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Fitting functions as way of testing theory

1. Closed form versus open form.

2. Much of classical statistics is “closed form”. That is, it is a
matter of solving some equations using basic algebra.

• Examples include the
• t.test
• F. test
• basic linear regression

3. However, other functions are“open form”and have to be
estimated using the process of iteration.

4. Although computers are useful for solving closed form
equations, they are particularly useful for solving open forms.
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Iterative fit

The basic concept of fitting

1. Given some fit statistic, try to find the optimal values for that
fit

• The Newton-Raphson method
• Uses a linear approximation to the function (f) we are trying

to solve
• Get an initial estimate x0 = f (0)
• Find the first derivative at that point f ′(x0)
• New estimate = xn+1 = xn − f (xn)

f ′(xn)

• Consider the case of the square root of 47
• Guess X
• find result = 47/Guess
• try a new Guess = 47/(Guess + result)/2
• do it again

2. The next example is a baby function to do this

3. It is the concept, not the programming that is important
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Iterative fit

Iterative fitting to find a square root
R code

iterative.sqrt <- function(X,guess) {
if(missing(guess)) guess <- 1 #a dumb guess
iterate <- function(X,guess) { #another small function

low <- guess
high <- X/guess
guess <-((high+low)/2)
guess}

Iter <- matrix(NA,ncol=3,nrow=10)
for (i in 1:10) { #do a for fixed number of times,

or could set a stopping criterion
Iter[i,1] <- guess
Iter[i,2] <- error <- guess - iterate(X,guess)
Iter[i,3] <- guess <- iterate(X, guess) #update the guess
} #of if loop
Iter} # end of function and returns the value

> X <- 47
> iter <- iterative.sqrt(47)
> iter
iterative.sqrt(47)

[,1] [,2] [,3]
[1,] 1.000000 -2.300000e+01 24.000000
[2,] 24.000000 1.102083e+01 12.979167
[3,] 12.979167 4.678989e+00 8.300177
[4,] 8.300177 1.318824e+00 6.981353
[5,] 6.981353 1.245673e-01 6.856786
[6,] 6.856786 1.131507e-03 6.855655
[7,] 6.855655 9.337605e-08 6.855655
[8,] 6.855655 8.881784e-16 6.855655
[9,] 6.855655 0.000000e+00 6.855655

[10,] 6.855655 0.000000e+00 6.855655
matplot(iter,typ="b",main="iterative solution",xlab="Iteration",ylab="Guesses")
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Iterative fit

Iterative fitting to find a square root – a better guess

> X <- 79
> iter <- iterative.sqrt(X,8)
> iter

[,1] [,2] [,3]
[1,] 8.000000 -9.375000e-01 8.937500
[2,] 8.937500 4.916958e-02 8.888330
[3,] 8.888330 1.360012e-04 8.888194
[4,] 8.888194 1.040501e-09 8.888194
[5,] 8.888194 0.000000e+00 8.888194
[6,] 8.888194 0.000000e+00 8.888194
[7,] 8.888194 0.000000e+00 8.888194
[8,] 8.888194 0.000000e+00 8.888194
[9,] 8.888194 0.000000e+00 8.888194
[10,] 8.888194 0.000000e+00 8.888194

> matplot(iter,typ="b",main="iterative solution",xlab="Iteration",
ylab="Guesses")
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Iterative fit

Control the number of iterations

R code
iterative.sqrt <- function(X,guess,n.iter=10) {
if(missing(guess)) guess <- 1 #a dumb guess

iterate <- function(X,guess) { # another small function
low <- guess
high <- X/guess
guess <-((high+low)/2)
guess}

Iter <- matrix(NA,ncol=3,nrow=n.iter)
for (i in 1:n.iter) { #do a for fixed number of times,

or could set a stopping criterion

Iter[i,1] <- guess
Iter[i,2] <- error <- guess - iterate(X,guess) #
Iter[i,3] <- guess <- iterate(X, guess) #update the guess

}
Iter} #this returns the value
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Iterative fit

The optim function is one way to fit complex models
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Iterative fit

Iterative fitting has several steps

1. Specifying a model and loss function
• Ideally supplying a first derivative to the loss function
• Can be done empirically

2. Some way to evaluate the quality of the fit

3. Minimization of function, but then how good is this minimum?

4. Goodness of fit statistics are reported for the optimal value.

5. Examples of using the optimin function include
tetrachoric, polychoric and fa
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Multivariate analysis

• Many procedures use this concept of iterative fitting

• Some, such as principal components are“closed form”and can
just be solved directly

• Others, such as“factor analysis”need to find solutions by
successive approximations

• The issue of factor or component rotation is an iterative
procedure.

• Principal Components and Factor analysis are all the result of
some basic matrix equations to approximate a matrix

• Conceptually, we are just taking the square root of a
correlation matrix:

• R ≈ CC ′ or R ≈ FF ′ + U2 (u2 is a diagonal matrix)

• For any given correlation matrix, R, can we find a C or an F
matrix which approximates it?
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Consider the following matrix

What would be its “square root”? That is to say, what simpler
matrix, times itself is equal to R?
R

V1 V2 V3 V4
V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00

Find R ≈ FF ′ + U2

1. Find an eigen value decomposition of R: R = XλX′

2. Principal Components are just another way of expressing the
eigen value decomposition

3. C = X
√
λ and R = CC′

4. Take just the first n columns of X and λ

5. Cn = X1:n
√
λ1:n and R ≈ Cn nC
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Principal Components
R The original correlation matrix

V1 V2 V3 V4
V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00 R code
P1 <- pca(R)
loadings <- P1$loadings
round(loadings,2)
model<- loadings %*% t(loadings)
round(model,2)
residual(P1)

round(model,2) This is the predicted R given the loadings
V1 V2 V3 V4

V1 0.69 0.65 0.61 0.54
V2 0.65 0.62 0.58 0.51
V3 0.61 0.58 0.53 0.48
V4 0.54 0.51 0.48 0.43

resid(P1) These are the residuals
V1 V2 V3 V4

V1 0.31
V2 -0.09 0.38
V3 -0.13 -0.16 0.47
V4 -0.14 -0.16 -0.18 0.57
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We create this matrix using the sim.congeneric function

First, create an example matrix
R code

"sim.congeneric" <- function{
(loads = c(0.8, 0.7, 0.6, 0.5),...) {
..
n <- length(loads)
loading <- matrix(loads, nrow = n)
error <- diag(1, nrow = n)
diag(error) <- sqrt(1 - loading^2)

model <- pattern %*% t(pattern)

...
result <- model
return(result)
}

1. Give some default values

2. Create a correlation matrix
using matrix algebra

• model = FF′

• diag(model) = 1

3. Return the value
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A congeneric matrix is one with just one factor

R code
R <- sim.congeneric()
R
f1 <- fa(R)

> R
V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00
> f1 <- fa(R)
> f1
Factor Analysis using method = minres
Call: fa(r = R)
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 h2 u2 com
V1 0.8 0.64 0.36 1
V2 0.7 0.49 0.51 1
V3 0.6 0.36 0.64 1
V4 0.5 0.25 0.75 1

MR1
SS loadings 1.74
Proportion Var 0.43
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But does this really fit?

Think about the residuals (Data - model)
R code

R
round(f1$model,2)
residuals(f1)

> R
V1 V2 V3 V4

V1 1.00 0.56 0.48 0.40
V2 0.56 1.00 0.42 0.35
V3 0.48 0.42 1.00 0.30
V4 0.40 0.35 0.30 1.00
> round(f1$model,2)

V1 V2 V3 V4
V1 0.64 0.56 0.48 0.40
V2 0.56 0.49 0.42 0.35
V3 0.48 0.42 0.36 0.30
V4 0.40 0.35 0.30 0.25
> residuals(f1)

V1 V2 V3 V4
V1 0.36
V2 0.00 0.51
V3 0.00 0.00 0.64
V4 0.00 0.00 0.00 0.75

Hence we add the fudge factor U2 = diagonal of residuals and say
R = FF ′ + U2
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How did we find F: The OLS function

Function hidden inside of the fa functionR code
FA.OLS <- function(Psi,S,nf) {

E <- eigen(S-diag(Psi),symmetric=T)
U <-E$vectors[,1:nf,drop=FALSE]
D <- E$values[1:nf,drop=FALSE]
D [D < 0] <- 0

if(length(D) < 2) {L <- U * sqrt(D)} else {
L <- U %*% diag(sqrt(D))} #gets around a weird problem for nf=1

model <- L %*% t(L)
diag(model) <- diag(S)
return(sum((S-model)^2)/2)

}

#try different values of psi to see which fits the best
psi <- c(1,1,1,1)
> FA.OLS(psi,R,1)
[1] 0.08195686
> psi <- smc(R)
> FA.OLS(psi,R,1)
[1] 0.05153827
> psi <- c(.64,.49,.36,.25)
> FA.OLS(psi,R,1)
[1] 0.04983562
> psi <- c( 0.36 ,0.51, 0.64, 0.75) #use these values to find out what the loadings are
> FA.OLS(psi,R,1)
[1] 1.787263e-31
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Modeling the factors: The PFout function
R code

FAout <- function(Psi, S, q) {
sc <- diag(1/sqrt(Psi))
Sstar <- sc %*% S %*% sc
E <- eigen(Sstar, symmetric = TRUE)
L <- E$vectors[, 1L:q, drop = FALSE]
load <- L %*% diag(sqrt(pmax(E$values[1L:q] - 1, 0)),

q)
diag(sqrt(Psi)) %*% load

}

loadings <- FAout(psi,R,1) #psi and R from previous solution
t(loadings)# show them
model <- loadings %*% t(loadings)

t(loadings)
[,1] [,2] [,3] [,4]

[1,] 0.8 0.7 0.6 0.5

model
[,1] [,2] [,3] [,4]

[1,] 0.64 0.56 0.48 0.40
[2,] 0.56 0.49 0.42 0.35
[3,] 0.48 0.42 0.36 0.30
[4,] 0.40 0.35 0.30 0.25
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Why do we care?

If X = a data matrix of n variables for N subjects

1. Do we really want n separate scores?

2. Can we find (far) fewer variables that account for the scores?

3. “Accounting” for the scores says can we model the scores (or
at least their correlations)?

4. Components account for the most variance in the scores.

5. Factors are models of the correlations/covariances of the
scores.

6. When we find“scale score”by summing or averaging the items
we are saying that the items all measure one thing, but do not
correlate perfectly because of random error.

7. This is the model of reliability theory.
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Several example data sets in psychTools

ability 16 items measuring cognitive ability from (Condon & Revelle,

2014) and described more fully in (Revelle, Dworak & Condon, 2020)

and (Dworak, Revelle, Doebler & Condon, 2020).

bfi 25 personality items and 3 demographic variables
from the SAPA project. The 25 items are thought to
represent the“Big 5”CANOE dimensions.

sai 20 State Anxiety Items and 3 demographics from the
PMC lab. Discussed in greater detail in (Revelle & Condon,

2019).

msqR 75 mood and 13 condition variables from the
Motivational State Questionnaire collected in the
PMC lab.

spi 135 personality items and 10 demographic variables
from the SAPA Personality Questionnaire (Condon, 2018)

collected using the SAPA-project.org web site.
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Detailed descriptions of the data

The ability data set

1. 16 multiple choice ability items 1525 subjects taken from the
Synthetic Aperture Personality Assessment (SAPA) web based
personality assessment project are saved as iqitems. Those
data are shown as examples of how to score multiple choice
tests and analyses of response alternatives. When scored
correct or incorrect, the data are useful for demonstrations of
tetrachoric based factor analysis irt.fa and finding tetrachoric
correlations.

2. 16 items were sampled from 80 items given as part of the
SAPA project (Revelle, Wilt & Rosenthal, 2010) to develop online measures
of ability. These 16 items reflect four lower order factors
(verbal reasoning, letter series, matrix reasoning, and spatial
rotations. These lower level factors all share a higher level
factor (’g’).
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Detailed descriptions of the data

bfi

1. 25 personality self report items taken from the International Personality Item
Pool (ipip.ori.org) were included as part of the Synthetic Aperture Personality
Assessment SAPA web based personality assessment project. The data from
2800 subjects are included here as a demonstration set for scale construction,
factor analysis, and Item Response Theory analysis. Three additional
demographic variables (sex, education, and age) are also included.

2. The first 25 items are organized by five putative factors: Agreeableness,
Conscientiousness, Extraversion, Neuroticism, and Opennness. The scoring key
is created using make.keys, the scores are found using score.items.

3. These five factors are a useful example of using irt.fa to do Item Response
Theory based latent factor analysis of the polychoric correlation matrix. The
endorsement plots for each item, as well as the item information functions reveal
that the items differ in their quality.

4. The item data were collected using a 6 point response scale: 1 Very Inaccurate
2 Moderately Inaccurate 3 Slightly Inaccurate 4 Slightly Accurate 5 Moderately
Accurate 6 Very Accurate.
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Detailed descriptions of the data

sai

1. State Anxiety was measured two-three times in 11 studies at the
Personality-Motivation-Cognition laboratory. Here are item responses for 11
studies (9 repeated twice, 2 repeated three times). In all studies, the first
occasion was before a manipulation. In some studies, caffeine, or movies or
incentives were then given to some of the participants before the second and
third STAI was given. In addition, Trait measures are available and included in
the tai data set (3032 subjects).

2. The standard experimental study at the Personality, Motivation and Cognition
(PMC) laboratory (Revelle & Anderson, 1998) was to administer a number of
personality trait and state measures (e.g. the epi, msq, msqR and sai) to
participants before some experimental manipulation of arousal/effort/anxiety.
Following the manipulation (with a 30 minute delay if giving caffeine/placebo),
some performance task was given, followed once again by measures of state
arousal/effort/anxiety.

3. Here are the item level data on the sai (state anxiety) and the tai (trait anxiety).
Scores on these scales may be found using the scoring keys. The affect data set
includes pre and post scores for two studies (flat and maps) which manipulated
state by using four types of movies.
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Detailed descriptions of the data

msqR
1. Emotions may be described either as discrete emotions or in dimensional terms.

The Motivational State Questionnaire (MSQ) was developed to study emotions
in laboratory and field settings. The data can be well described in terms of a
two dimensional solution of energy vs tiredness and tension versus calmness.
Alternatively, this space can be organized by the two dimensions of Positive
Affect and Negative Affect. Additional items include what time of day the data
were collected and a few personality questionnaire scores. 3032 unique
participants took the MSQ at least once, 2753 at least twice, 446 three times,
and 181 four times. The 3032 participants also took the sai state anxiety
inventory at the same time. Some studies manipulated arousal by caffeine,
others manipulations included affect inducing movies.

2. The Motivational States Questionnaire (MSQ) is composed of 75 items, which
represent the full affective space (Revelle & Anderson, 1998). The MSQ
consists of 20 items taken from the Activation-Deactivation Adjective Check
List (Thayer, 1989), 18 from the Positive and Negative Affect Schedule
(PANAS,0(Watson, Clark & Tellegen, 1988) along with the affective circumplex
items used by Larsen & Diener (1992) The response format was a four-point
scale that corresponds to Russell & Carroll (1999) ”ambiguous–likely-unipolar
format”and that asks the respondents to indicate their current standing (“at this
moment”) with the following rating scale:
0—————-1—————-2—————-3
Not at all A little Moderately Very much
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Detailed descriptions of the data

spi
1. The SPI (SAPA Personality Inventory) is a set of 135 items primarily selected

from the International Personality Item Pool (ipip.ori.org). This is an example
data set collected using SAPA procedures at the sapa-project.org web site. This
data set includes 10 demographic variables as well. The data set with 4000
observations on 145 variables may be used for examples in scale construction
and validation, as well as empirical scale construction to predict multiple criteria.

2. Using the data contributed by about 125,000 visitors to the
https://SAPA-project.org website, David Condon has developed a hierarchical
framework for assessing personality at two levels. The higher level has the
familiar five factors that have been studied extensively in personality research
since the 1980s – Conscientiousness, Agreeableness, Neuroticism, Openness, and
Extraversion. The lower level has 27 factors that are considerably more narrow.
These were derived based on administrations of about 700 public-domain IPIP
items to 3 large samples. Condon describes these scales as being
”empirically-derived”because relatively little theory was used to select the
number of factors in the hierarchy and the items in the scale for each factor (to
be clear, he means relatively little personality theory though he relied on quite a
lot of sampling and statistical theory). You can read all about the procedures
used to develop this framework in his book/manual. If you would like to
reproduce these analyses, you can download the data files from Dataverse (links
are also provided in the manual) and compile this script in R (he used knitR).
Instructions are provided in the Preface to the manual.

3. This small subset of the data is provided for demonstration purposes. 24 / 37
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The ability data set
R code

dim(ability)
describe(ability)
lowerCor(ability)

dim(ability)
[1] 1525 16
> dim(ability)
[1] 1525 16
> describe(ability)

vars n mean sd median trimmed mad min max range skew kurtosis se
reason.4 1 1442 0.68 0.47 1 0.72 0 0 1 1 -0.75 -1.44 0.01
reason.16 2 1463 0.73 0.45 1 0.78 0 0 1 1 -1.02 -0.96 0.01
reason.17 3 1440 0.74 0.44 1 0.80 0 0 1 1 -1.08 -0.84 0.01
reason.19 4 1456 0.64 0.48 1 0.68 0 0 1 1 -0.60 -1.64 0.01
letter.7 5 1441 0.63 0.48 1 0.67 0 0 1 1 -0.56 -1.69 0.01
letter.33 6 1438 0.61 0.49 1 0.63 0 0 1 1 -0.43 -1.82 0.01
letter.34 7 1455 0.64 0.48 1 0.68 0 0 1 1 -0.59 -1.65 0.01
letter.58 8 1438 0.47 0.50 0 0.46 0 0 1 1 0.12 -1.99 0.01
matrix.45 9 1458 0.55 0.50 1 0.56 0 0 1 1 -0.20 -1.96 0.01
matrix.46 10 1470 0.57 0.50 1 0.59 0 0 1 1 -0.28 -1.92 0.01
matrix.47 11 1465 0.64 0.48 1 0.67 0 0 1 1 -0.57 -1.67 0.01
matrix.55 12 1459 0.39 0.49 0 0.36 0 0 1 1 0.45 -1.80 0.01
rotate.3 13 1456 0.20 0.40 0 0.13 0 0 1 1 1.48 0.19 0.01
rotate.4 14 1460 0.22 0.42 0 0.15 0 0 1 1 1.34 -0.21 0.01
rotate.6 15 1456 0.31 0.46 0 0.27 0 0 1 1 0.80 -1.35 0.01
rotate.8 16 1460 0.19 0.39 0 0.12 0 0 1 1 1.55 0.41 0.01
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ability: descriptives, continued

lowerCor(ability)
rsn.4 rs.16 rs.17 rs.19 ltt.7 lt.33 lt.34 lt.58 mt.45 mt.46 mt.47 mt.55 rtt.3 rtt.4 rtt.6 rtt.8

reason.4 1.00
reason.16 0.28 1.00
reason.17 0.40 0.32 1.00
reason.19 0.30 0.25 0.34 1.00
letter.7 0.28 0.27 0.29 0.25 1.00
letter.33 0.23 0.20 0.26 0.25 0.34 1.00
letter.34 0.29 0.26 0.29 0.27 0.40 0.37 1.00
letter.58 0.29 0.21 0.29 0.25 0.33 0.28 0.32 1.00
matrix.45 0.25 0.18 0.20 0.22 0.20 0.20 0.21 0.19 1.00
matrix.46 0.25 0.18 0.24 0.18 0.24 0.23 0.27 0.21 0.33 1.00
matrix.47 0.24 0.24 0.27 0.23 0.27 0.23 0.30 0.23 0.24 0.23 1.00
matrix.55 0.16 0.15 0.16 0.15 0.14 0.17 0.14 0.23 0.21 0.14 0.21 1.00
rotate.3 0.23 0.16 0.17 0.18 0.18 0.17 0.19 0.24 0.16 0.15 0.20 0.18 1.00
rotate.4 0.25 0.20 0.20 0.21 0.23 0.21 0.21 0.27 0.17 0.17 0.20 0.18 0.53 1.00
rotate.6 0.25 0.20 0.27 0.19 0.20 0.21 0.19 0.26 0.15 0.20 0.18 0.17 0.43 0.45 1.00
rotate.8 0.21 0.16 0.18 0.16 0.13 0.14 0.15 0.22 0.16 0.15 0.17 0.19 0.43 0.44 0.42 1.00
>
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How many factors – no right answer, one wrong answer

1. Statistical
• Extracting factors until the χ2 of the residual matrix is not

significant.
• Extracting factors until the change in χ2 from factor n to

factor n+1 is not significant.

2. Rules of Thumb
• Parallel Extracting factors until the eigenvalues of the real data

are less than the corresponding eigenvalues of a random data
set of the same size (parallel analysis)

• Plotting the magnitude of the successive eigenvalues and
applying the scree test.

3. Interpretability
• Extracting factors as long as they are interpretable.
• Using the Very Simple Structure Criterion (VSS)
• Using the Minimum Average Partial criterion (MAP).

4. Eigen Value of 1 rule
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Simulation

One way to test techniques is simulation

1. With real data, we do not know ‘truth’

2. With simulated data, we can know the right answer

3. Lets examine the sim item function
• defaults to certain parameter values
• processes the data (make it up)
• returns values

4. Simulations can default to certain values but allow you to
specify other values
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Simulation

sim.item Simulates a 2 dimensional item structure
function (nvar = 72, nsub = 500, circum = FALSE, xloading = 0.6,

yloading = 0.6, gloading = 0, xbias = 0, ybias = 0, categorical = FALSE,
low = -3, high = 3, truncate = FALSE, threshold = NULL) {
avloading <- (xloading + yloading)/2
errorweight <- sqrt(1 - (avloading^2 + gloading^2))
g <- rnorm(nsub)
truex <- rnorm(nsub) * xloading + xbias
truey <- rnorm(nsub) * yloading + ybias
if (!is.null(threshold)) {

if (length(threshold) < nvar)
threshold <- sample(threshold, nvar, replace = TRUE) }

if (circum) {
radia <- seq(0, 2 * pi, len = nvar + 1)
rad <- radia[which(radia < 2 * pi)]

} else {rad <- c(rep(0, nvar/4), rep(pi/2, nvar/4), rep(pi,
nvar/4), rep(3 * pi/2, nvar/4))}

error <- matrix(rnorm(nsub * (nvar)), nsub)
trueitem <- outer(truex, cos(rad)) + outer(truey, sin(rad))
item <- gloading * g + trueitem + errorweight * error
if (categorical) {

if (is.null(threshold)) {
item = round(item)
item[(item <= low)] <- low
item[(item > high)] <- high

} else {
i <- 1:nvar
item <- t(t(item[, i]) > threshold[i]) + 0

}}
colnames(item) <- paste("V", 1:nvar, sep = "")
return(item)
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Simulation

Simulate 2 factor data for 12 variables

Using the sim.item function

my.data <- sim.item(12, categorical =TRUE) #make them look like items
my.cor <- cor(my.data)
round(my.cor,2)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
V1 1.00 0.32 0.35 -0.02 0.04 0.05 -0.33 -0.38 -0.37 0.02 0.05 0.00
V2 0.32 1.00 0.33 -0.06 -0.01 0.03 -0.33 -0.31 -0.33 0.08 0.02 0.01
V3 0.35 0.33 1.00 -0.03 0.00 -0.01 -0.38 -0.33 -0.27 0.01 0.04 -0.11
V4 -0.02 -0.06 -0.03 1.00 0.29 0.36 -0.08 0.01 0.00 -0.31 -0.33 -0.28
V5 0.04 -0.01 0.00 0.29 1.00 0.33 0.00 0.07 0.01 -0.29 -0.30 -0.28
V6 0.05 0.03 -0.01 0.36 0.33 1.00 -0.06 0.10 -0.03 -0.37 -0.33 -0.28
V7 -0.33 -0.33 -0.38 -0.08 0.00 -0.06 1.00 0.30 0.30 -0.01 0.02 0.10
V8 -0.38 -0.31 -0.33 0.01 0.07 0.10 0.30 1.00 0.36 -0.10 -0.11 0.02
V9 -0.37 -0.33 -0.27 0.00 0.01 -0.03 0.30 0.36 1.00 -0.05 -0.02 0.00
V10 0.02 0.08 0.01 -0.31 -0.29 -0.37 -0.01 -0.10 -0.05 1.00 0.40 0.33
V11 0.05 0.02 0.04 -0.33 -0.30 -0.33 0.02 -0.11 -0.02 0.40 1.00 0.35
V12 0.00 0.01 -0.11 -0.28 -0.28 -0.28 0.10 0.02 0.00 0.33 0.35 1.00
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Simulation

Remember to always describe your data

R code
describe(my.data)

describe(my.data)
vars n mean sd median trimmed mad min max range skew kurtosis se

V1 1 500 0.00 1.05 0 0.00 1.48 -3 3 6 0.06 0.03 0.05
V2 2 500 0.00 1.03 0 0.00 1.48 -3 3 6 0.05 -0.08 0.05
V3 3 500 -0.04 1.07 0 -0.06 1.48 -3 3 6 0.15 -0.23 0.05
V4 4 500 -0.06 1.02 0 -0.04 1.48 -3 3 6 -0.12 0.16 0.05
V5 5 500 -0.04 0.98 0 -0.07 1.48 -3 3 6 0.13 -0.19 0.04
V6 6 500 -0.05 1.06 0 -0.05 1.48 -3 3 6 0.07 0.01 0.05
V7 7 500 0.01 1.01 0 0.02 1.48 -3 3 6 -0.16 0.13 0.05
V8 8 500 -0.01 1.08 0 -0.01 1.48 -3 3 6 -0.04 -0.03 0.05
V9 9 500 0.03 1.06 0 0.02 1.48 -3 3 6 0.03 -0.24 0.05
V10 10 500 0.04 1.02 0 0.07 1.48 -3 2 5 -0.20 -0.16 0.05
V11 11 500 0.03 1.03 0 0.01 1.48 -3 3 6 -0.01 -0.06 0.05
V12 12 500 -0.03 0.98 0 -0.01 1.48 -3 3 6 -0.11 0.11 0.04
>
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Simulation

Multiple ways to determine how many factors are in the data

No one answer. Many are good, one should be avoided.

1. Statistical tests
• χ2 test of residuals (sensitive to sample size and non-normality

of data)
• χ2 test of change from nf=n to nf=n+1 (sensitive to sample

size)
• RMSEA, BIC, AIC, SABIC are not as sensitive to sample size,

but are to non-normality

2. Rules of Thumb
• Scree Test of eigen values (Cattell, 1966)
• Minimum Average Partial (MAP) (Velicer, 1976)
• Very Simple Structure (Revelle & Rocklin, 1979)
• Parallel Analysis of random data (Horn, 1965)
• As many as can be interpreted

3. One test to avoid: Eigen value of 1 (Many programs default
to this).
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Simulation

How many factors in my.cor
> fa.parallel(my.data)
fa.parallel(my.data)
Parallel analysis suggests that the number of factors = 2 and the number of components = 2
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Simulation

Take out 2 factors from my.cor

R code
f2 <- fa(my.cor,nfactors =2)

Factor Analysis using method = minres
Call: fa(r = my.cor, nfactors = 2)
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR2 h2 u2 com
V1 0.64 -0.02 0.41 0.59 1.0
V2 0.59 0.02 0.35 0.65 1.0
V3 0.61 -0.04 0.37 0.63 1.0
V4 0.03 -0.58 0.34 0.66 1.0
V5 0.01 -0.55 0.30 0.70 1.0
V6 0.03 -0.60 0.36 0.64 1.0
V7 -0.58 0.08 0.34 0.66 1.0
V8 -0.62 -0.10 0.39 0.61 1.1
V9 -0.59 0.00 0.35 0.65 1.0
V10 0.07 0.61 0.38 0.62 1.0
V11 0.03 0.63 0.39 0.61 1.0
V12 -0.06 0.57 0.33 0.67 1.0

MR1 MR2
SS loadings 2.21 2.12
Proportion Var 0.18 0.18
Cumulative Var 0.18 0.36
Proportion Explained 0.51 0.49
Cumulative Proportion 0.51 1.00

With factor correlations of
MR1 MR2

MR1 1.00 0.04
MR2 0.04 1.00

Mean item complexity = 1
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 66 and the objective function was 2.52
The degrees of freedom for the model are 43 and the objective function was 0.11

The root mean square of the residuals (RMSR) is 0.03
The df corrected root mean square of the residuals is 0.03

Fit based upon off diagonal values = 0.99
Measures of factor score adequacy

MR1 MR2
Correlation of (regression) scores with factors 0.88 0.88
Multiple R square of scores with factors 0.78 0.77
Minimum correlation of possible factor scores 0.56 0.53
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Simulation

2 factors of my.cor, continued

With factor correlations of
MR1 MR2

MR1 1.00 0.04
MR2 0.04 1.00

Mean item complexity = 1
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are 66 and the objective function was 2.52
The degrees of freedom for the model are 43 and the objective function was 0.11

The root mean square of the residuals (RMSR) is 0.03
The df corrected root mean square of the residuals is 0.03

Fit based upon off diagonal values = 0.99
Measures of factor score adequacy

MR1 MR2
Correlation of (regression) scores with factors 0.88 0.88
Multiple R square of scores with factors 0.78 0.77
Minimum correlation of possible factor scores 0.56 0.53
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1 factor of ability, how well does it fit?

R code
f1 <- fa(ability)

> f1
Factor Analysis using method = minres
Call: fa(r = ability)
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 h2 u2 com
reason.4 0.55 0.30 0.70 1
reason.16 0.45 0.20 0.80 1
reason.17 0.54 0.29 0.71 1
reason.19 0.47 0.22 0.78 1
letter.7 0.52 0.27 0.73 1
letter.33 0.48 0.23 0.77 1
letter.34 0.54 0.29 0.71 1
letter.58 0.53 0.28 0.72 1
matrix.45 0.41 0.17 0.83 1
matrix.46 0.43 0.18 0.82 1
matrix.47 0.47 0.22 0.78 1
matrix.55 0.35 0.12 0.88 1
rotate.3 0.50 0.25 0.75 1
rotate.4 0.55 0.30 0.70 1
rotate.6 0.53 0.28 0.72 1
rotate.8 0.46 0.21 0.79 1

MR1
SS loadings 3.81
Proportion Var 0.24

Mean item complexity = 1
Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 120 and the objective function was 3.28
with Chi Square of 4973.83

The degrees of freedom for the model are 104 and the objective function was 0.7

The root mean square of the residuals (RMSR) is 0.07
The df corrected root mean square of the residuals is 0.07

The harmonic number of observations is 1426 with the empirical chi square 1476.62
with prob < 3e-241

The total number of observations was 1525 with Likelihood Chi Square = 1063.25
with prob < 9.5e-159

Tucker Lewis Index of factoring reliability = 0.772
RMSEA index = 0.078 and the 90 % confidence intervals are 0.074 0.082
BIC = 300.96
Fit based upon off diagonal values = 0.93
Measures of factor score adequacy

MR1
Correlation of (regression) scores with factors 0.91
Multiple R square of scores with factors 0.84
Minimum correlation of possible factor scores 0.67
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1 factor (continued)

The degrees of freedom for the null model are 120 and the objective function was
3.28 with Chi Square of 4973.83

The degrees of freedom for the model are 104 and the objective function was 0.7

The root mean square of the residuals (RMSR) is 0.07
The df corrected root mean square of the residuals is 0.07

The harmonic number of observations is 1426 with the empirical chi square 1476.62
with prob < 3e-241

The total number of observations was 1525 with Likelihood Chi Square = 1063.25
with prob < 9.5e-159

Tucker Lewis Index of factoring reliability = 0.772
RMSEA index = 0.078 and the 90 % confidence intervals are 0.074 0.082
BIC = 300.96
Fit based upon off diagonal values = 0.93
Measures of factor score adequacy

MR1
Correlation of (regression) scores with factors 0.91
Multiple R square of scores with factors 0.84
Minimum correlation of possible factor scores 0.67
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