gserRs and ProgammeRs gséeRs geoegjwonog code ZroogrammeRs %cor\pts (continued)
Psychology 350: Advanced statistics and
programming in R
UserRs versus ProgrammeRs

William Revelle

Department of Psychology
Northwestern University
Evanston, lllinois USA

NORTHWESTERN
UNIVERSITY

April, 2024

References

1/34

UserRs and ProgammeRs UseRs Reading code ProgrammeRs
o

00 00000 000
0000000 0000000000 [e]e]

Outline

UserRs and ProgammeRs

UseRs
Code, Scripts, Functions
Example Scripts

Reading code
Some little functions
The reliability function

ProgrammeRs
The basic structure of a function
Useful help for writing functions

Scripts (continued)

Scripts (continued)
00

References

2/34

UserRs and ProgammeRs
°

UserRs and ProgrammeRs

1. There are many ways to use R

n

© N o o bk~

It is important to become a useR before becoming a
programmeR

This requires learning how to work through various examples
Using functions

Writing short scripts which combine functions

Only then should we try to develop programs

Lets work through various scripts for doing basic descriptions
And then various scripts for doing reliability analysis.

3/34

UseRs
°0

R as a useful tool

. For simple data analysis and graphics just a few lines of code
. For programmatic analyses, use and keep scripts

® This might involve a set of analysis on one set of data
® Typically just step through the script and write more code as
we go along
® This is a way to document what you are doing in your research,
® You are documenting the specific data set and the specific
analyses you do.
. For frequent analysis of different sets of data, write (program)
a function
® A way of organizing repeated analyses
® Want to share a method with others.
® Documentation of what the function does, not the specific
application

4/34

UseRs
oe

Common structure of scripts and programs

. Defining the packages you need to use (e.g.,)

® library(psych) #for some useful tools

® library(psychTools) #for large example data sets

. Data entry (accessing the data)

® Checking for correct entry

® Basic characteristics of the data (e.g., describe,
pairs.panels, corPlot)

. Data processing

® Apply some particular operation on the data
® This might be an iterative operation or merely some closed
form calculation

. Reporting the results

® Return all results (in a list of results)
® But perhaps print out just the important results

5/34

UseRs
000000

Example scripts: taken from the Reliability appendix

install.packages ("psych",dependencies = TRUE) #Just need to do this once
install.packages ("psychTools") #Just do this once as well

library (psych) #make the psych package active-— need to do this everytime you start
library (psychTools) #if you want to use the example data sets and some convenient to

#Getting help
help ("psych") #opens a help window overview of the packagr
help{"psychTools") #opens a help window listing the various data sets in psychTools
vignette (topic="intro",package="psych") #opens an extensive pdf document
vignette (topic="overview",package=psychTools") #opens the second part of this vignet
?omega #opens the specific help page for e.g., the omega function

R
bls

te

From Online supplement to Reliability from « to w: A Tutorial

6/34

https://personality-project.org/revelle/publications/rc.pa.supplement.pdf
https://personality-project.org/revelle/publications/rc.pa.supplement.pdf

UseRs

O®@00000

Data input

Several psych or psychTools fiunctions

my.data <- read.file()#opens an 0OS dependent search window and
reads data according to the suffix
#or first copy your data to the clipboard and then
my.data <- read.clipboard() #assumes that header information is
on the first line of the file
my.data <- read.clipboard(header=FALSE) #no header information:
the data start on the first line
choose a remote file and read it
remote <- "https://personality-project.org/courses/350/dataets/
simulation.txt"
my.data <- read.file (remote)

7/34

UseRs
[e]e] lelelele}

Preliminary processi checking the data

dim(sai) #how many rows (subjects) and columns (variables) in the built in data set sai
dim(msqR) #how many rows (subjects) and columns variables) in the msqR data set
headTail (sai) # show the first and last 3 lines of the sai data set

dim(sai) #how many rows (subjects) and columns (variables) in the data set sai
[1] 5378 23
> dim(msqR) #how many rows (subjects) and columns variables) in msqgR data set
[1] 6411 88
> headTail (sai) # show the first and last 3 lines of the sai data set
study time id calm secure tense regretful at.ease upset worrying rested anxious comfort

1 AGES 1 1 3 3 2 1 2 1 1 3 2

2 AGES 2 3 3 2 2 3 2 1 1 2

3 AGES 1 3 3 3 2 1 3 1 2 1 1

4 AGES 1 4 3 3 1 1 3 1 1 2 1

5375 XRAY 2 197 2 2 3 <NA> <NA> <NA> <NA> <NA> <NA>

5376 XRAY 2 198 4 4 1 1 4 1 1 1 1

5377 XRAY 2 199 4 4 1 1 4 1 1 1 1

5378 XRAY 2 200 3 3 2 2 3 2 2 2 2
nervous jittery high.strung relaxed content worried rattled joyful pleasant

1 2 2 2 2 3 1 1 3 3

2 2 1 1 2 3 2 1 1 2

3 2 2 1 2 3 1 1 3 3

4 1 2 1 3 4 1 1 2 3

5375 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>

5376 1 1 1 4 3 2 1 3 4

5377 1 1 1 3 4 1 1 3 4

5378 2 2 2 2 3 4 1 3 3

8/34

UserRs and ProgammeRs
o

?msqR

Help files are meant to guide you to the data or function

table (msgR$study, msqR$time)

table (msqR$study, msqR$time)

AGES
Cart
CITY
EMIT
Fast
FIAT
FILM
FLAT
GRAY
HOME

ITEM
Maps
MITE
MIXX
PAT

PATS

SWAM.
SWAM.

VALE
XRAY

one
two

UseRs

00
0008000

Reading code

00

ProgrammeRs

000

[e]e]

Scripts (continued)
00

Basic structure of the msqR and sai data

#ask for information about the sai data set

1 2
68 68
63 63

157 157
71 71
94 94
70 70
95 95

170 170

107 107
67 67

102 102
49 49

160 160
49 49
71 71
65 65

132 0
94 0
54 0
77 77

200 200

<0

o
OUloO0OO0OOOOOOUOOOOOOW

oo

o
OUlO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOO0OO N

oo

#show the study names and

sample sizes

References

9/34

UseRs
O000e00

SAl and MSQR are from 10 years of studies

. Basic project was to examine the effect of emotional and
physiological state on cognitive performance.

. Many studies administered caffeine (4 mg/kg body weight) (or
a placebo).

. Some studies manipulated mood with movies (fear, sadness,
happiness, control)

. Mood data (SAl and MSQ) collected before manipulation

. We can choose studies representing various conditions using
the subset command.

10/34

the %in% or is.element funct

UseRs
0000080

Scripts — continued
Select some subsets for analysis using the subset function. Use

#Now, select some subsets for analysis using the subset function.
#the short term consistency sets
sai.control <- subset (sai,is.element (sai$study,c("Cart", "Fast", "SHED", "SHOP")

#pre and post drug studies
sai.drug <- subset (sai,is.element (sai$study, c("AGES","SALT","VALE", "XRAY")))

#pre and post film studies
sai.film <- subset (sai,is.element (sai$study, c("FIAT","FLAT", "XRAY")))
msq.control <- subset (msqR, is.element (msgR$study,c("Cart", "Fast", "SHED", "SHOP

#pre and post drug studies
msq.drug <- subset (msqR, is.element (msgR$study, c("AGES","CITY", "EMIT", "SALT",
"VALE", "XRAY")))

#pre and post film studies

")))

msq.film <- subset (msqR, is.element (msqR$study, c("FIAT","FLAT", "MAPS", "MIXX", "XRAY")))
msq.films4 <- subset (msqR, is.element (msgR$study, c("FLAT", "MAPS", "XRAY")))
msql <- subset (msqR,msqgR$time == 1) #just the first day measures

sail <- subset (sai,sai$time==1) #just the first set of observations for the SAI
#do some fancy subsetting

sam.rim <- subset (sai, (sai$study %in% c("SAM" ,"RIM")))#choose SAM and RIM for 2
vale <- subset (sai,sai$study=="VALE") #choose the VALE study for multilevel analy

day test
5is

11/34

UseRs
O00000e

Scripts: continued

dim(msq.control) #how many subjects and how many items?
dim(sai.control) #show the number of subjects and items for the sec
table (sam.rim$time) #how many were in each time point
table (vale$time) #how many were repeated twice on day 1 and then on

> dim(msql) #how many subjects and how many items?
[1] 3032 88
> dim(sail) #show the number of subjects and items for the second subset
[1] 3032 23
> table(rim$time) #how many were in each time point
1 3
666 666

> table(vale$time) #how many were repeated twice on day 1 and then on day 2
1 2 3 4
77 77 70 70

12/34

Reading code
©0000

Reading and writing code

1. Just as we learn to write by reading books
2. So we learn to code by reading code

. Almost all R functions are available to read just by typing in
the name of the function

4. All functions have a help page and usually examples.

. You can run them in “debug” mode to step through the
function to see what it does

13/34

Reading code
00000

The parts of a function

1. Function name and parameter list

2. Preliminaries (making sense of the parameters, getting ready
to process)

3. The body of the function: do something useful

4. The results: package them into useful output, perhaps by
creating lists of the results

5. return(results) and end the function.
When reading a function, see if you can identify these parts.

14/34

Reading code
00000

Reading code

. To read the code of almost any function, just type in the name
of the function without ()

. However, this does not include the comments that have been
written for that function by the programmer

. Source Code for psych is in the class folder (this has the
comments)

. To see a list of all of the functions in psych

. To see a particular function find out where it probably is by ?
the function

. e.9., fisherzis in the fisherz help page, so open and view
that one

. the isCorrelation function is part of a larger set of
miscellaneous functions. (This is a collection of minor
functions that are documented either in the psych.misc help
page or separately.) Worth examing for demonstration of
documenting code.

15/34

https://personality-project.org/courses/350/psych.sourcecode/psych/R/
https://personality-project.org/courses/350/psych.sourcecode/psych/R/fisherz.R
https://personality-project.org/courses/350/psych.sourcecode/psych/R/misc.R

Reading code
0000

The fisherz functions

As set of one liners that don’t really need to be documented by
comments. The names speak for themselves.

"fisherz" <-
function(rho) {0.5%log((1l+rho)/(1-rho)) } #converts r to z

"fisherz2r" <-
function(z) {(exp(2xz)-1)/(l+exp(2*xz)) } #converts back again

nr2d" <—
function (rho) {2*rho/sqrt(l-rho”2)}

"d2r" <-
function(d) {d/sqrt(d"2+4)}

#added sign correction October 8, 2018
"t2r" <- function(t,df) {sign(t) * sqrt(t"2/(t"2 + df))} #fixed April 27, 2017

"g2r" <- function(g,df,n) {sign(g) * g/sqrt(g”2 + 4xdf/n)}
"chi2r" <- function(chi2,n) {sqrt(chi2/n)}

"r2chi" <- function(rho,n) { chi2 <-(rho”"2 xn)}

"cor2cov" <- "r2c" <- function(rho,sigma) { sigma <- diag(sigma)
cov <- sigma %*% rho %*% sigma

colnames (cov) <- rownames (cov) <— colnames (rho)
return (cov) }

16/34

Reading code
0000@

The isCorrelation function
Part of the misc.R functions.

Note how if it is non obvious, we explain what the function does

and perhaps when it was developed or when it was patched.
Uses several core-R functions

#this just shows if it is a matrix is symmetric and has diagonals of 1
#Added the unclass to handle a problem with class partial.r 4/10/21
"isCorrelation" <- function(x,na.rm=FALSE) {value <- FALSE
if (NROW(x) == NCOL(x)) {
if(is.data.frame(x)) {if(isSymmetric(unclass (unname (as.matrix(x)))) {value <- TRUE}}else {
if (isSymmetric (unclass (unname(x)))) {value <- TRUE}}

value <- value && isTRUE (all.equal (prod(diag(as.matrix(x))),1l))
if (!value

&& (na.rm) && any(is.na(diag(as.matrix(x))))) stop(
"Although the matrix is symmetric, one of the elements of the diagonal is NA.
Check your data.")

value <- value && isTRUE((min(x,na.rm=TRUE)>= -1) & (max(x,na.rm=TRUE) <= 1))
}
return(value) }

#this just shows if it is a symmetric matrix
"isCovariance" <- function(x) {value <- FALSE
if (NROW(x) == NCOL(x)) {

if(is.data.frame(x)) {if(isSymmetric(unclass (unname (as.matrix(x))))) {
value <- TRUE}} else {
if (isSy ric(unclass (u (x)))) {value <- TRUE}}}

value <- value && isTRUE (all.equal (prod(diag(as.matrix(x))),1))
return (value)}

#don’t check for diagon

17/34

https://personality-project.org/courses/350/psych.sourcecode/psych/R/misc.R

S A

Reading code
0000000000

The many types of reliability

. As discussed in Revelle and Condon (2019) there are many

measures of reliability:

Internal consistency as measured by a or wp, or w.
Alternate forms as found from the correlation of two forms.
Split half reliability

Measures of unidimensionality Revelle and Condon (2023).
Stability over time by measuring test-retest correlations

Each of these may use a different function.
With a little bit of code, we can stitch these together.
This is an example of scripting

Which is then followed by an example of small function to do it.

18/34

Reading code
0800000000

Simple script

my.data <— ability # change this to match your data
alp<- alpha(my.data)

sp <— splitHalf (my.data)

om <- omega (my.data, 4)

uni <- unidim(my.data)

summary (alp)

summary (sp)

uni

summary (om)

summary (alp)

Reliability analysis

raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.83 0.83 0.84 0.23 4.9 0.0064 0.51 0.25 0.21

> summary (sp)

Warning message:

In summary.psych (sp)

I am sorry, I do not have a summary function for this object
> uni

A measure of unidimensionality
Call: unidim(keys = my.data)

Unidimensionality index =
u tau con alpha av.r median.r CFI ECV
0.84 0.91 0.93 0.83 0.23 0.21 0.80 0.75
19/34

UserRs and ProgammeRs UseRs Reading code ProgrammeRs Scripts (continued) References
o 0o

00 00000 (o]
0000000 0080000000 [e]e]

Better: use a function which does the stitching

reliability (my.data)

keys not specified, all items will be scored
Measures of reliability
reliability(keys = my.data)

omega_h alpha omega.tot Uni

tau cong max.split min.split mean.r med.r n.items CF:
All_items 0.56 0.83 0.85 0.84 0.91 0.93 0.87 0.73 0.23 0.21

16 0.¢

20/34

Reading code
0008000000

Using a keys list

1. Some functions can be done on multiple subscales

. Specify a keys list which includes direction for scoring

. Functions taking keys.1list include alpha,reliability,
scoreltems

. Functionally, this takes our script file and runs it for each of a
subset of the data.

21/34

Reading code
0000800000

The reliability function

rel <- reliability(bfi.keys,bfi)
rel

Measures of reliability
reliability(keys = bfi.keys, items = bfi)
omega_h alpha omega.tot Uni

agree 0.64 0.71 0.75 0.89
conscientious 0.53 0.73 0.77 0.95
extraversion 0.55 0.76 0.82 0.97
neuroticism 0.71 0.81 0.85 0.93
openness 0.39 0.61 0.70 0.85

>

cong max.split min.split mean.r med.r n.item

0
0
0.
0
0

0.

ocooo

0.

0
0.
0.
0

0.

0
0.
0.
[¢]

0.

oooo

22/34

Reading code
0000080000

An example of using a function which combines other functions

reliability(ability) #Jjust one scale
reliability (bfi.keys, bfi) #multiple scales with keying information

reliability (ability) #just one scale
keys not specified, all items will be scored
Measures of reliability
reliability(keys = ability)
omega_h alpha omega.tot Uni r.fit fa.fit max.split min.split mean.r med.r n.items
All items 0.56 0.83 0.85 0.84 0.91 0.93 0.87 0.73 0.23 0.21 16

reliability (bfi.keys, bfi) #multiple scales with keying information
Measures of reliability
reliability(keys = bfi.keys, items = bfi)
omega_h alpha omega.tot Uni r.fit fa.fit max.split min.split mean.r med.r n. it

agree 0.64 0.71 0.75 0.89 0.90 0.99 0.75 0.62 0.33 0.34
conscientious 0.53 0.73 0.77 0.95 0.97 0.98 0.73 0.64 0.35 0.34
extraversion 0.55 0.76 0.82 0.97 0.97 0.99 0.78 0.71 0.39 0.38
neuroticism 0.71 0.81 0.85 0.93 0.95 0.98 0.83 0.73 0.47 0.41
openness 0.39 0.61 0.70 0.85 0.88 0.97 0.66 0.53 0.24 0.23

>

23/34

Reading code
0000008000

Reliability: Preliminaries

#Developed 6/15/21
#Fixed 6/20/21 to avoid the problem of scales of one item or too many to find splits
#Modified 7/10/21 to allow it to function with just a set of items, no keys specified
#Modified 7/11/21 to include the unidimensional estimates from unidim and

to use the R object for speed

reliability <- function(keys=NULL, items, nfactors=2, split=TRUE, raw=TRUE, plot=FALSE,
hist=FALSE, n.sample=10000) {
cl <- match.call()
result <- list()
splits <- list()
best <- worst <- list()
res.name <- list()
if (hist) raw <-TRUE
if(raw) split <- TRUE

#check to see if the first parameter is a list of keys, if not, then we want
to do reliability on just one scale

if(!is.null (keys)){ if (NCOL(keys)==1) { n.scales <- length(keys) } else {
items <- keys #this is the case where the user did not specify keys but just the data
message ("keys not specified, all items will be scored")
n.scales <-1
keys <— list()
keys[["All_items"]] <- colnames (items)
}} else {n.scales <- 1
keys[["All_items"]] <- colnames (items)
}
if (isCorrelation(items)) {cors<- TRUE} else {cors<—- FALSE}
#is the input a correlation matrix

24/34

Reading code
0000000800

Reliability: the main loop

for (scales in l:n.scales) { #the general case

scale.key <- keys|[[scales]] #

select <- selectFromKeys (scale.key) #the items for this scale
if (length(select)>1) {

if (cors) {om <- omegah(items[select,select], nfactors=nfactors,plot=plot, two.ok=TRUE)

} else {
om <- omegah(items[,select], nfactors=nfactors,plot=plot,two.ok=TRUE) }

uni <- unidim(om$R) #use the R object rather than redoing the factoring

if (split) {temp.keys <- colnames (om$R) <- gsub("-","",colnames (om$R))
sign.key <- rep("",length(select))
sign.key[which (colnames (om$R) != rownames (om$R))] <—- "-"

temp.keys <- pasteO(sign.key, temp.keys)
#this next line was dropped, but I keep to show my thinking
split.half <- suppressWarnings (splitHalf (om$R, raw=raw,brute=FALSE, n.sample=n.sample,
key=temp.keys))
#don’t use temp.keys
split.half <- suppressWarnings(splitHalf (om$R, raw=raw,brute=FALSE,n.sample=n.sample))
best[[scales]] <- list (max=split.half$maxAB)
worst[[scales]] <- list (min=split.half$minAB)
result[[scales]] <- list(omega_h = om$omega_h, alpha = split.half$alpha,
omega.tot = om$omega.tot,u=uni$u[l],av.r.fit=uni$u[2],fa.fit=uni$u[3],
maxrb=split.half$maxrb, minrb=split.half$minrb,
mean.r=split.half$av.r, med.r <- split.half$med.r, n.items=length (select))
if (raw) splits[[scales]] <- split.half$raw} else {
result[[scales]] <- list(omega_h = om$omega_h, alpha = om$alpha, omega.tot = om$omega.tot,
u=uni$u[l],av.r.fit=uni$u[2], fa.fit=uni$u[3],n.items=length(select)) }

res.name[scales] <- names (keys) [scales]

}
} 25/34

Reading code
0000000080

Reliability: wrapping it up
#Creates a list that keeps the names
best <- unlist (unlist (best, recursive=FALSE), recursive=FALSE)
worst <- unlist (unlist (worst, recursive=FALSE),h recursive=FALSE)
names (result) <- res.name
if(split) {ncol <- 11} else {ncol <- 7}
result.df <- matrix(unlist (result[!is.null(result)]), ncol=ncol,byrow=TRUE)

if (split) { colnames (result.df) <- c("omega_h", "alpha", "omega.tot", "Uni","r.fit",
"fa.fit", "max.split", "min.split", "mean.r", "med.r", "n.items") } else {
colnames (result.df) <- c("omega.h", "alpha", "omega.tot", "Uni","r.fit",

"fa.fit","n.items")}
rownames (result.df) <- unlist (res.name)
if (raw) {
1x <- unlist (lapply(splits, length))
splits <- splits[1x>0]
names (splits) <- rownames (result.df)

splits.mat <- matrix(unlist (splits),ncol=length (keys))
colnames (splits.mat) <- names (keys)
class(result.df) <- c("psych","reliability", "matrix")
names (best) <- paste (rep (res.name, each=2), names (best))
names (worst) <- paste(rep(res.name,each=2),names (worst))
result <- list(result.df = result.df,splits= splits,max=best,min=worst, Call = cl)
if (hist) {multi.hist(splits)}
class (result) <- c("psych", "reliability")
return (result) } else {

class(result.df) <- c("psych", "reliability", "matrix")
return (result.df)
}
}
Created June 11-17, 2021
#fixed 6/20/21 to avoid the problem of null cases

26/34

Reading code
000000000 e

An example of using the function (again)

reliability(ability) #Jjust one scale
reliability (bfi.keys, bfi) #multiple scales with keying information

reliability (ability) #just one scale
keys not specified, all items will be scored
Measures of reliability
reliability(keys = ability)
omega_h alpha omega.tot Uni r.fit fa.fit max.split min.split mean.r med.r n.items
All items 0.56 0.83 0.85 0.84 0.91 0.93 0.87 0.73 0.23 0.21 16

reliability (bfi.keys, bfi) #multiple scales with keying information
Measures of reliability
reliability(keys = bfi.keys, items = bfi)
omega_h alpha omega.tot Uni r.fit fa.fit max.split min.split mean.r med.r n. it

agree 0.64 0.71 0.75 0.89 0.90 0.99 0.75 0.62 0.33 0.34
conscientious 0.53 0.73 0.77 0.95 0.97 0.98 0.73 0.64 0.35 0.34
extraversion 0.55 0.76 0.82 0.97 0.97 0.99 0.78 0.71 0.39 0.38
neuroticism 0.71 0.81 0.85 0.93 0.95 0.98 0.83 0.73 0.47 0.41
openness 0.39 0.61 0.70 0.85 0.88 0.97 0.66 0.53 0.24 0.23

>

27/34

ProgrammeRs
©00

The parts of a function

Functions can automate parts of scripts that are repeated multiple
times.
Each function has:

1. function name and parameter list

2. Preliminaries (making sense of the parameters, getting ready
to process)

3. The body of the function: do something useful

4. The results: package them into useful output, perhaps by
creating lists of the results

5. return(results) and end the function.
When reading a function, see if you can identify these parts.

28/34

ProgrammeRs
fol 1o}

A baby function

first <- function(input, parameters) {

#some checks on this
#now do something (the body
output <- input + 1

#now return what you have done
return (output)

}

first <- function(input, parameters) {

VoA o+ o+

[

#some checks on this
#now do something (the body
output <- input + 1
#now return what you have done
return (output)
}

first (10)

1] 11

29/34

ProgrammeRs
ooe

Make the function m plicated (and useful)

second <- function (input, parl, par2) ({

#some checks on this

#now do something (the body)
for(i in 1: par2) {

input <- input + parl

print (input)

}

result <- input

#now return what you have done
return (result)

}

second <- function(input, parl, par2) {

+EF o+

+

#some checks on this

#now do something (the body)
for(i in 1: par2) {

input <- input + parl

print (input)

}

result <- input

#now return what you have done
return (result)

}

> second(10,2,4)

[1]
[1]
[1]
[1]
[1]

30/34

UserRs and ProgammeRs
o

UseRs
00
0000000

Reading code
00000
0000000000

ProgrammeRs
000
[Je]

Scripts (continued) References
00

A few of the most useful data manipulations functions (adapted from
Rpad-refcard). Use ? for details

file.choose
file.choose

read.table
read.csv

read.delim

c
from:to
seq
rep

gl

matrix

data.frame

() find a file

(new=TRUE) create a new
file

(filename)

(filename) reads a comma
separated file

(filename) reads a tab
delimited file

(...) combine arguments
e.g., 48

(from,to, by)
(x,times,each) repeat x

(n,k,...) generate factor
levels

(x,nrow=,ncol=) create a
matrix

(...) create a data frame

dim
str
list

colnames

rownames
ncol(x), nrow(x)
rbind

cbind

is.na

na.omit

table

merge

apply

Is

rm

(x) dimensions of x

(x) Structure of an object
(...) create a list

(x) set or find column
names

(x) set or find row names
number of row, columns
(...) combine by rows
(...) combine by columns
(x) also is.null(x), is

(x) ignore missing data
(x)

(x.y)

(x,re,FUNCTION)

() show workspace

(

) remove variables from
workspace
31/34

UserRs and ProgammeRs
o

UseRs
00
60600000

Reading code

00000
0000000000

ProgrammeRs
Q00
oe

Scripts (continued) References
0o

More useful statistical fuggliQnentise fofolfdetallsge

mean
is.na
na.omit
sum
rowSums
min

max
range
table
summary
sd

cor

cov

solve

aov

X)
x) also is.null(x), is
X) ignore missing data
X)
X) see also colSums(x)
X)
X)
X)
X)
x) depends upon x
x) standard deviation
X) correlation

)

X) covariance

x) inverse of x
(y“x) linear model
(y~x) ANOVA

describe
describeBy
pairs.panels
error.bars
error.bars.by
fa

pca

iclust
scoreltems

(x) descriptive stats
(x,y) descriptives by group
(x) SPLOM

(x) means + error bars
(x) Error bars by groups
(x,n) Factor analysis
(x,n) Principal components
(x) ltem cluster analysis
(x) score multiple scales

score.multiple.choice (x) score multiple choice

alpha
omega
irt.fa

ImCor

bestScales

scales
(x) Cronbach’s alpha
(x) MacDonald’'s omega

(x) ltem response theory
through factor analysis

(y~x)
linear model for correlations
empirical scale construction

32/34

Scripts (continued)
°0

See the R studio analysis for reliability for detailed examples of
reliability
1. http://personality-project.org/courses/350/350.
wk.4.html
2. A simple script to show the distinction between test-restest
and « reliability uses 474 participants on the EPI

epil <- subset (epiR, epiR$time==1);
epi2 <- subset (epiR, epiR$time==2) f#select time 1 and2 Ss
scoresl <- scoreltems (epi.keys,epil) #find the scores and alpha
scores2 <- scoreltems (epi.keys,epi2) #find the scores and alpha
summary (scoresl); summary (scores2) j#show the summaries for time 2
rl2 <- cor2(scoresl$scores,scores2$scores) #correlate time 1 and time
round (scoresl$alpha,2) ;round(scores2$alpha,2);round(diag(rl2),2)

round (scoresl$alpha, 2)

E N L Imp Soc
alpha 0.77 0.81 0.39 0.52 0.76
> round(scores2$alpha, 2)

E N L Imp Soc
alpha 0.74 0.8 0.4 0.49 0.75
> round(diag(rl2),2)

E N L Imp Soc

0.81 0.80 0.65 0.70 0.81

33/34

http://personality-project.org/courses/350/350.wk.4.html
http://personality-project.org/courses/350/350.wk.4.html

UserRs and ProgammeRs UseRs Reading code ProgrammeRs Scripts (continued) References
o 00000 oe

00
0000000 0000000000 [e]e]

For a more complete list of the functions in psych

1. psych as a Swiss Army knife
® Data entry and descriptives
® Multivariate analysis
® Scale Construction and reliability
® Regression
® Machine Learning
® Simulation

2. This probably makes more sense now after 4 weeks of R

34/34

https://personality-project.org/courses/350/swiss.army.r.pdf

References
Revelle, W. and Condon, D. (2023). Using unidim rather than
omega in estimating undimensionality. submitted.

Revelle, W. and Condon, D. M. (2019). Reliability from o to w: A
tutorial. Psychological Assessment., 31(12):1395-1411.

34/34

https://doi.org/10.1037/pas0000754
https://doi.org/10.1037/pas0000754

	UserRs and ProgammeRs
	UseRs
	Code, Scripts, Functions
	Example Scripts

	Reading code
	Some little functions
	The reliability function

	ProgrammeRs
	The basic structure of a function
	Useful help for writing functions

	Scripts (continued)
	References

