0
у1	5	11	7.5	2.03	7.58	7.49	1.82	4.26	10.84	6.58	-0.05	-0.5
y2	6	11	7.5	2.03	8.14	7.79	1.47	3.10	9.26	6.16	-0.98	0.8
у3	7	11	7.5	2.03	7.11	7.15	1.53	5.39	12.74	7.35	1.38	4.3
y4	8	11	7.5	2.03	7.04	7.20	1.90	5.25	12.50	7.25	1.12	3.1

Correlation Correlation and Regression Alternative cases Linear model Interaction plots

80000

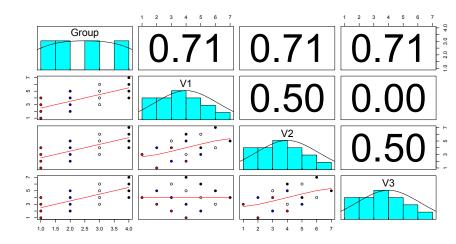
WARNING


Cautions, Anscombe continued

With regressions of

Estimate Std. Error t value Pr(>|t|) (Intercept) 3.0000909 1.1247468 2.667348 0.025734051 x1 0.5000909 0.1179055 4.241455 0.002169629 [[2]] Estimate Std. Error t value Pr(>|t|) (Intercept) 3.000909 1.1253024 2.666758 0.025758941 x2 0.500000 0.1179637 4.238590 0.002178816 [[3]] Estimate Std. Error t value Pr(>|t|) (Intercept) 3.0024545 1.1244812 2.670080 0.025619109 0.4997273 0.1178777 4.239372 0.002176305 xЗ [[4]] Estimate Std. Error t value Pr(>|t|) (Intercept) 3.0017273 1.1239211 2.670763 0.025590425 0.4999091 0.1178189 4.243028 0.002164602 x4

Cautions about correlations: Anscombe data set



Further cautions about correlations-the problem of levels

- 1. Correlations taken at one level of analysis can be unrelated to those at another level
- 2. $r_{xy} = \eta_{x_{wg}} * \eta_{y_{wg}} * r_{xy_{wg}} + \eta_{x_{bg}} * \eta_{y_{bg}} * r_{xy_{bg}}$
- 3. Where η is the correlation of the data with the within group values, or the group means.
- 4. The within group and between group correlations can even be of different sign!
- 5. The withinBetween data set is an example of this problem.
- 6. The statsBy function will find the within and between group correlations for this kind of multi-level design.

Cautions about correlations: Within versus between groups

Effect size			Alternative cases			References
000000000000000000000000000000000000000	000000	8888	000000	000000000000000000000000000000000000000	000000000	
WARNING						

The ubiquitous correlation coefficient

Table: Alternative Estimates of effect size. Using the correlation as a scale free estimate of effect size allows for combining experimental and correlational data in a metric that is directly interpretable as the effect of a standardized unit change in x leads to r change in standardized y.

Statistic	Estimate	r equivalent	as a function of r
Pearson correlation	$r_{xy} = \frac{C_{xy}}{\sigma_x \sigma_y}$	r _{xy}	
Regression	$b_{y.x} = \frac{\hat{C}_{xy}}{\sigma^2}$	$r = b_{y.x} \frac{\sigma_y}{\sigma_x}$	$b_{y.x} = r \frac{\sigma_x}{\sigma_y}$
Cohen's d	$d = \frac{X_1 - X_2}{\sigma_x}$	$r = \frac{d}{\sqrt{d^2 + 4}}$	$d = \frac{2r}{\sqrt{1-r^2}}$
Hedge's g	$g = rac{X_1 - X_2}{s_{\scriptscriptstyle X}}$	$r = rac{g}{\sqrt{g^2 + 4(df/N)}}$	$g = rac{2r\sqrt{df/N}}{\sqrt{1-r^2}}$
t - test	$t = \frac{d\sqrt{df}}{2}$	$r=\sqrt{t^2/(t^2+df)}$	$t = \sqrt{\frac{r^2 df}{1 - r^2}}$
F-test	$F = \frac{d^2 df}{4}$	$r = \sqrt{F/(F + df)}$	$F = \frac{r^2 df}{1 - r^2}$
Chi Square		$r = \sqrt{\chi^2/n}$	$\chi^2 = r^2 n$
Odds ratio	$d = \frac{ln(OR)}{1.81}$	$r = \frac{\ln(OR)}{1.81\sqrt{(\ln(OR)/1.81)^2 + 4}}$	$ln(OR) = \frac{3.62r}{\sqrt{1-r^2}}$
r _{equivalent}	r with probability p	$r = r_{equivalent}$	•

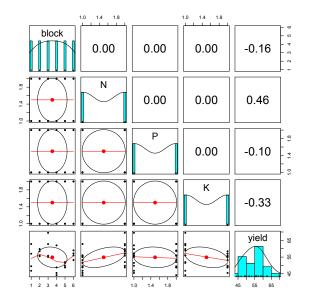
gression Alternative cases Linear model

Linear model Interaction plo

References

The linear model is a regression model

- 1. $\hat{y} = \mu + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_1 * X_2 + \dots + \epsilon$
- 2. Or more generally $\hat{y} = \mu + \beta \mathbf{X} + \epsilon$ where β is a matrix of coefficients and \mathbf{X} is a design matrix.
- 3. Analysis of variance is a special case where the **X** design matrix is a orthogonal set of weights.
- 4. Can use the 1m or the 1mCor functions to find the coefficients.
- 5. 1m is in core-R and also gives convenient diagnostics
 - 1m requires complete data and does not automatically zero-center interaction terms
 - ImCor will work with incomplete data, or the correlation matrix and by default zero centers before doing interaction products


Regression versus ANOVA

The npk data set is an example for anova. A classical N, P, K (nitrogen, phosphate, potassium) factorial experiment on the growth of peas conducted on 6 blocks. Each half of a fractional factorial design confounding the NPK interaction was used on 3 of the plots.

1		R CODE
	describe(npk) #raw data is	categorical
	NPK <- char2numeric(npk) #	convert to numeric
	describe(NPK) #numeric	

	vars	s r	n mean	l sc	l median	trimmed	l mad	min	max	range	skew	kurtosis	se
block*	, 1	1 24	3.50	1.74	3.50	3.50	2.22	1.0	6.0	5.0	0.00	-1.41 (0.36
N*	2	2 24	1.50	0.51	. 1.50	1.50	0.74	1.0	2.0	1.0	0.00	-2.08 0	0.10
P*	3	3 24	1.50	0.51	. 1.50	1.50	0.74	1.0	2.0	1.0	0.00	-2.08 0	0.10
K*	4	4 24	1.50	0.51	. 1.50	1.50	0.74	1.0	2.0	1.0	0.00	-2.08 0	0.10
yield	5	524	54.88	6.17	55.65	54.75	6.15	44.2	69.5	25.3	0.24	-0.51 1	L.26
>													
	vars	n	mean	sd	median	trimmed	mad	min	max :	range :	skew	kurtosis	se
block	1	24	3.50	1.74	3.50	3.50	2.22	1.0	6.0	5.0 (0.00	-1.41 0	. 36
N	2	24	1.50	0.51	1.50	1.50	0.74	1.0	2.0	1.0 0	0.00	-2.08 0	.10
Р	3	24	1.50	0.51	1.50	1.50	0.74	1.0	2.0	1.0 0	0.00	-2.08 0	.10
ĸ	4	24	1.50	0.51	1.50	1.50	0.74	1.0	2.0	1.0 0	0.00	-2.08 0	.10
vield	5	24	54.88	6.17	55.65	54.75	6.15	44.2	69.5	25.3 (0.24	-0.51 1	26

The npk data set

n and Regression Alternative ca

Linear model Interaction pla

References

Compare aov to lm

- 1. aov works on factors and takes 'products' to show interactions
- 2. If the data are factors, 1m will produce similar results
- 3. But, if the data are numeric, the results differ. Why?
- 4. First lets do the comparisons on factors

				1		
summary	(aov(yiel	d~N*	: P * K	. data=nt	ok))	
-	(lm(vield			•	•••	
Summary	(Im(Atero		г х к,		,,,,	
> summary(a	ov(yield ~ 1	N * P * K	, data=np	ok))		
	Df Sum Sq 1		value Pr	:(>F)		
N	1 189.3		6.161 0.	0245 *		
P	1 8.4	8.40	0.273 0.	6082		
ĸ	1 95.2	95.20	3.099 0.	0975 .		
N:P	1 21.3	21.28	0.693 0.	4175		
N : K	1 33.1	33.14	1.078 0.	3145		
P:K	1 0.5	0.48	0.016 0.	9019		
N:P:K	1 37.0	37.00	1.204 0.	2887		
N:P:K Residuals	1 37.0 16 491.6	37.00 30.72	1.204 0.	2887		
Residuals	16 491.6	30.72				
Residuals Signif. cod	16 491.6 les: 0 `***	30.72 0.001 \	**′ 0.01	`*′ 0.05 `.	′0.1 `′1	
Residuals Signif. cod > summary(1	16 491.6	30.72 0.001 \	**′ 0.01	`*′ 0.05 `.	′0.1 `′1	
Residuals Signif. cod > summary(1 Call:	16 491.6 les: 0 `*** m(yield ~ N	30.72 ' 0.001 ` * P * K,	**' 0.01 data =np	`*′ 0.05 `. bk))	′0.1 `′1	
Residuals Signif. cod > summary(1 Call: lm(formula	16 491.6 les: 0 `*** m(yield ~ N = yield ~ N	30.72 ' 0.001 ` * P * K,	**' 0.01 data =np	`*′ 0.05 `. bk))	′0.1 `′1	
Residuals Signif. cod > summary(1 Call:	16 491.6 les: 0 `**** m(yield ~ N = yield ~ N s:	30.72 '0.001 ` * P * K, * P * K,	**' 0.01 data =np data = n	`*′ 0.05 `. bk)) mpk)	′0.1 `′1	
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient	16 491.6 les: 0 `**** m(yield ~ N = yield ~ N s: Estimate St	30.72 ' 0.001 ` * P * K, * P * K, td. Error	**' 0.01 data =np data = n t value)*' 0.05). bk)) pk) Pr(> t)		
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient (Intercept)	16 491.6 les: 0 `*** m(yield ~ N = yield ~ N s: Estimate St 54.8750	30.72 ' 0.001 ` * P * K, * P * K, td. Error 1.1314	<pre>**' 0.01 data = np data = n t value 48.500</pre>)*' 0.05). (pk) Pr(> t) <2e-16 **		
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient (Intercept) N1	16 491.6 les: 0 `*** m(yield ~ N = yield ~ N s: Estimate St 54.8750 2.8083	30.72 , 0.001 * P * K, * P * K, td. Error 1.1314 1.1314	<pre>**' 0.01 data =np data = n t value 48.500 2.482</pre>)*' 0.05). pk) Pr(> t) <2e-16 ** 0.0245 *		
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient (Intercept) N1 P1	16 491.6 les: 0 `*** m(yield ~ N = yield ~ N s: Estimate St 54.8750 2.8083 -0.5917	30.72 ' 0.001 ` * P * K, * P * K, td. Error 1.1314 1.1314 1.1314	<pre>**' 0.01 data = np data = n t value 48.500 2.482 -0.523</pre>	<pre>`*' 0.05 `. pk) pr(> t) <2e-16 ** 0.0245 * 0.6082</pre>		
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient (Intercept) N1 P1 K1	16 491.6 les: 0 `**** m(yield ~ N s: Estimate St 54.8750 2.8083 -0.5917 -1.9917	30.72 ' 0.001 ` * P * K, * P * K, td. Error 1.1314 1.1314 1.1314	**' 0.01 data = np data = n t value 48.500 2.482 -0.523 -1.760	<pre>`*' 0.05 `. sk)) apk) Pr(> t) <2e-16 ** 0.6082 0.0975 .</pre>		
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient (Intercept) N1 P1 K1 N1:P1	16 491.6 les: 0 `*** m(yield ~ N = yield ~ N s: Estimate ST 54.8750 2.8083 -0.5917 -1.9917 -0.9417	30.72 , 0.001 , * P * K, * P * K, td. Error 1.1314 1.1314 1.1314 1.1314	<pre>**' 0.01 data = np data = n t value 48.500 2.482 -0.523 -1.760 -0.832</pre>	<pre>`*' 0.05 `. 'k)) apk) Pr(> t) <2e-16 ** 0.0245 * 0.0245 * 0.0075 . 0.4175</pre>		
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient (Intercept) N1 P1 K1 N1:P1 N1:K1	16 491.6 kes: 0 '**** m(yield ~ N s: Estimate St 54.8750 2.8083 -0.5917 -1.9917 -1.1750	30.72 ' 0.001 `` * P * K, * P * K, td. Error 1.1314 1.1314 1.1314 1.1314 1.1314	<pre>**' 0.01 data = np data = n t value 48.500 2.482 -0.523 -1.760 -0.832 -1.038</pre>	<pre>`*' 0.05 `. ppk) Pr(> t) <2e-16 ** 0.0245 * 0.0245 * 0.6082 0.0975 . 0.4175 0.3145</pre>		
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient (Intercept) N1 P1 K1 N1:P1 N1:R1 P1:K1	16 491.6 les: 0 '*** m(yield ~ N s: Estimate SI 54.8750 2.8083 -0.5917 -1.9917 -0.9417 -1.750 0.1417	30.72 , 0.001 * P * K, * P * K, td. Error 1.1314 1.1314 1.1314 1.1314 1.1314 1.1314	**' 0.01 data = np data = n t value 48.500 2.482 -0.523 -1.760 -0.832 -1.038 0.125	<pre>`*' 0.05 `. ik)) ppk) Pr(> t) <2e-16 ** 0.0245 * 0.6082 0.0975 . 0.4175 0.3145 0.9019</pre>		
Residuals Signif. cod > summary(1 Call: lm(formula Coefficient (Intercept) N1 P1 K1 N1:P1 N1:P1 N1:P1 N1:F1 N1:F1:K1	16 491.6 kes: 0 '**** m(yield ~ N s: Estimate St 54.8750 2.8083 -0.5917 -1.9917 -1.1750	30.72 , 0.001 * P * K, * P * K, td. Error 1.1314 1.1314 1.1314 1.1314 1.1314 1.1314 1.1314 1.1314	<pre>**' 0.01 data = np data = n t value 48.500 2.482 -0.523 -1.760 -0.832 -1.038 0.125 1.097</pre>	<pre>`*' 0.05 `. pk)) Pr(> t) <2e-16 ** 0.0245 * 0.6082 0.0975 . 0.4175 0.3145 0.9019 0.2887</pre>	*	

Correlation Correlation and Regression Alternative cases Linear model Interaction plots

But treating them numerically, the results differ

```
Call:
lm(formula = yield ~ N * P * K, data = npk)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 54.8750
                        1.1314 48.500 <2e-16 ***
```

```
N1
             2.8083
                       1.1314 2.482 0.0245 *
P1
            -0.5917
                       1.1314 -0.523 0.6082
к1
            -1.9917
                       1.1314 -1.760 0.0975 .
N1 · P1
           -0.9417
                       1.1314 -0.832 0.4175
N1:K1
            -1.1750
                       1.1314 -1.038 0.3145
                       1.1314 0.125 0.9019
P1:K1
             0.1417
N1 · P1 · K1
             1 2417
                       1.1314 1.097
                                      0.2887
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 5.543 on 16 degrees of freedom
Multiple R-squared: 0.4391.
                                 Adjusted R-squared: 0.1937
F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586
> summary(lm(yield ~ N * P * K, data =NPK))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
```

2.900 35.779 0.081 0.9364 (Intercept) 40.667 22.629 1.797 0.0912 . N Ρ 25.967 22,629 1,148 0,2680 к 24.567 22.629 1.086 0.2937 N:P -18.66714.312 -1.304 0.2106 N·K -19.600 14.312 -1.370 0.1898 P·K -14 333 14.312 -1.002 0.3315 9.933 9.052 1.097 0.2887 N:P:K Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 5,543 on 16 degrees of freedom Multiple R-squared: 0.4391, 0.1937 Adjusted R-squared: F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586

 iffect size
 Correlation
 Correlation and Regression
 Alternative cases
 Linear model
 Interaction plots
 References

 00000
 00000
 00000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 00

The problem with multiplication to produce interaction terms

- 1. An interaction is just the product of two variables (with the main effects removed)
- 2. But just taking the products will produce correlations between the main effects and the interactions.
- 3. We show this by finding the products and then their correlations

```
    NP <- NPK$N * NPK$P</td>
    R code

    NK <- NPK$N * NPK$K</td>

    PK <- NPK$P * NPK$K</td>

    PKN <- PK * NPK$N</td>

    NPK.prods <- data.frame(NPK,NP,NK,PK,PKN)</td>

    pairs.panels(NPK.prods,gap=0)

    #show the correlations,

    tighten up the figure
```

Effect size 00000 00000000000 on Correlation a

Alternative ca

Linear model Interaction plot

References

Interactions as products

49 / 69

Linear model Interaction plot

References

Interactions of products of centered data

- 1. If we center the data (subtract the mean from each variable) aka deviation scores
- 2. Then the products are uncorrelated with the main effects
- 3. We can do this using the scale function
- 4. By default scale also standardizes (divides by the standard deviation).
- 5. To keep the data in the same metric as the raw data, we do not standardiize
- 6. Then do the regressions on the centered (with products) data

e	Correlation	Correlation and Regression				Refere
0000	000000	0000	000000	000000000000000	000000000	

Center the data

centered.NPK <- scale(NPK,scale=FALSE)
centered.NPK <- data.frame(scale(NPK,scale=FALSE))
c.NP <- centered.NPK\$N * centered.NPK\$P
c.NK <- centered.NPK\$N * centered.NPK\$K
c.PK <- centered.NPK\$P * centered.NPK\$K
c.PKN <- c.PK * centered.NPK\$N
center.prod <- data.frame(centered.NPK,c.NP,c.NK,c.PK,c.PKN)
describe(center.prod)
pairs.panels(center.prod) #show the results grapically</pre>

describe (center.prod)

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
block	1	24	0	1.74	0.00	0.00	2.22	-2.50	2.50	5.00	0.00	-1.41	0.36
N	2	24	0	0.51	0.00	0.00	0.74	-0.50	0.50	1.00	0.00	-2.08	0.10
P	3	24	0	0.51	0.00	0.00	0.74	-0.50	0.50	1.00	0.00	-2.08	0.10
к	4	24	0	0.51	0.00	0.00	0.74	-0.50	0.50	1.00	0.00	-2.08	0.10
yield	5	24	0	6.17	0.77	-0.13	6.15	-10.67	14.62	25.30	0.24	-0.51	1.26
C.NP	6	24	0	0.26	0.00	0.00	0.37	-0.25	0.25	0.50	0.00	-2.08	0.05
c.NK	7	24	0	0.26	0.00	0.00	0.37	-0.25	0.25	0.50	0.00	-2.08	0.05
C.PK	8	24	0	0.26	0.00	0.00	0.37	-0.25	0.25	0.50	0.00	-2.08	0.05
c.PKN	9	24	0	0.13	0.00	0.00	0.19	-0.12	0.12	0.25	0.00	-2.08	0.03
> lowe	erCor	(cei	nter.j	prod)									
	block	ςΝ	j	P	К	yield c.1	NP c	.NK c.H	PK c.l	PKN			
block	1.00	0											
N	0.00) :	1.00										
P	0.00) (0.00	1.00									
к	0.00) (0.00	0.00	1.00								
yield	-0.10	5 (0.46	-0.10	-0.33	1.00							
	~ ~ ~			~ ~~			~ ~						

Effect size

tion Correlati

Regression Alter

Linear model Interaction p

References

Describe and show correlations

describe (center.prod)

	vars	n	mear	n sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
block	1	24	C	1.74	0.00	0.00	2.22	-2.50	2.50	5.00	0.00	-1.41	0.36
N	2	24	c	0.51	0.00	0.00	0.74	-0.50	0.50	1.00	0.00	-2.08	0.10
P	3	24	C	0.51	0.00	0.00	0.74	-0.50	0.50	1.00	0.00	-2.08	0.10
к	4	24	C	0.51	0.00	0.00	0.74	-0.50	0.50	1.00	0.00	-2.08	0.10
yield	5	24	c	0 6.17	0.77	-0.13	6.15	-10.67	14.62	25.30	0.24	-0.51	1.26
C.NP	6	24	C	0.26	0.00	0.00	0.37	-0.25	0.25	0.50	0.00	-2.08	0.05
C.NK	7	24	C	0.26	0.00	0.00	0.37	-0.25	0.25	0.50	0.00	-2.08	0.05
C.PK	8	24	C	0.26	0.00	0.00	0.37	-0.25	0.25	0.50	0.00	-2.08	0.05
C.PKN	9	24	C	0.13	0.00	0.00	0.19	-0.12	0.12	0.25	0.00	-2.08	0.03
> lowe	erCor	(ce	nter.	prod)									
	block	c N		P	К	yield c.1	NP C	.NK c.1	PK c.H	PKN			
block	1.00	כ											
N	0.00	: כ	1.00										
P	0.00)	0.00	1.00									
ĸ	0.00	יכ	0.00	0.00	1.00								
yield	-0.10	5	0.46	-0.10	-0.33	1.00							
C.NP	0.00	יכ	0.00	0.00	0.00 -	-0.16 1	.00						
C.NK	0.00)	0.00	0.00	0.00 -	-0.19 0	.00 :	1.00					
c.PK	0.00)	0.00	0.00	0.00	0.02 0	.00 (0.00 1	.00				
C.PKN	-0.29		0.00	0.00	0.00	0.21 0	.00 (0.00 0	.00 1	. 00			

Effect size	Correlation 000000	Correlation and Regression	Alternative cases	Linear model Interaction plots	References
Centering the da	ato.				

We do the linear model on the centered data

```
summary(lm(yield ~ N*P*K, data=center.prod))
```

```
summary(lm(yield ~ N*P*K, data=center.prod))
Call:
lm(formula = vield ~ N * P * K, data = center.prod)
Residuals:
   Min
            10 Median
                           30
                                 Max
-10.133 -4.133 1.250 3.125
                               8.467
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.269e-15 1.131e+00 0.000 1.0000
N
            5 617e+00 2 263e+00 2 482 0 0245 *
           -1.183e+00 2.263e+00 -0.523 0.6082
Ρ
          -3.983e+00 2.263e+00 -1.760 0.0975
к
          -3.767e+00 4.526e+00 -0.832 0.4175
N:P
N·K
         -4.700e+00 4.526e+00 -1.038 0.3145
           5.667e-01 4.526e+00 0.125 0.9019
P:K
N:P:K
           9.933e+00 9.052e+00 1.097 0.2887
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 5,543 on 16 degrees of freedom
Multiple R-squared: 0.4391,
                             Adjusted R-squared:
                                                     0.1937
F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586
```

Centering the dat	ta	0000	000000		
Effect size	Correlation 000000	Correlation and Regr	ession Alternative cases	Linear model Interaction plots	References

This is now the same as the original aov

```
summary(aov(yield ~ N*P*K,data=npk))
           Df Sum Sg Mean Sg F value Pr(>F)
              189.3 189.28 6.161 0.0245 *
N
            1
               8.4 8.40
Ρ
            1
                             0.273 0.6082
к
            1
               95.2 95.20 3.099 0.0975 .
N:P
            1
               21.3 21.28 0.693 0.4175
            1
               33.1 33.14 1.078 0.3145
N:K
            1 0.5 0.48 0.016 0.9019
P:K
N·P·K
            1 37.0 37.00 1.204 0.2887
Residuals
           16 491.6 30.72
               0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Signif. codes:
summary(lm(yield ~ N*P*K, data=center.prod))
Call:
lm(formula = vield ~ N * P * K, data = center.prod)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.269e-15 1.131e+00 0.000 1.0000
N
            5.617e+00 2.263e+00 2.482 0.0245 *
          -1.183e+00 2.263e+00 -0.523 0.6082
Ρ
          -3.983e+00 2.263e+00 -1.760 0.0975
к
N·P
         -3.767e+00 4.526e+00 -0.832 0.4175
         -4.700e+00 4.526e+00 -1.038 0.3145
N:K
P:K
           5.667e-01 4.526e+00 0.125
                                        0.9019
N·P·K
            9.933e+00 9.052e+00 1.097
                                         0.2887
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 5,543 on 16 degrees of freedom
Multiple R-squared: 0.4391,
                                Adjusted R-squared:
                                                     0.1937
```

F-statistic: 1.789 on 7 and 16 DF, p-value: 0.1586

Centering using the scale function

In the previous example, we hand centered the data. The scale function will do this. By default, it will also standardize. We avoid this by setting the *scale* parameter to FALSE.

Unfortunately, scale returns a *matrix* and we want a data.frame. This is irritating, but easily solved.

We use the Garcia data set. centered.Garcia <- data.frame(scale(Garcia, scale=FALSE)) describe(centered.Garcia)

```
> centered.Garcia <- data.frame(scale(Garcia, scale=FALSE))</pre>
```

> describe(centered.Garcia)

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
protest	1	129	0	0.82	-0.03	0.01	1.48	-1.03	0.97	2.00	-0.06	-1.52	0.07
sexism	2	129	0	0.78	0.00	-0.02	0.74	-2.25	1.88	4.13	0.12	-0.32	0.07
anger	3	129	0	1.66	-1.12	-0.29	0.00	-1.12	4.88	6.00	1.29	0.26	0.15
liking	4	129	0	1.05	0.19	0.09	0.99	-4.64	1.36	6.00	-1.15	2.48	0.09
respappr	5	129	0	1.35	0.38	0.12	1.11	-3.37	2.13	5.50	-0.75	-0.18	0.12
prot2	6	129	0	0.47	0.32	0.04	0.00	-0.68	0.32	1.00	-0.77	-1.41	0.04

A word of caution

- 1. aov and Im produce equivalent results *if* the design is balanced.
- 2. That is, if the IVs are represented proportionally. (no correlation between the X_i)
- 3. Consider the case of the Garcia data set

```
lowerCor(Garcia)

prtst sexsm anger likng rsppp pro22

protest 1.00

sexism -0.02 1.00

anger -0.31 -0.03 1.00

liking 0.17 0.09 -0.51 1.00

respappr 0.48 0.04 -0.53 0.49 1.00

prot2 0.86 0.04 -0.39 0.21 0.50 1.00
```

Effect size	Correlation 000000	Correlation and Regression	Alternative cases	Linear model Interaction plots	References
Centering the c	lata				
	aov ar	nd Im not equiv	alent if desi	gn is unbalanced	
sum		liking ~ prot2 -			
sum	nary(lm(l	iking ~ prot2 +	sexism, dat	a= Garcia))	
	- · ·		•		
summan		ng ~ prot2 + sexism, Sum Sq Mean Sq F value			
prot2		• •	0.0153 *		
sexis	-		3 0.3410		
Residu	als 126 1	L33.66 1.061			
-) ?***? 0.001 ?**? 0.0		.1 ? ? 1	
> summ	ary(lm(liki	ing ~ prot2 + sexism,	data= Garcia))		
Call:					
	mula = liki	ing ~ prot2 + sexism,	data = Garcia)		
111(101		ing proce i serism,	data = Garcia,		
Residu	als:				
Mi	n 10	Median 3Q Ma	x		
-4.385	57 -0.6246	0.0599 0.7754 1.795	54		
Coeffi	cients:				
<i>i</i> - .		nate Std. Error t valu			
•	•		58 2.41e-12 ***		
prot2 sexism		1711 0.1949 2.41 1111 0.1162 0.95			
sexis	a 0.1	0.1162 0.95	0.3410		
Signif	. codes: 0) ?***? 0.001 ?**? 0.0	01 ?*? 0.05 ?.? 0	.1 ? ? 1	
Residu	al standard	d error: 1.03 on 126 o	learees of freedo	m	
			ljusted R-squared		
		77 on 2 and 126 DF, p			
					57 / 69

	ng the data	0000	000000	000000000	
Effect size Correlation Correlation and Regression Alternative cases Linear model Interaction plots References		0000	0000		References

Even worse if look at interaction terms

```
R code
summary(aov(liking ~ prot2 * sexism, data= Garcia))
summary(lm(liking ~ prot2 * sexism, data= Garcia))
summary(aov(liking ~ prot2 * sexism, data= Garcia))
            Df Sum Sg Mean Sg F value Pr(>F)
                 6.41 6.407 6.553 0.01166 *
prot2
             1
sevism
            1
                 0.97 0.969 0.991 0.32139
prot2:sexism 1 11.45 11.451 11.713 0.00084 ***
Residuals 125 122.21 0.978
____
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
> summary(lm(liking ~ prot2 * sexism, data= Garcia))
Call:
lm(formula = liking ~ prot2 * sexism, data = Garcia)
Residuals:
   Min
           10 Median
                          30
                                Max
-3.9894 -0.6381 0.0478 0.7404 2.3650
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.7062 1.0449 7.375 1.99e-11 ***
         -3.7727 1.2541 -3.008 0.00318 **
prot2
sexism -0.4725 0.2038 -2.318 0.02205 *
prot2:sexism 0.8336 0.2436 3.422 0.00084 ***
___
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 0.9888 on 125 degrees of freedom
Multiple R-squared: 0.1335,
                                Adjusted R-squared: 0.1127
```

58 / 69

<pre>Centering helps, but not if the DVs are correlated</pre>	ring the data					
<pre>summary(aov(liking ~ prot2 * sexism, data= Garcia)) summary(lm(liking ~ prot2 * sexism, data= Garcia)) Df Sum Sq Mean Sq F value Pr(>F) prot2 1 6.41 6.407 6.553 0.01166 * sexism 1 0.97 0.969 0.991 0.32139 prot2:sexism 1 11.45 11.451 11.713 0.0084 *** Residuals 125 122.21 0.978 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Residuals: Min 1Q Median 3Q Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.0958 ** sexism 0.09613 0.11169 0.861 0.39102</pre>	Ce	ntering he	elps, but	not if the E	Ws are correlated	
<pre>summary(aov(liking ~ prot2 * sexism, data= Garcia)) summary(lm(liking ~ prot2 * sexism, data= Garcia)) Df Sum Sq Mean Sq F value Pr(>F) prot2 1 6.41 6.407 6.553 0.01166 * sexism 1 0.97 0.969 0.991 0.32139 prot2:sexism 1 11.45 11.451 11.713 0.0084 *** Residuals 125 122.21 0.978 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Residuals: Min 1Q Median 3Q Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.0958 ** sexism 0.09613 0.11169 0.861 0.39102</pre>				Darda		
<pre>summary(lm(liking ~ prot2 * sexism, data= data.frame(scale(Garcia summary(aov(liking ~ prot2 * sexism, data= Garcia))</pre>	eumma ru (aow (liking	~ prot2		ata- Carcial)	
<pre>summary(aov(liking ~ prot2 * sexism, data= Garcia)) Df Sum Sq Mean Sq F value Pr(>F) prot2 1 6.41 6.407 6.553 0.01166 * sexism 1 0.97 0.969 0.991 0.32139 prot2:sexism 1 11.45 11.451 11.713 0.00084 *** Residuals 125 122.21 0.978 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data= data.frame(scale(Garcia, scale=FALSE)))) Call: lm(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Residuals: Min 1Q Median 3Q Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102</pre>		· 2	-			
<pre>Df Sum Sq Mean Sq F value Pr(>F) prot2 1 6.41 6.407 6.553 0.01166 * sexism 1 0.97 0.969 0.991 0.32139 prot2:sexism 1 11.45 11.451 11.713 0.00084 *** Residuals 125 122.21 0.978 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Residuals: Min 1Q Median 3Q Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients:</pre>	summary (TW(TIKING	~ protz *	sexism, da	ta= data.irame(sca.	ie (Garcia
<pre>prot2 1 6.41 6.407 6.553 0.01166 * sexism 1 0.97 0.969 0.991 0.32139 prot2:sexism 1 11.45 11.451 11.713 0.00084 *** Residuals 125 122.21 0.978 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Residuals: Min 1Q Median 3Q Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients:</pre>	summary (aov	liking ~ prot	2 * sexism,	data= Garcia))		,
<pre>sexism 1 0.97 0.969 0.991 0.32139 prot2:sexism 1 11.45 11.451 11.713 0.00084 *** Residuals 125 122.21 0.978 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: lm(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Residuals: Min 10 Median 30 Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients:</pre>		Df Sum Sq M	ean Sq F valu	ue Pr(>F)		
<pre>prot2:sexism 1 11.45 11.451 11.713 0.00084 *** Residuals 125 122.21 0.978 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Residuals: Min 1Q Median 3Q Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102</pre>	prot2	1 6.41	6.407 6.5	53 0.01166 *		
Residuals 125 122.21 0.978 Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Residuals: Min 1Q Median 3Q Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	sexism	1 0.97	0.969 0.99	91 0.32139		
<pre>Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 > summary(lm(liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE)))) Call: lm(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale=FALSE))) Residuals: Min</pre>	prot2:sexism	1 11.45	11.451 11.7	L3 0.00084 ***		
<pre>> summary(lm(liking ~ prot2 * sexism, data= data.frame(scale(Garcia, scale=FALSE))))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale = FALSE))) Residuals:</pre>	Residuals	125 122.21	0.978			
<pre>> summary(lm(liking ~ prot2 * sexism, data= data.frame(scale(Garcia, scale=FALSE))))) Call: Im(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale = FALSE))) Residuals:</pre>						
Call: Im (formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia, scale = FALSE))) Residuals: Min 1Q Median 3Q Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	Signif. code	s: 0 ?***? 0	.001 ?**? 0.0	0.05 ?.?	0.1 ? ? 1	
<pre>lm(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia,</pre>	> summary(ln	(liking ~ pro	t2 * sexism,	data= data.fra	me(scale(Garcia,scale=FA	LSE))))
<pre>lm(formula = liking ~ prot2 * sexism, data = data.frame(scale(Garcia,</pre>						
<pre>scale = FALSE))) Residuals: Min 10 Median 30 Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients:</pre>	Call:					
Residuals: Min 10 Median 30 Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	lm(formula =	liking ~ pro	t2 * sexism,	data = data.fra	me(scale(Garcia,	
Min 10 Median 30 Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.101219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	scale =	FALSE)))				
Min 10 Median 30 Max -3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102						
-3.9894 -0.6381 0.0478 0.7404 2.3650 Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	Residuals:					
Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	Min	1Q Median	3Q Ma	ax		
Estimate Std. Error t value Pr(> t) (Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	-3.9894 -0.6	381 0.0478	0.7404 2.36	50		
(Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	Coefficients	:				
(Intercept) -0.01219 0.08713 -0.140 0.88899 prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102		Estimate Std	. Error t val	Lue Pr(> t)		
prot2 0.49262 0.18722 2.631 0.00958 ** sexism 0.09613 0.11169 0.861 0.39102	(Intercept)					
sexism 0.09613 0.11169 0.861 0.39102						
	•					
		0.00000				

Effect size Correlation Correlation and Regression Alternative cases Linear model Interaction plots References

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

ImCor will do regressions and interactions as well

- 1. ImCor will work from raw data or correlation matrices
- 2. With raw data, it can find interactions
- The syntax can be identical to lm or you can specify it by x and y
- 4. Compare

```
lmCor(yield ~ N * P * K, data = npk)
with
lm(yield ~ N * P * K, data = as.data.frame(scale(NPK)))
```

Effect size	Correlation 000000	Correlation and	Regression	Alternative ca		ar model Interaction pla 000000000000000000000000000000000000	ots References
Centering the	data						
			ImCor	versus	lm		
					on the fa	ctor level data as v	well
		ield ~ N * P		= npk)			
	ple Regressi yield	on from raw d	ata				
	slope			.ci upper.c			
•	• •	0.19 0.00 1		.40 0.4			
N		0.19 2.48 0		.07 0.8			
P K		0.19 -0.52 0		.49 0.3 .73 0.0			
N*P		0.19 -0.83 0					
N*F N*K		0.19 -0.83 0					
P*K		0.19 0.13 0		.37 0.4			
N*P*K		0.19 1.10 0		.19 0.6			
Resid	ual Standard	Error = 0.9	with 16	degrees c	f freedo	m	
Mult	iple Regress						
		Ruw R2uw Shru				· •	
yield	0.66 0.44 0	.56 0.31	0.19	0.1	1.79	7 16 0.159	
lm(fo	rmula = viel	d ~ N * P * K	. data = a	s.data.fram	e(scale()	NPK)))	
	icients:		,				
	Est	imate Std. Er	ror t valu	e Pr(> t)			
(Inte	rcept) -1.19	5e-16 1.833e	-01 0.00	0 1.0000			
N		7e-01 1.872e			*		
P		1e-02 1.872e					
ĸ		6e-01 1.872e			•		
N:P		2e-01 1.913e					
N:K P:K		6e-01 1.913e 5e-02 1.913e					
P:K N:P:K		4e-01 1.913e					
N.F.K	2.14	10 01 1.9546	JI 1.05	, 0.2007			

```
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
```

Residual standard error: 0.898 on 16 degrees of freedom

lation and Regression

Alternative case

Linear model Interaction plots

References

Interactions are hard to visualize

- 1. Main effects (in anova terms) are just linear relationships
- 2. These may be shown by straight lines
- 3. Two main effects may be shown by two parallel lines
- 4. Interactions are non-parallel lines.
- 5. Lets use the Garcia et al. (2010) data to show this (in *psychTools* as Garcia).

Garcia data set

- Garcia et al. (2010) report data for 129 subjects on the effects of perceived sexism on anger and liking of women's reactions to ingroup members who protest discrimination. This data set is also used as the 'protest' data set by Hayes (2013) It is a useful example of mediation and moderation in regression. It may also be used as an example of plotting interactions.
- 2. The reaction of women to women who protest discriminatory treatment was examined in an experiment reported by Garcia et al. (2010). 129 women were given a description of sex discrimination in the workplace (a male lawyer was promoted over a clearly more qualified female lawyer). Subjects then read that the target lawyer felt that the decision was unfair. Subjects were then randomly assigned to three conditions: Control (no protest), Individual Protest ("They are treating me unfairly"), or Collective Protest ("The firm is is treating women unfairly").
- 3. We use ImCor to find the regressions with the 0 centered product term and do the graphics at the same time

Linear model Interaction plots

References

The Garcia data set

R code dim(Garcia) describe (Garcia) lowerCor(Garcia) dim(Garcia) [1] 129 6 > describe(Garcia) vars sd median trimmed mad min max range skew kurtosis n mean se protest 1 129 1.03 0.82 1.00 1.04 1.48 0.00 2 2.00 - 0.06-1.52 0.07sexism 2 129 5.12 0.78 5.12 5.10 0.74 2.87 7 4.13 0.12 -0.32 0.07 3 129 2.12 1.66 1.00 1.84 0.00 1.00 6.00 1.29 0.26 0.15 anger 7 liking 4 129 5.64 1.05 5.83 5.73 0.99 1.00 6.00 - 1.152.48 0.09 7 5 129 4.87 1.35 5.25 4.98 1.11 1.50 5.50 -0.75 -0.18 0.12 respappr 7 prot2 6 129 0.68 0.47 1.00 0.72 0.00 0.00 1.00 - 0.77-1.410.041 > lowerCor(Garcia) prtst sexsm anger likng rsppp prot2 protest 1.00 sexism -0.02 1.00 anger -0.31 -0.03 1.00 liking 0.17 0.09 - 0.511.00 respappr 0.48 0.04 -0.53 0.49 1.00 prot2 0.86 0.04 -0.39 0.21 0.50 1.00

Two analyses of Garcia–Center the data!

lmCor(respappr ~ prot2 * sexism ,data=Garcia ,main="Moderated regression (mean centered)")
Call: lmCor(y = respappr ~ prot2 * sexism, data = Garcia, main = "Moderated regression (mean

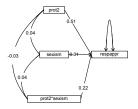
```
Multiple Regression from raw data
DV = respappr
            slope
                            p lower.ci upper.ci VIF
                   se
                      t
(Intercept) 0.00 0.08 0.00 1.0e+00 -0.15
                                              0.15
                                                    1
prot2
            0.51 0.08 6.73 5.5e-10 0.36 0.65
                                                    1
sexism
            0.01 0.08 0.18 8.6e-01 -0.14 0.16
                                                    1
prot2*sexism 0.22 0.08 2.87 4.8e-03 0.07 0.36
                                                    1
Residual Standard Error = 0.85 with 125 degrees of freedom
Multiple Regression
           R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2
respappr 0.54 0.3 0.42 0.18
                                0.28
                                        0.06
                                                17.53
                                                        3 125 1.46e-09
> lmCor(respappr ~ prot2 * sexism ,data=Garcia ,zero=FALSE,main="Moderated regression (not m
Call: lmCor(y = respappr ~ prot2 * sexism, data = Garcia, main = "Moderated regression (not m
   zero = FALSE)
Multiple Regression from raw data
DV = respappr
            slope
                                p lower.ci upper.ci
                                                    VIF
                   se
                         t
(Intercept) 0.00 0.08 0.00 1.0000 -0.15 0.15 1.00
prot2
           -0.93 0.50 -1.85 0.0670
                                  -1.93 0.06 44.99
sexism
           -0.31 0.14 -2.24 0.0270
                                  -0.58 -0.04 3.34
prot2*sexism 1.50 0.52 2.87 0.0048 0.47 2.53 48.14
Residual Standard Error = 0.85 with 125 degrees of freedom
Multiple Regression
           R R2 Ruw ../../images Shrunken R2 SE of R2 overall F df1 df2
                                                                           р
respappr 0.54 0.3 0.45 0.2
                                0.28
                                        0.06
                                                17.53 3 125 1.46e-09
```

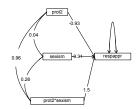
Effect size

ion Correlation

lation and Regression

Alternative cas


Linear model Interaction plots


References

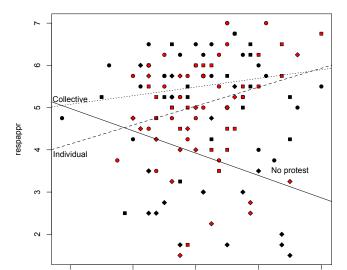
Comparing centered and non-centered interactions

Moderated regression (mean centered)

Moderated regression (not mean centered)


```
ect size Correlation Correlation and Regression Alternative cases Linear model Interaction plots References
```

Plotting an interaction


- 1. Show the overall data as a function of group (different colors for different groups
- 2. Plot the regression lines separately for each group

```
#demonstrate interaction plots
#first plot the data with a different color for each group
plot(respappr ~ sexism, pch = 23- protest,
     bg = c("black", "red", "blue") [protest],
data=Garcia, main = "Response to sexism varies as type of protest")
#then, repeatedly draw a line for each regression slope
#use the abline function within the by function
by(Garcia,Garcia$protest, function(x) abline(lm(respappr ~ sexism,
   data =x),lty=c("solid","dashed","dotted")[x$protest+1]))
#Put in the labels for the graph
#the parameters are the x and y coordinates, followed by text to show
text(6.5,3.5,"No protest")
text(3,3.9,"Individual")
text(3,5.2,"Collective")
```


Showing an interaction

Response to sexism varies as type of protest

68 / 69

size Correlation Correlation and Regression Alternative cases Linear model Interaction plots References

Can do the same interaction plot using lmCor

lmCor is meant to mimic lm for many of the results. The difference is in the default values. We adjust those to get the right result.

```
R code
#demonstrate interaction plots
#first plot the data with a different color for each group
plot(respappr ~ sexism, pch = 23- protest,
     bg = c("black", "red", "blue") [protest],
data=Garcia, main = "Response to sexism varies as type of protest")
#then, repeatedly draw a line for each regression slope
#use the abline function within the by function
by(Garcia,Garcia$protest, function(x) abline(lmCor(respappr ~ sexism,
  data =x, plot=FALSE, std=FALSE) #note that set these two parameter
         ,lty=c("solid","dashed","dotted")[x$protest+1]))
#Put in the labels for the graph
##the parameters are the x and y coordinates, followed by text to sho
text(6.5,3.5,"No protest")
text(3,3.9,"Individual")
text(3,5.2,"Collective")
```

Athenstaedt, U. (2003). On the content and structure of the gender role self-concept: Including gender-stereotypical behaviors in addition to traits. *Psychology of Women Quarterly*, 27(4):309–318.

Linear model Interaction plots

- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences*. L. Erlbaum Associates, Hillsdale, N.J., 2nd ed edition.
- Del Giudice, M. (2009). On the real magnitude of psychological sex differences. *Evolutionary Psychology*, 7(2):147470490900700209.
- Del Giudice, M., Booth, T., and Irwing, P. (2012). The distance between mars and venus: measuring global sex differences in personality. *PloS one*, 7(1):e29265–e29265.
- Eagly, A. H. and Revelle, W. (2022). Understanding the Magnitude of Psychological Differences Between Women and Men Requires Seeing the Forest and the Trees. *Perspectives on Psychological Science*, 17(5):1339–1358.

Galton, F. (1886). Regression towards mediocrity in hereditary

References

stature. Journal of the Anthropological Institute of Great Britain and Ireland, 15:246–263.

Linear model Interaction plots

Galton, F. (1888). Co-relations and their measurement.

- Proceedings of the Royal Society. London Series, 45:135–145.
 Garcia, D. M., Schmitt, M. T., Branscombe, N. R., and Ellemers, N. (2010). Women's reactions to ingroup members who protest discriminatory treatment: The importance of beliefs about inequality and response appropriateness. European Journal of Social Psychology, 40(5):733–745.
- Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press, New York.
- Mahalanobis, P. C. (1936). On the generalized distance in statistics. *Proceedings of the National Institute of Science* (*India*), II(1):49–55.

McLachlan, G. J. (1999). Mahalanobis distance. *Resonance*, 4(6):20–26.

References

Pearson, K. (1896). Mathematical contributions to the theory of evolution. iii. regression, heredity, and panmixia. *Philisopical Transactions of the Royal Society of London. Series A*, 187:254–318.

Pearson, K. and Heron, D. (1913). On theories of association. *Biometrika*, 9(1/2):159–315.

Spearman, C. (1904). The proof and measurement of association between two things. *The American Journal of Psychology*, 15(1):72–101.

Student (1908). The probable error of a mean. Biometrika, 6(1):1-25.

References