Psychology 205: Research Methods in Psychology The problem of base rates

William Revelle

Department of Psychology Northwestern University Evanston, Illinois USA

May, 2021

Outline

Inferential statistics

The problem of base rates

Hypothesis testing using inferential statistics

- How likely are the observed data given the hypothesis that an Independent Variable has no effect.
- Bayesian statistics compare the likelihood of the data given the hypothesis of no differences as contrasted to the likelihood of the data given competing hypotheses.
 - This takes into account our prior willingness to believe that the IV could have an effect.
 - Also takes into account our strength of belief in the hypothesis of no effect
- Conventional tests report the probability of the data given the "Null" hypothesis of no difference.
- The less likely the data are to be observed given the Null, the more we tend to discount the Null.
 - Three kinds of inferential errors: Type I, Type II and Type III
 - Type I is rejecting the Null when in fact it is true
 - Type II is failing to reject the Null when it is in fact not true
 - Type III is asking the wrong question

Hypothesis Testing

Table: The ways we can be mistaken

		State of the World		
		True False		
Scientists says	True	Valid Positive	Type I error	
	False	Type II error Valid rejec		

Type III error is asking the wrong question!

Hypothesis Testing α and β

Table: The ways we can be mistaken

		State of the World			
		True False			
Scientists says	True	Valid Positive	(Type I error) = α		
	False	$p(Type\;II\;error) = \beta$	Valid rejection		

Power as $1-\beta$

We need to think about power.

Type III error is asking the wrong question!

Probability that a "significant effect" is a type I error =

$$\frac{\alpha * \textit{False}}{\alpha * \textit{False} + (1 - \beta) * \textit{True}}$$

Consider a number of scenarios

- 1. 1000 studies all together
 - Consider $\alpha = .05, .01$
 - Consider $1 \beta = .5, .8, .95, 1.0$
- 2. But, also consider the state of the world (What is the a priori likelihood of the outcome)
 - a 50-50 chance (boring result)
 - a 20-80 chance (interesting finding)
 - a 10-90 chance (very interesting finding)
 - a 1-99 chance (Wow, you found that!)
- 3. Probability that a "significant effect" is a type I error = $\alpha * False$

$$\frac{\alpha*False}{\alpha*False+(1-\beta)*True}$$

Hypothesis Testing α and β

Table: The ways we can be mistaken

		State of the World			
		True	False		
Scientists says	True	$VP = (1 - \beta) * True$	$p(Type\ I) = \alpha * False$		
	False	$p(Type\;II) = \beta * \mathit{True}$	$VR = (1 - \alpha) * False$		

Power as 1- β We need to think about power. probability that a "significant effect" is a type I error = $\frac{\alpha*False}{\alpha*False+(1-\beta)*True}$

Hypothesis Testing α and β likely event, high power

Table: A 50 - 50 chance - high power

		State of the World		
		True	False	Total
Scientists says	True	475	25	500
	False	25	475	500
	Total	500	500	1000

p (False Positive — finding was significant) =
$$\frac{25}{25+475}$$
 = .05

Hypothesis Testing α and β likely event, 50% power

Table: A 50 - 50 chance - low power

		State of the World		
		True	False	Total
Scientists says	True	250	25	275
	False	250	475	725
	Total	500	500	1000

p (False Positive — finding was significant) =
$$\frac{25}{25+250}$$
 = .09

Hypothesis Testing α and β unlikely event, 50% power

Table: A 10 - 90 chance - low power

		State of the World		
		True	False	Total
Scientists says	True	50	45	95
	False	50	855	905
	Total	100	900	1000

p (False Positive — finding was significant) =
$$\frac{45}{45+50}$$
 = .47

Hypothesis Testing α and β very unlikely event, 80% power

Table: A 1 - 99 chance - good power

		State of the World		
		True	False	Total
Scientists says	True	8	49.5	57.5
	False	2	940.5	942.5
	Total	10	990	1000

p (False Positive — finding was significant) = $\frac{49.5}{49.5+8}$ = .86

Hypothesis Testing α and β very unlikely event, perfect power

Table: A 1 - 99 chance - perfect power

		State of the World		
		True	False	Total
Scientists says	True	10	49.5	59.5
	False	0	940.5	94.5
	Total	10	990	1000

p (False Positive — finding was significant) =
$$\frac{49.5}{49.5+10}$$
 = .83

Power, α level, and the excitement of the finding

- 1. There is a natural tendency to want to show the unlikely.
 - Showing your grandmother is right is not as interesting as showing she is wrong
 - Showing that what most people expect is wrong is very exciting
- 2. But, the less likely the effect is to be there, the more likely that a "significant effect" is actually a type I error.
 - Need to increase our Power and be sensitive to the replicability of our results.
- 3. The power of a good graphic to show the problem.
 - Five lines: alpha = .05, .01, .001
 - Power = .8 or 1

Type I Errors: It is not the power, it is the prior likelihood dashed/dotted lines reflect alpha = .05, .01, .001 with power = 1

